1 /* 2 * Copyright (c) 2016-2023, Arm Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <assert.h> 8 #include <stdbool.h> 9 #include <string.h> 10 11 #include <platform_def.h> 12 13 #include <arch.h> 14 #include <arch_features.h> 15 #include <arch_helpers.h> 16 #include <common/bl_common.h> 17 #include <context.h> 18 #include <lib/el3_runtime/context_mgmt.h> 19 #include <lib/extensions/amu.h> 20 #include <lib/extensions/pmuv3.h> 21 #include <lib/extensions/sys_reg_trace.h> 22 #include <lib/extensions/trf.h> 23 #include <lib/utils.h> 24 25 /******************************************************************************* 26 * Context management library initialisation routine. This library is used by 27 * runtime services to share pointers to 'cpu_context' structures for the secure 28 * and non-secure states. Management of the structures and their associated 29 * memory is not done by the context management library e.g. the PSCI service 30 * manages the cpu context used for entry from and exit to the non-secure state. 31 * The Secure payload manages the context(s) corresponding to the secure state. 32 * It also uses this library to get access to the non-secure 33 * state cpu context pointers. 34 ******************************************************************************/ 35 void cm_init(void) 36 { 37 /* 38 * The context management library has only global data to initialize, but 39 * that will be done when the BSS is zeroed out 40 */ 41 } 42 43 /******************************************************************************* 44 * The following function initializes the cpu_context 'ctx' for 45 * first use, and sets the initial entrypoint state as specified by the 46 * entry_point_info structure. 47 * 48 * The security state to initialize is determined by the SECURE attribute 49 * of the entry_point_info. 50 * 51 * The EE and ST attributes are used to configure the endianness and secure 52 * timer availability for the new execution context. 53 * 54 * To prepare the register state for entry call cm_prepare_el3_exit() and 55 * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to 56 * cm_el1_sysregs_context_restore(). 57 ******************************************************************************/ 58 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep) 59 { 60 unsigned int security_state; 61 uint32_t scr, sctlr; 62 regs_t *reg_ctx; 63 64 assert(ctx != NULL); 65 66 security_state = GET_SECURITY_STATE(ep->h.attr); 67 68 /* Clear any residual register values from the context */ 69 zeromem(ctx, sizeof(*ctx)); 70 71 reg_ctx = get_regs_ctx(ctx); 72 73 /* 74 * Base the context SCR on the current value, adjust for entry point 75 * specific requirements 76 */ 77 scr = read_scr(); 78 scr &= ~(SCR_NS_BIT | SCR_HCE_BIT); 79 80 if (security_state != SECURE) 81 scr |= SCR_NS_BIT; 82 83 if (security_state != SECURE) { 84 /* 85 * Set up SCTLR for the Non-secure context. 86 * 87 * SCTLR.EE: Endianness is taken from the entrypoint attributes. 88 * 89 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as 90 * required by PSCI specification) 91 * 92 * Set remaining SCTLR fields to their architecturally defined 93 * values. Some fields reset to an IMPLEMENTATION DEFINED value: 94 * 95 * SCTLR.TE: Set to zero so that exceptions to an Exception 96 * Level executing at PL1 are taken to A32 state. 97 * 98 * SCTLR.V: Set to zero to select the normal exception vectors 99 * with base address held in VBAR. 100 */ 101 assert(((ep->spsr >> SPSR_E_SHIFT) & SPSR_E_MASK) == 102 (EP_GET_EE(ep->h.attr) >> EP_EE_SHIFT)); 103 104 sctlr = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U; 105 sctlr |= (SCTLR_RESET_VAL & ~(SCTLR_TE_BIT | SCTLR_V_BIT)); 106 write_ctx_reg(reg_ctx, CTX_NS_SCTLR, sctlr); 107 } 108 109 /* 110 * The target exception level is based on the spsr mode requested. If 111 * execution is requested to hyp mode, HVC is enabled via SCR.HCE. 112 */ 113 if (GET_M32(ep->spsr) == MODE32_hyp) 114 scr |= SCR_HCE_BIT; 115 116 /* 117 * Store the initialised values for SCTLR and SCR in the cpu_context. 118 * The Hyp mode registers are not part of the saved context and are 119 * set-up in cm_prepare_el3_exit(). 120 */ 121 write_ctx_reg(reg_ctx, CTX_SCR, scr); 122 write_ctx_reg(reg_ctx, CTX_LR, ep->pc); 123 write_ctx_reg(reg_ctx, CTX_SPSR, ep->spsr); 124 125 /* 126 * Store the r0-r3 value from the entrypoint into the context 127 * Use memcpy as we are in control of the layout of the structures 128 */ 129 memcpy((void *)reg_ctx, (void *)&ep->args, sizeof(aapcs32_params_t)); 130 } 131 132 /******************************************************************************* 133 * Enable architecture extensions on first entry to Non-secure world. 134 * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise 135 * it is zero. 136 ******************************************************************************/ 137 static void enable_extensions_nonsecure(bool el2_unused) 138 { 139 #if IMAGE_BL32 140 if (is_feat_amu_supported()) { 141 amu_enable(el2_unused); 142 } 143 144 if (is_feat_sys_reg_trace_supported()) { 145 sys_reg_trace_init_el3(); 146 } 147 148 if (is_feat_trf_supported()) { 149 trf_init_el3(); 150 } 151 152 /* 153 * Also applies to PMU < v3. The PMU is only disabled for EL3 and Secure 154 * state execution. This does not affect lower NS ELs. 155 */ 156 pmuv3_init_el3(); 157 #endif /* IMAGE_BL32 */ 158 } 159 160 /******************************************************************************* 161 * The following function initializes the cpu_context for a CPU specified by 162 * its `cpu_idx` for first use, and sets the initial entrypoint state as 163 * specified by the entry_point_info structure. 164 ******************************************************************************/ 165 void cm_init_context_by_index(unsigned int cpu_idx, 166 const entry_point_info_t *ep) 167 { 168 cpu_context_t *ctx; 169 ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr)); 170 cm_setup_context(ctx, ep); 171 } 172 173 /******************************************************************************* 174 * The following function initializes the cpu_context for the current CPU 175 * for first use, and sets the initial entrypoint state as specified by the 176 * entry_point_info structure. 177 ******************************************************************************/ 178 void cm_init_my_context(const entry_point_info_t *ep) 179 { 180 cpu_context_t *ctx; 181 ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr)); 182 cm_setup_context(ctx, ep); 183 } 184 185 /******************************************************************************* 186 * Prepare the CPU system registers for first entry into secure or normal world 187 * 188 * If execution is requested to hyp mode, HSCTLR is initialized 189 * If execution is requested to non-secure PL1, and the CPU supports 190 * HYP mode then HYP mode is disabled by configuring all necessary HYP mode 191 * registers. 192 ******************************************************************************/ 193 void cm_prepare_el3_exit(uint32_t security_state) 194 { 195 uint32_t hsctlr, scr; 196 cpu_context_t *ctx = cm_get_context(security_state); 197 bool el2_unused = false; 198 199 assert(ctx != NULL); 200 201 if (security_state == NON_SECURE) { 202 scr = read_ctx_reg(get_regs_ctx(ctx), CTX_SCR); 203 if ((scr & SCR_HCE_BIT) != 0U) { 204 /* Use SCTLR value to initialize HSCTLR */ 205 hsctlr = read_ctx_reg(get_regs_ctx(ctx), 206 CTX_NS_SCTLR); 207 hsctlr |= HSCTLR_RES1; 208 /* Temporarily set the NS bit to access HSCTLR */ 209 write_scr(read_scr() | SCR_NS_BIT); 210 /* 211 * Make sure the write to SCR is complete so that 212 * we can access HSCTLR 213 */ 214 isb(); 215 write_hsctlr(hsctlr); 216 isb(); 217 218 write_scr(read_scr() & ~SCR_NS_BIT); 219 isb(); 220 } else if ((read_id_pfr1() & 221 (ID_PFR1_VIRTEXT_MASK << ID_PFR1_VIRTEXT_SHIFT)) != 0U) { 222 el2_unused = true; 223 224 /* 225 * Set the NS bit to access NS copies of certain banked 226 * registers 227 */ 228 write_scr(read_scr() | SCR_NS_BIT); 229 isb(); 230 231 /* 232 * Hyp / PL2 present but unused, need to disable safely. 233 * HSCTLR can be ignored in this case. 234 * 235 * Set HCR to its architectural reset value so that 236 * Non-secure operations do not trap to Hyp mode. 237 */ 238 write_hcr(HCR_RESET_VAL); 239 240 /* 241 * Set HCPTR to its architectural reset value so that 242 * Non-secure access from EL1 or EL0 to trace and to 243 * Advanced SIMD and floating point functionality does 244 * not trap to Hyp mode. 245 */ 246 write_hcptr(HCPTR_RESET_VAL); 247 248 /* 249 * Initialise CNTHCTL. All fields are architecturally 250 * UNKNOWN on reset and are set to zero except for 251 * field(s) listed below. 252 * 253 * CNTHCTL.PL1PCEN: Disable traps to Hyp mode of 254 * Non-secure EL0 and EL1 accessed to the physical 255 * timer registers. 256 * 257 * CNTHCTL.PL1PCTEN: Disable traps to Hyp mode of 258 * Non-secure EL0 and EL1 accessed to the physical 259 * counter registers. 260 */ 261 write_cnthctl(CNTHCTL_RESET_VAL | 262 PL1PCEN_BIT | PL1PCTEN_BIT); 263 264 /* 265 * Initialise CNTVOFF to zero as it resets to an 266 * IMPLEMENTATION DEFINED value. 267 */ 268 write64_cntvoff(0); 269 270 /* 271 * Set VPIDR and VMPIDR to match MIDR_EL1 and MPIDR 272 * respectively. 273 */ 274 write_vpidr(read_midr()); 275 write_vmpidr(read_mpidr()); 276 277 /* 278 * Initialise VTTBR, setting all fields rather than 279 * relying on the hw. Some fields are architecturally 280 * UNKNOWN at reset. 281 * 282 * VTTBR.VMID: Set to zero which is the architecturally 283 * defined reset value. Even though EL1&0 stage 2 284 * address translation is disabled, cache maintenance 285 * operations depend on the VMID. 286 * 287 * VTTBR.BADDR: Set to zero as EL1&0 stage 2 address 288 * translation is disabled. 289 */ 290 write64_vttbr(VTTBR_RESET_VAL & 291 ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) 292 | (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT))); 293 294 /* 295 * Initialise HDCR, setting all the fields rather than 296 * relying on hw. 297 * 298 * HDCR.HPMN: Set to value of PMCR.N which is the 299 * architecturally-defined reset value. 300 * 301 * HDCR.HLP: Set to one so that event counter 302 * overflow, that is recorded in PMOVSCLR[0-30], 303 * occurs on the increment that changes 304 * PMEVCNTR<n>[63] from 1 to 0, when ARMv8.5-PMU is 305 * implemented. This bit is RES0 in versions of the 306 * architecture earlier than ARMv8.5, setting it to 1 307 * doesn't have any effect on them. 308 * This bit is Reserved, UNK/SBZP in ARMv7. 309 * 310 * HDCR.HPME: Set to zero to disable EL2 Event 311 * counters. 312 */ 313 #if (ARM_ARCH_MAJOR > 7) 314 write_hdcr((HDCR_RESET_VAL | HDCR_HLP_BIT | 315 ((read_pmcr() & PMCR_N_BITS) >> 316 PMCR_N_SHIFT)) & ~HDCR_HPME_BIT); 317 #else 318 write_hdcr((HDCR_RESET_VAL | 319 ((read_pmcr() & PMCR_N_BITS) >> 320 PMCR_N_SHIFT)) & ~HDCR_HPME_BIT); 321 #endif 322 /* 323 * Set HSTR to its architectural reset value so that 324 * access to system registers in the cproc=1111 325 * encoding space do not trap to Hyp mode. 326 */ 327 write_hstr(HSTR_RESET_VAL); 328 /* 329 * Set CNTHP_CTL to its architectural reset value to 330 * disable the EL2 physical timer and prevent timer 331 * interrupts. Some fields are architecturally UNKNOWN 332 * on reset and are set to zero. 333 */ 334 write_cnthp_ctl(CNTHP_CTL_RESET_VAL); 335 isb(); 336 337 write_scr(read_scr() & ~SCR_NS_BIT); 338 isb(); 339 } 340 enable_extensions_nonsecure(el2_unused); 341 } 342 } 343 344 /******************************************************************************* 345 * This function is used to exit to Non-secure world. It simply calls the 346 * cm_prepare_el3_exit function for AArch32. 347 ******************************************************************************/ 348 void cm_prepare_el3_exit_ns(void) 349 { 350 cm_prepare_el3_exit(NON_SECURE); 351 } 352