1*e33b78a6SSoby Mathew /* 2*e33b78a6SSoby Mathew * Copyright (c) 2016, ARM Limited and Contributors. All rights reserved. 3*e33b78a6SSoby Mathew * 4*e33b78a6SSoby Mathew * Redistribution and use in source and binary forms, with or without 5*e33b78a6SSoby Mathew * modification, are permitted provided that the following conditions are met: 6*e33b78a6SSoby Mathew * 7*e33b78a6SSoby Mathew * Redistributions of source code must retain the above copyright notice, this 8*e33b78a6SSoby Mathew * list of conditions and the following disclaimer. 9*e33b78a6SSoby Mathew * 10*e33b78a6SSoby Mathew * Redistributions in binary form must reproduce the above copyright notice, 11*e33b78a6SSoby Mathew * this list of conditions and the following disclaimer in the documentation 12*e33b78a6SSoby Mathew * and/or other materials provided with the distribution. 13*e33b78a6SSoby Mathew * 14*e33b78a6SSoby Mathew * Neither the name of ARM nor the names of its contributors may be used 15*e33b78a6SSoby Mathew * to endorse or promote products derived from this software without specific 16*e33b78a6SSoby Mathew * prior written permission. 17*e33b78a6SSoby Mathew * 18*e33b78a6SSoby Mathew * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 19*e33b78a6SSoby Mathew * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20*e33b78a6SSoby Mathew * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21*e33b78a6SSoby Mathew * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 22*e33b78a6SSoby Mathew * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 23*e33b78a6SSoby Mathew * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24*e33b78a6SSoby Mathew * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25*e33b78a6SSoby Mathew * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 26*e33b78a6SSoby Mathew * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27*e33b78a6SSoby Mathew * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28*e33b78a6SSoby Mathew * POSSIBILITY OF SUCH DAMAGE. 29*e33b78a6SSoby Mathew */ 30*e33b78a6SSoby Mathew 31*e33b78a6SSoby Mathew #include <arch.h> 32*e33b78a6SSoby Mathew #include <arch_helpers.h> 33*e33b78a6SSoby Mathew #include <assert.h> 34*e33b78a6SSoby Mathew #include <bl_common.h> 35*e33b78a6SSoby Mathew #include <context.h> 36*e33b78a6SSoby Mathew #include <context_mgmt.h> 37*e33b78a6SSoby Mathew #include <platform.h> 38*e33b78a6SSoby Mathew #include <platform_def.h> 39*e33b78a6SSoby Mathew #include <smcc_helpers.h> 40*e33b78a6SSoby Mathew #include <string.h> 41*e33b78a6SSoby Mathew 42*e33b78a6SSoby Mathew /******************************************************************************* 43*e33b78a6SSoby Mathew * Context management library initialisation routine. This library is used by 44*e33b78a6SSoby Mathew * runtime services to share pointers to 'cpu_context' structures for the secure 45*e33b78a6SSoby Mathew * and non-secure states. Management of the structures and their associated 46*e33b78a6SSoby Mathew * memory is not done by the context management library e.g. the PSCI service 47*e33b78a6SSoby Mathew * manages the cpu context used for entry from and exit to the non-secure state. 48*e33b78a6SSoby Mathew * The Secure payload manages the context(s) corresponding to the secure state. 49*e33b78a6SSoby Mathew * It also uses this library to get access to the non-secure 50*e33b78a6SSoby Mathew * state cpu context pointers. 51*e33b78a6SSoby Mathew ******************************************************************************/ 52*e33b78a6SSoby Mathew void cm_init(void) 53*e33b78a6SSoby Mathew { 54*e33b78a6SSoby Mathew /* 55*e33b78a6SSoby Mathew * The context management library has only global data to initialize, but 56*e33b78a6SSoby Mathew * that will be done when the BSS is zeroed out 57*e33b78a6SSoby Mathew */ 58*e33b78a6SSoby Mathew } 59*e33b78a6SSoby Mathew 60*e33b78a6SSoby Mathew /******************************************************************************* 61*e33b78a6SSoby Mathew * The following function initializes the cpu_context 'ctx' for 62*e33b78a6SSoby Mathew * first use, and sets the initial entrypoint state as specified by the 63*e33b78a6SSoby Mathew * entry_point_info structure. 64*e33b78a6SSoby Mathew * 65*e33b78a6SSoby Mathew * The security state to initialize is determined by the SECURE attribute 66*e33b78a6SSoby Mathew * of the entry_point_info. The function returns a pointer to the initialized 67*e33b78a6SSoby Mathew * context and sets this as the next context to return to. 68*e33b78a6SSoby Mathew * 69*e33b78a6SSoby Mathew * The EE and ST attributes are used to configure the endianness and secure 70*e33b78a6SSoby Mathew * timer availability for the new execution context. 71*e33b78a6SSoby Mathew * 72*e33b78a6SSoby Mathew * To prepare the register state for entry call cm_prepare_el3_exit() and 73*e33b78a6SSoby Mathew * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to 74*e33b78a6SSoby Mathew * cm_e1_sysreg_context_restore(). 75*e33b78a6SSoby Mathew ******************************************************************************/ 76*e33b78a6SSoby Mathew static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep) 77*e33b78a6SSoby Mathew { 78*e33b78a6SSoby Mathew unsigned int security_state; 79*e33b78a6SSoby Mathew uint32_t scr, sctlr; 80*e33b78a6SSoby Mathew regs_t *reg_ctx; 81*e33b78a6SSoby Mathew 82*e33b78a6SSoby Mathew assert(ctx); 83*e33b78a6SSoby Mathew 84*e33b78a6SSoby Mathew security_state = GET_SECURITY_STATE(ep->h.attr); 85*e33b78a6SSoby Mathew 86*e33b78a6SSoby Mathew /* Clear any residual register values from the context */ 87*e33b78a6SSoby Mathew memset(ctx, 0, sizeof(*ctx)); 88*e33b78a6SSoby Mathew 89*e33b78a6SSoby Mathew /* 90*e33b78a6SSoby Mathew * Base the context SCR on the current value, adjust for entry point 91*e33b78a6SSoby Mathew * specific requirements 92*e33b78a6SSoby Mathew */ 93*e33b78a6SSoby Mathew scr = read_scr(); 94*e33b78a6SSoby Mathew scr &= ~(SCR_NS_BIT | SCR_HCE_BIT); 95*e33b78a6SSoby Mathew 96*e33b78a6SSoby Mathew if (security_state != SECURE) 97*e33b78a6SSoby Mathew scr |= SCR_NS_BIT; 98*e33b78a6SSoby Mathew 99*e33b78a6SSoby Mathew /* 100*e33b78a6SSoby Mathew * Set up SCTLR for the Non Secure context. 101*e33b78a6SSoby Mathew * EE bit is taken from the entrypoint attributes 102*e33b78a6SSoby Mathew * M, C and I bits must be zero (as required by PSCI specification) 103*e33b78a6SSoby Mathew * 104*e33b78a6SSoby Mathew * The target exception level is based on the spsr mode requested. 105*e33b78a6SSoby Mathew * If execution is requested to hyp mode, HVC is enabled 106*e33b78a6SSoby Mathew * via SCR.HCE. 107*e33b78a6SSoby Mathew * 108*e33b78a6SSoby Mathew * Always compute the SCTLR_EL1 value and save in the cpu_context 109*e33b78a6SSoby Mathew * - the HYP registers are set up by cm_preapre_ns_entry() as they 110*e33b78a6SSoby Mathew * are not part of the stored cpu_context 111*e33b78a6SSoby Mathew * 112*e33b78a6SSoby Mathew * TODO: In debug builds the spsr should be validated and checked 113*e33b78a6SSoby Mathew * against the CPU support, security state, endianness and pc 114*e33b78a6SSoby Mathew */ 115*e33b78a6SSoby Mathew if (security_state != SECURE) { 116*e33b78a6SSoby Mathew sctlr = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0; 117*e33b78a6SSoby Mathew sctlr |= SCTLR_RES1; 118*e33b78a6SSoby Mathew write_ctx_reg(reg_ctx, CTX_NS_SCTLR, sctlr); 119*e33b78a6SSoby Mathew } 120*e33b78a6SSoby Mathew 121*e33b78a6SSoby Mathew if (GET_M32(ep->spsr) == MODE32_hyp) 122*e33b78a6SSoby Mathew scr |= SCR_HCE_BIT; 123*e33b78a6SSoby Mathew 124*e33b78a6SSoby Mathew reg_ctx = get_regs_ctx(ctx); 125*e33b78a6SSoby Mathew 126*e33b78a6SSoby Mathew write_ctx_reg(reg_ctx, CTX_SCR, scr); 127*e33b78a6SSoby Mathew write_ctx_reg(reg_ctx, CTX_LR, ep->pc); 128*e33b78a6SSoby Mathew write_ctx_reg(reg_ctx, CTX_SPSR, ep->spsr); 129*e33b78a6SSoby Mathew 130*e33b78a6SSoby Mathew /* 131*e33b78a6SSoby Mathew * Store the r0-r3 value from the entrypoint into the context 132*e33b78a6SSoby Mathew * Use memcpy as we are in control of the layout of the structures 133*e33b78a6SSoby Mathew */ 134*e33b78a6SSoby Mathew memcpy((void *)reg_ctx, (void *)&ep->args, sizeof(aapcs32_params_t)); 135*e33b78a6SSoby Mathew } 136*e33b78a6SSoby Mathew 137*e33b78a6SSoby Mathew /******************************************************************************* 138*e33b78a6SSoby Mathew * The following function initializes the cpu_context for a CPU specified by 139*e33b78a6SSoby Mathew * its `cpu_idx` for first use, and sets the initial entrypoint state as 140*e33b78a6SSoby Mathew * specified by the entry_point_info structure. 141*e33b78a6SSoby Mathew ******************************************************************************/ 142*e33b78a6SSoby Mathew void cm_init_context_by_index(unsigned int cpu_idx, 143*e33b78a6SSoby Mathew const entry_point_info_t *ep) 144*e33b78a6SSoby Mathew { 145*e33b78a6SSoby Mathew cpu_context_t *ctx; 146*e33b78a6SSoby Mathew ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr)); 147*e33b78a6SSoby Mathew cm_init_context_common(ctx, ep); 148*e33b78a6SSoby Mathew } 149*e33b78a6SSoby Mathew 150*e33b78a6SSoby Mathew /******************************************************************************* 151*e33b78a6SSoby Mathew * The following function initializes the cpu_context for the current CPU 152*e33b78a6SSoby Mathew * for first use, and sets the initial entrypoint state as specified by the 153*e33b78a6SSoby Mathew * entry_point_info structure. 154*e33b78a6SSoby Mathew ******************************************************************************/ 155*e33b78a6SSoby Mathew void cm_init_my_context(const entry_point_info_t *ep) 156*e33b78a6SSoby Mathew { 157*e33b78a6SSoby Mathew cpu_context_t *ctx; 158*e33b78a6SSoby Mathew ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr)); 159*e33b78a6SSoby Mathew cm_init_context_common(ctx, ep); 160*e33b78a6SSoby Mathew } 161*e33b78a6SSoby Mathew 162*e33b78a6SSoby Mathew /******************************************************************************* 163*e33b78a6SSoby Mathew * Prepare the CPU system registers for first entry into secure or normal world 164*e33b78a6SSoby Mathew * 165*e33b78a6SSoby Mathew * If execution is requested to hyp mode, HSCTLR is initialized 166*e33b78a6SSoby Mathew * If execution is requested to non-secure PL1, and the CPU supports 167*e33b78a6SSoby Mathew * HYP mode then HYP mode is disabled by configuring all necessary HYP mode 168*e33b78a6SSoby Mathew * registers. 169*e33b78a6SSoby Mathew ******************************************************************************/ 170*e33b78a6SSoby Mathew void cm_prepare_el3_exit(uint32_t security_state) 171*e33b78a6SSoby Mathew { 172*e33b78a6SSoby Mathew uint32_t sctlr, scr, hcptr; 173*e33b78a6SSoby Mathew cpu_context_t *ctx = cm_get_context(security_state); 174*e33b78a6SSoby Mathew 175*e33b78a6SSoby Mathew assert(ctx); 176*e33b78a6SSoby Mathew 177*e33b78a6SSoby Mathew if (security_state == NON_SECURE) { 178*e33b78a6SSoby Mathew scr = read_ctx_reg(get_regs_ctx(ctx), CTX_SCR); 179*e33b78a6SSoby Mathew if (scr & SCR_HCE_BIT) { 180*e33b78a6SSoby Mathew /* Use SCTLR value to initialize HSCTLR */ 181*e33b78a6SSoby Mathew sctlr = read_ctx_reg(get_regs_ctx(ctx), 182*e33b78a6SSoby Mathew CTX_NS_SCTLR); 183*e33b78a6SSoby Mathew sctlr |= HSCTLR_RES1; 184*e33b78a6SSoby Mathew /* Temporarily set the NS bit to access HSCTLR */ 185*e33b78a6SSoby Mathew write_scr(read_scr() | SCR_NS_BIT); 186*e33b78a6SSoby Mathew /* 187*e33b78a6SSoby Mathew * Make sure the write to SCR is complete so that 188*e33b78a6SSoby Mathew * we can access HSCTLR 189*e33b78a6SSoby Mathew */ 190*e33b78a6SSoby Mathew isb(); 191*e33b78a6SSoby Mathew write_hsctlr(sctlr); 192*e33b78a6SSoby Mathew isb(); 193*e33b78a6SSoby Mathew 194*e33b78a6SSoby Mathew write_scr(read_scr() & ~SCR_NS_BIT); 195*e33b78a6SSoby Mathew isb(); 196*e33b78a6SSoby Mathew } else if (read_id_pfr1() & 197*e33b78a6SSoby Mathew (ID_PFR1_VIRTEXT_MASK << ID_PFR1_VIRTEXT_SHIFT)) { 198*e33b78a6SSoby Mathew /* Set the NS bit to access HCR, HCPTR, CNTHCTL, VPIDR, VMPIDR */ 199*e33b78a6SSoby Mathew write_scr(read_scr() | SCR_NS_BIT); 200*e33b78a6SSoby Mathew isb(); 201*e33b78a6SSoby Mathew 202*e33b78a6SSoby Mathew /* PL2 present but unused, need to disable safely */ 203*e33b78a6SSoby Mathew write_hcr(0); 204*e33b78a6SSoby Mathew 205*e33b78a6SSoby Mathew /* HSCTLR : can be ignored when bypassing */ 206*e33b78a6SSoby Mathew 207*e33b78a6SSoby Mathew /* HCPTR : disable all traps TCPAC, TTA, TCP */ 208*e33b78a6SSoby Mathew hcptr = read_hcptr(); 209*e33b78a6SSoby Mathew hcptr &= ~(TCPAC_BIT | TTA_BIT | TCP11_BIT | TCP10_BIT); 210*e33b78a6SSoby Mathew write_hcptr(hcptr); 211*e33b78a6SSoby Mathew 212*e33b78a6SSoby Mathew /* Enable EL1 access to timer */ 213*e33b78a6SSoby Mathew write_cnthctl(PL1PCEN_BIT | PL1PCTEN_BIT); 214*e33b78a6SSoby Mathew 215*e33b78a6SSoby Mathew /* Reset CNTVOFF_EL2 */ 216*e33b78a6SSoby Mathew write64_cntvoff(0); 217*e33b78a6SSoby Mathew 218*e33b78a6SSoby Mathew /* Set VPIDR, VMPIDR to match MIDR, MPIDR */ 219*e33b78a6SSoby Mathew write_vpidr(read_midr()); 220*e33b78a6SSoby Mathew write_vmpidr(read_mpidr()); 221*e33b78a6SSoby Mathew 222*e33b78a6SSoby Mathew /* 223*e33b78a6SSoby Mathew * Reset VTTBR. 224*e33b78a6SSoby Mathew * Needed because cache maintenance operations depend on 225*e33b78a6SSoby Mathew * the VMID even when non-secure EL1&0 stage 2 address 226*e33b78a6SSoby Mathew * translation are disabled. 227*e33b78a6SSoby Mathew */ 228*e33b78a6SSoby Mathew write64_vttbr(0); 229*e33b78a6SSoby Mathew isb(); 230*e33b78a6SSoby Mathew 231*e33b78a6SSoby Mathew write_scr(read_scr() & ~SCR_NS_BIT); 232*e33b78a6SSoby Mathew isb(); 233*e33b78a6SSoby Mathew } 234*e33b78a6SSoby Mathew } 235*e33b78a6SSoby Mathew } 236