1e33b78a6SSoby Mathew /* 2e33b78a6SSoby Mathew * Copyright (c) 2016, ARM Limited and Contributors. All rights reserved. 3e33b78a6SSoby Mathew * 4e33b78a6SSoby Mathew * Redistribution and use in source and binary forms, with or without 5e33b78a6SSoby Mathew * modification, are permitted provided that the following conditions are met: 6e33b78a6SSoby Mathew * 7e33b78a6SSoby Mathew * Redistributions of source code must retain the above copyright notice, this 8e33b78a6SSoby Mathew * list of conditions and the following disclaimer. 9e33b78a6SSoby Mathew * 10e33b78a6SSoby Mathew * Redistributions in binary form must reproduce the above copyright notice, 11e33b78a6SSoby Mathew * this list of conditions and the following disclaimer in the documentation 12e33b78a6SSoby Mathew * and/or other materials provided with the distribution. 13e33b78a6SSoby Mathew * 14e33b78a6SSoby Mathew * Neither the name of ARM nor the names of its contributors may be used 15e33b78a6SSoby Mathew * to endorse or promote products derived from this software without specific 16e33b78a6SSoby Mathew * prior written permission. 17e33b78a6SSoby Mathew * 18e33b78a6SSoby Mathew * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 19e33b78a6SSoby Mathew * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20e33b78a6SSoby Mathew * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21e33b78a6SSoby Mathew * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 22e33b78a6SSoby Mathew * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 23e33b78a6SSoby Mathew * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24e33b78a6SSoby Mathew * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25e33b78a6SSoby Mathew * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 26e33b78a6SSoby Mathew * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27e33b78a6SSoby Mathew * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28e33b78a6SSoby Mathew * POSSIBILITY OF SUCH DAMAGE. 29e33b78a6SSoby Mathew */ 30e33b78a6SSoby Mathew 31e33b78a6SSoby Mathew #include <arch.h> 32e33b78a6SSoby Mathew #include <arch_helpers.h> 33e33b78a6SSoby Mathew #include <assert.h> 34e33b78a6SSoby Mathew #include <bl_common.h> 35e33b78a6SSoby Mathew #include <context.h> 36e33b78a6SSoby Mathew #include <context_mgmt.h> 37e33b78a6SSoby Mathew #include <platform.h> 38e33b78a6SSoby Mathew #include <platform_def.h> 39e33b78a6SSoby Mathew #include <smcc_helpers.h> 40e33b78a6SSoby Mathew #include <string.h> 41e33b78a6SSoby Mathew 42e33b78a6SSoby Mathew /******************************************************************************* 43e33b78a6SSoby Mathew * Context management library initialisation routine. This library is used by 44e33b78a6SSoby Mathew * runtime services to share pointers to 'cpu_context' structures for the secure 45e33b78a6SSoby Mathew * and non-secure states. Management of the structures and their associated 46e33b78a6SSoby Mathew * memory is not done by the context management library e.g. the PSCI service 47e33b78a6SSoby Mathew * manages the cpu context used for entry from and exit to the non-secure state. 48e33b78a6SSoby Mathew * The Secure payload manages the context(s) corresponding to the secure state. 49e33b78a6SSoby Mathew * It also uses this library to get access to the non-secure 50e33b78a6SSoby Mathew * state cpu context pointers. 51e33b78a6SSoby Mathew ******************************************************************************/ 52e33b78a6SSoby Mathew void cm_init(void) 53e33b78a6SSoby Mathew { 54e33b78a6SSoby Mathew /* 55e33b78a6SSoby Mathew * The context management library has only global data to initialize, but 56e33b78a6SSoby Mathew * that will be done when the BSS is zeroed out 57e33b78a6SSoby Mathew */ 58e33b78a6SSoby Mathew } 59e33b78a6SSoby Mathew 60e33b78a6SSoby Mathew /******************************************************************************* 61e33b78a6SSoby Mathew * The following function initializes the cpu_context 'ctx' for 62e33b78a6SSoby Mathew * first use, and sets the initial entrypoint state as specified by the 63e33b78a6SSoby Mathew * entry_point_info structure. 64e33b78a6SSoby Mathew * 65e33b78a6SSoby Mathew * The security state to initialize is determined by the SECURE attribute 66e33b78a6SSoby Mathew * of the entry_point_info. The function returns a pointer to the initialized 67e33b78a6SSoby Mathew * context and sets this as the next context to return to. 68e33b78a6SSoby Mathew * 69e33b78a6SSoby Mathew * The EE and ST attributes are used to configure the endianness and secure 70e33b78a6SSoby Mathew * timer availability for the new execution context. 71e33b78a6SSoby Mathew * 72e33b78a6SSoby Mathew * To prepare the register state for entry call cm_prepare_el3_exit() and 73e33b78a6SSoby Mathew * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to 74e33b78a6SSoby Mathew * cm_e1_sysreg_context_restore(). 75e33b78a6SSoby Mathew ******************************************************************************/ 76e33b78a6SSoby Mathew static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep) 77e33b78a6SSoby Mathew { 78e33b78a6SSoby Mathew unsigned int security_state; 79e33b78a6SSoby Mathew uint32_t scr, sctlr; 80e33b78a6SSoby Mathew regs_t *reg_ctx; 81e33b78a6SSoby Mathew 82e33b78a6SSoby Mathew assert(ctx); 83e33b78a6SSoby Mathew 84e33b78a6SSoby Mathew security_state = GET_SECURITY_STATE(ep->h.attr); 85e33b78a6SSoby Mathew 86e33b78a6SSoby Mathew /* Clear any residual register values from the context */ 87e33b78a6SSoby Mathew memset(ctx, 0, sizeof(*ctx)); 88e33b78a6SSoby Mathew 89*9e3b4cbbSSoby Mathew reg_ctx = get_regs_ctx(ctx); 90*9e3b4cbbSSoby Mathew 91e33b78a6SSoby Mathew /* 92e33b78a6SSoby Mathew * Base the context SCR on the current value, adjust for entry point 93e33b78a6SSoby Mathew * specific requirements 94e33b78a6SSoby Mathew */ 95e33b78a6SSoby Mathew scr = read_scr(); 96e33b78a6SSoby Mathew scr &= ~(SCR_NS_BIT | SCR_HCE_BIT); 97e33b78a6SSoby Mathew 98e33b78a6SSoby Mathew if (security_state != SECURE) 99e33b78a6SSoby Mathew scr |= SCR_NS_BIT; 100e33b78a6SSoby Mathew 101e33b78a6SSoby Mathew /* 102e33b78a6SSoby Mathew * Set up SCTLR for the Non Secure context. 103e33b78a6SSoby Mathew * EE bit is taken from the entrypoint attributes 104e33b78a6SSoby Mathew * M, C and I bits must be zero (as required by PSCI specification) 105e33b78a6SSoby Mathew * 106e33b78a6SSoby Mathew * The target exception level is based on the spsr mode requested. 107e33b78a6SSoby Mathew * If execution is requested to hyp mode, HVC is enabled 108e33b78a6SSoby Mathew * via SCR.HCE. 109e33b78a6SSoby Mathew * 110e33b78a6SSoby Mathew * Always compute the SCTLR_EL1 value and save in the cpu_context 111e33b78a6SSoby Mathew * - the HYP registers are set up by cm_preapre_ns_entry() as they 112e33b78a6SSoby Mathew * are not part of the stored cpu_context 113e33b78a6SSoby Mathew * 114e33b78a6SSoby Mathew * TODO: In debug builds the spsr should be validated and checked 115e33b78a6SSoby Mathew * against the CPU support, security state, endianness and pc 116e33b78a6SSoby Mathew */ 117e33b78a6SSoby Mathew if (security_state != SECURE) { 118e33b78a6SSoby Mathew sctlr = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0; 119e33b78a6SSoby Mathew sctlr |= SCTLR_RES1; 120e33b78a6SSoby Mathew write_ctx_reg(reg_ctx, CTX_NS_SCTLR, sctlr); 121e33b78a6SSoby Mathew } 122e33b78a6SSoby Mathew 123e33b78a6SSoby Mathew if (GET_M32(ep->spsr) == MODE32_hyp) 124e33b78a6SSoby Mathew scr |= SCR_HCE_BIT; 125e33b78a6SSoby Mathew 126e33b78a6SSoby Mathew write_ctx_reg(reg_ctx, CTX_SCR, scr); 127e33b78a6SSoby Mathew write_ctx_reg(reg_ctx, CTX_LR, ep->pc); 128e33b78a6SSoby Mathew write_ctx_reg(reg_ctx, CTX_SPSR, ep->spsr); 129e33b78a6SSoby Mathew 130e33b78a6SSoby Mathew /* 131e33b78a6SSoby Mathew * Store the r0-r3 value from the entrypoint into the context 132e33b78a6SSoby Mathew * Use memcpy as we are in control of the layout of the structures 133e33b78a6SSoby Mathew */ 134e33b78a6SSoby Mathew memcpy((void *)reg_ctx, (void *)&ep->args, sizeof(aapcs32_params_t)); 135e33b78a6SSoby Mathew } 136e33b78a6SSoby Mathew 137e33b78a6SSoby Mathew /******************************************************************************* 138e33b78a6SSoby Mathew * The following function initializes the cpu_context for a CPU specified by 139e33b78a6SSoby Mathew * its `cpu_idx` for first use, and sets the initial entrypoint state as 140e33b78a6SSoby Mathew * specified by the entry_point_info structure. 141e33b78a6SSoby Mathew ******************************************************************************/ 142e33b78a6SSoby Mathew void cm_init_context_by_index(unsigned int cpu_idx, 143e33b78a6SSoby Mathew const entry_point_info_t *ep) 144e33b78a6SSoby Mathew { 145e33b78a6SSoby Mathew cpu_context_t *ctx; 146e33b78a6SSoby Mathew ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr)); 147e33b78a6SSoby Mathew cm_init_context_common(ctx, ep); 148e33b78a6SSoby Mathew } 149e33b78a6SSoby Mathew 150e33b78a6SSoby Mathew /******************************************************************************* 151e33b78a6SSoby Mathew * The following function initializes the cpu_context for the current CPU 152e33b78a6SSoby Mathew * for first use, and sets the initial entrypoint state as specified by the 153e33b78a6SSoby Mathew * entry_point_info structure. 154e33b78a6SSoby Mathew ******************************************************************************/ 155e33b78a6SSoby Mathew void cm_init_my_context(const entry_point_info_t *ep) 156e33b78a6SSoby Mathew { 157e33b78a6SSoby Mathew cpu_context_t *ctx; 158e33b78a6SSoby Mathew ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr)); 159e33b78a6SSoby Mathew cm_init_context_common(ctx, ep); 160e33b78a6SSoby Mathew } 161e33b78a6SSoby Mathew 162e33b78a6SSoby Mathew /******************************************************************************* 163e33b78a6SSoby Mathew * Prepare the CPU system registers for first entry into secure or normal world 164e33b78a6SSoby Mathew * 165e33b78a6SSoby Mathew * If execution is requested to hyp mode, HSCTLR is initialized 166e33b78a6SSoby Mathew * If execution is requested to non-secure PL1, and the CPU supports 167e33b78a6SSoby Mathew * HYP mode then HYP mode is disabled by configuring all necessary HYP mode 168e33b78a6SSoby Mathew * registers. 169e33b78a6SSoby Mathew ******************************************************************************/ 170e33b78a6SSoby Mathew void cm_prepare_el3_exit(uint32_t security_state) 171e33b78a6SSoby Mathew { 172e33b78a6SSoby Mathew uint32_t sctlr, scr, hcptr; 173e33b78a6SSoby Mathew cpu_context_t *ctx = cm_get_context(security_state); 174e33b78a6SSoby Mathew 175e33b78a6SSoby Mathew assert(ctx); 176e33b78a6SSoby Mathew 177e33b78a6SSoby Mathew if (security_state == NON_SECURE) { 178e33b78a6SSoby Mathew scr = read_ctx_reg(get_regs_ctx(ctx), CTX_SCR); 179e33b78a6SSoby Mathew if (scr & SCR_HCE_BIT) { 180e33b78a6SSoby Mathew /* Use SCTLR value to initialize HSCTLR */ 181e33b78a6SSoby Mathew sctlr = read_ctx_reg(get_regs_ctx(ctx), 182e33b78a6SSoby Mathew CTX_NS_SCTLR); 183e33b78a6SSoby Mathew sctlr |= HSCTLR_RES1; 184e33b78a6SSoby Mathew /* Temporarily set the NS bit to access HSCTLR */ 185e33b78a6SSoby Mathew write_scr(read_scr() | SCR_NS_BIT); 186e33b78a6SSoby Mathew /* 187e33b78a6SSoby Mathew * Make sure the write to SCR is complete so that 188e33b78a6SSoby Mathew * we can access HSCTLR 189e33b78a6SSoby Mathew */ 190e33b78a6SSoby Mathew isb(); 191e33b78a6SSoby Mathew write_hsctlr(sctlr); 192e33b78a6SSoby Mathew isb(); 193e33b78a6SSoby Mathew 194e33b78a6SSoby Mathew write_scr(read_scr() & ~SCR_NS_BIT); 195e33b78a6SSoby Mathew isb(); 196e33b78a6SSoby Mathew } else if (read_id_pfr1() & 197e33b78a6SSoby Mathew (ID_PFR1_VIRTEXT_MASK << ID_PFR1_VIRTEXT_SHIFT)) { 198e33b78a6SSoby Mathew /* Set the NS bit to access HCR, HCPTR, CNTHCTL, VPIDR, VMPIDR */ 199e33b78a6SSoby Mathew write_scr(read_scr() | SCR_NS_BIT); 200e33b78a6SSoby Mathew isb(); 201e33b78a6SSoby Mathew 202e33b78a6SSoby Mathew /* PL2 present but unused, need to disable safely */ 203e33b78a6SSoby Mathew write_hcr(0); 204e33b78a6SSoby Mathew 205e33b78a6SSoby Mathew /* HSCTLR : can be ignored when bypassing */ 206e33b78a6SSoby Mathew 207e33b78a6SSoby Mathew /* HCPTR : disable all traps TCPAC, TTA, TCP */ 208e33b78a6SSoby Mathew hcptr = read_hcptr(); 209e33b78a6SSoby Mathew hcptr &= ~(TCPAC_BIT | TTA_BIT | TCP11_BIT | TCP10_BIT); 210e33b78a6SSoby Mathew write_hcptr(hcptr); 211e33b78a6SSoby Mathew 212e33b78a6SSoby Mathew /* Enable EL1 access to timer */ 213e33b78a6SSoby Mathew write_cnthctl(PL1PCEN_BIT | PL1PCTEN_BIT); 214e33b78a6SSoby Mathew 215e33b78a6SSoby Mathew /* Reset CNTVOFF_EL2 */ 216e33b78a6SSoby Mathew write64_cntvoff(0); 217e33b78a6SSoby Mathew 218e33b78a6SSoby Mathew /* Set VPIDR, VMPIDR to match MIDR, MPIDR */ 219e33b78a6SSoby Mathew write_vpidr(read_midr()); 220e33b78a6SSoby Mathew write_vmpidr(read_mpidr()); 221e33b78a6SSoby Mathew 222e33b78a6SSoby Mathew /* 223e33b78a6SSoby Mathew * Reset VTTBR. 224e33b78a6SSoby Mathew * Needed because cache maintenance operations depend on 225e33b78a6SSoby Mathew * the VMID even when non-secure EL1&0 stage 2 address 226e33b78a6SSoby Mathew * translation are disabled. 227e33b78a6SSoby Mathew */ 228e33b78a6SSoby Mathew write64_vttbr(0); 229e33b78a6SSoby Mathew isb(); 230e33b78a6SSoby Mathew 231e33b78a6SSoby Mathew write_scr(read_scr() & ~SCR_NS_BIT); 232e33b78a6SSoby Mathew isb(); 233e33b78a6SSoby Mathew } 234e33b78a6SSoby Mathew } 235e33b78a6SSoby Mathew } 236