1e33b78a6SSoby Mathew /* 232f0d3c6SDouglas Raillard * Copyright (c) 2016-2017, ARM Limited and Contributors. All rights reserved. 3e33b78a6SSoby Mathew * 4*82cb2c1aSdp-arm * SPDX-License-Identifier: BSD-3-Clause 5e33b78a6SSoby Mathew */ 6e33b78a6SSoby Mathew 7e33b78a6SSoby Mathew #include <arch.h> 8e33b78a6SSoby Mathew #include <arch_helpers.h> 9e33b78a6SSoby Mathew #include <assert.h> 10e33b78a6SSoby Mathew #include <bl_common.h> 11e33b78a6SSoby Mathew #include <context.h> 12e33b78a6SSoby Mathew #include <context_mgmt.h> 13e33b78a6SSoby Mathew #include <platform.h> 14e33b78a6SSoby Mathew #include <platform_def.h> 15e33b78a6SSoby Mathew #include <smcc_helpers.h> 16e33b78a6SSoby Mathew #include <string.h> 1732f0d3c6SDouglas Raillard #include <utils.h> 18e33b78a6SSoby Mathew 19e33b78a6SSoby Mathew /******************************************************************************* 20e33b78a6SSoby Mathew * Context management library initialisation routine. This library is used by 21e33b78a6SSoby Mathew * runtime services to share pointers to 'cpu_context' structures for the secure 22e33b78a6SSoby Mathew * and non-secure states. Management of the structures and their associated 23e33b78a6SSoby Mathew * memory is not done by the context management library e.g. the PSCI service 24e33b78a6SSoby Mathew * manages the cpu context used for entry from and exit to the non-secure state. 25e33b78a6SSoby Mathew * The Secure payload manages the context(s) corresponding to the secure state. 26e33b78a6SSoby Mathew * It also uses this library to get access to the non-secure 27e33b78a6SSoby Mathew * state cpu context pointers. 28e33b78a6SSoby Mathew ******************************************************************************/ 29e33b78a6SSoby Mathew void cm_init(void) 30e33b78a6SSoby Mathew { 31e33b78a6SSoby Mathew /* 32e33b78a6SSoby Mathew * The context management library has only global data to initialize, but 33e33b78a6SSoby Mathew * that will be done when the BSS is zeroed out 34e33b78a6SSoby Mathew */ 35e33b78a6SSoby Mathew } 36e33b78a6SSoby Mathew 37e33b78a6SSoby Mathew /******************************************************************************* 38e33b78a6SSoby Mathew * The following function initializes the cpu_context 'ctx' for 39e33b78a6SSoby Mathew * first use, and sets the initial entrypoint state as specified by the 40e33b78a6SSoby Mathew * entry_point_info structure. 41e33b78a6SSoby Mathew * 42e33b78a6SSoby Mathew * The security state to initialize is determined by the SECURE attribute 43e33b78a6SSoby Mathew * of the entry_point_info. The function returns a pointer to the initialized 44e33b78a6SSoby Mathew * context and sets this as the next context to return to. 45e33b78a6SSoby Mathew * 46e33b78a6SSoby Mathew * The EE and ST attributes are used to configure the endianness and secure 47e33b78a6SSoby Mathew * timer availability for the new execution context. 48e33b78a6SSoby Mathew * 49e33b78a6SSoby Mathew * To prepare the register state for entry call cm_prepare_el3_exit() and 50e33b78a6SSoby Mathew * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to 51e33b78a6SSoby Mathew * cm_e1_sysreg_context_restore(). 52e33b78a6SSoby Mathew ******************************************************************************/ 53e33b78a6SSoby Mathew static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep) 54e33b78a6SSoby Mathew { 55e33b78a6SSoby Mathew unsigned int security_state; 56e33b78a6SSoby Mathew uint32_t scr, sctlr; 57e33b78a6SSoby Mathew regs_t *reg_ctx; 58e33b78a6SSoby Mathew 59e33b78a6SSoby Mathew assert(ctx); 60e33b78a6SSoby Mathew 61e33b78a6SSoby Mathew security_state = GET_SECURITY_STATE(ep->h.attr); 62e33b78a6SSoby Mathew 63e33b78a6SSoby Mathew /* Clear any residual register values from the context */ 6432f0d3c6SDouglas Raillard zeromem(ctx, sizeof(*ctx)); 65e33b78a6SSoby Mathew 669e3b4cbbSSoby Mathew reg_ctx = get_regs_ctx(ctx); 679e3b4cbbSSoby Mathew 68e33b78a6SSoby Mathew /* 69e33b78a6SSoby Mathew * Base the context SCR on the current value, adjust for entry point 70e33b78a6SSoby Mathew * specific requirements 71e33b78a6SSoby Mathew */ 72e33b78a6SSoby Mathew scr = read_scr(); 73e33b78a6SSoby Mathew scr &= ~(SCR_NS_BIT | SCR_HCE_BIT); 74e33b78a6SSoby Mathew 75e33b78a6SSoby Mathew if (security_state != SECURE) 76e33b78a6SSoby Mathew scr |= SCR_NS_BIT; 77e33b78a6SSoby Mathew 78e33b78a6SSoby Mathew /* 79e33b78a6SSoby Mathew * Set up SCTLR for the Non Secure context. 80e33b78a6SSoby Mathew * EE bit is taken from the entrypoint attributes 81e33b78a6SSoby Mathew * M, C and I bits must be zero (as required by PSCI specification) 82e33b78a6SSoby Mathew * 83e33b78a6SSoby Mathew * The target exception level is based on the spsr mode requested. 84e33b78a6SSoby Mathew * If execution is requested to hyp mode, HVC is enabled 85e33b78a6SSoby Mathew * via SCR.HCE. 86e33b78a6SSoby Mathew * 87e33b78a6SSoby Mathew * Always compute the SCTLR_EL1 value and save in the cpu_context 88e33b78a6SSoby Mathew * - the HYP registers are set up by cm_preapre_ns_entry() as they 89e33b78a6SSoby Mathew * are not part of the stored cpu_context 90e33b78a6SSoby Mathew * 91e33b78a6SSoby Mathew * TODO: In debug builds the spsr should be validated and checked 92e33b78a6SSoby Mathew * against the CPU support, security state, endianness and pc 93e33b78a6SSoby Mathew */ 94e33b78a6SSoby Mathew if (security_state != SECURE) { 95e33b78a6SSoby Mathew sctlr = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0; 96b7b0787dSSoby Mathew /* 97b7b0787dSSoby Mathew * In addition to SCTLR_RES1, set the CP15_BEN, nTWI & nTWE 98b7b0787dSSoby Mathew * bits that architecturally reset to 1. 99b7b0787dSSoby Mathew */ 100b7b0787dSSoby Mathew sctlr |= SCTLR_RES1 | SCTLR_CP15BEN_BIT | 101b7b0787dSSoby Mathew SCTLR_NTWI_BIT | SCTLR_NTWE_BIT; 102e33b78a6SSoby Mathew write_ctx_reg(reg_ctx, CTX_NS_SCTLR, sctlr); 103e33b78a6SSoby Mathew } 104e33b78a6SSoby Mathew 105e33b78a6SSoby Mathew if (GET_M32(ep->spsr) == MODE32_hyp) 106e33b78a6SSoby Mathew scr |= SCR_HCE_BIT; 107e33b78a6SSoby Mathew 108e33b78a6SSoby Mathew write_ctx_reg(reg_ctx, CTX_SCR, scr); 109e33b78a6SSoby Mathew write_ctx_reg(reg_ctx, CTX_LR, ep->pc); 110e33b78a6SSoby Mathew write_ctx_reg(reg_ctx, CTX_SPSR, ep->spsr); 111e33b78a6SSoby Mathew 112e33b78a6SSoby Mathew /* 113e33b78a6SSoby Mathew * Store the r0-r3 value from the entrypoint into the context 114e33b78a6SSoby Mathew * Use memcpy as we are in control of the layout of the structures 115e33b78a6SSoby Mathew */ 116e33b78a6SSoby Mathew memcpy((void *)reg_ctx, (void *)&ep->args, sizeof(aapcs32_params_t)); 117e33b78a6SSoby Mathew } 118e33b78a6SSoby Mathew 119e33b78a6SSoby Mathew /******************************************************************************* 120e33b78a6SSoby Mathew * The following function initializes the cpu_context for a CPU specified by 121e33b78a6SSoby Mathew * its `cpu_idx` for first use, and sets the initial entrypoint state as 122e33b78a6SSoby Mathew * specified by the entry_point_info structure. 123e33b78a6SSoby Mathew ******************************************************************************/ 124e33b78a6SSoby Mathew void cm_init_context_by_index(unsigned int cpu_idx, 125e33b78a6SSoby Mathew const entry_point_info_t *ep) 126e33b78a6SSoby Mathew { 127e33b78a6SSoby Mathew cpu_context_t *ctx; 128e33b78a6SSoby Mathew ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr)); 129e33b78a6SSoby Mathew cm_init_context_common(ctx, ep); 130e33b78a6SSoby Mathew } 131e33b78a6SSoby Mathew 132e33b78a6SSoby Mathew /******************************************************************************* 133e33b78a6SSoby Mathew * The following function initializes the cpu_context for the current CPU 134e33b78a6SSoby Mathew * for first use, and sets the initial entrypoint state as specified by the 135e33b78a6SSoby Mathew * entry_point_info structure. 136e33b78a6SSoby Mathew ******************************************************************************/ 137e33b78a6SSoby Mathew void cm_init_my_context(const entry_point_info_t *ep) 138e33b78a6SSoby Mathew { 139e33b78a6SSoby Mathew cpu_context_t *ctx; 140e33b78a6SSoby Mathew ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr)); 141e33b78a6SSoby Mathew cm_init_context_common(ctx, ep); 142e33b78a6SSoby Mathew } 143e33b78a6SSoby Mathew 144e33b78a6SSoby Mathew /******************************************************************************* 145e33b78a6SSoby Mathew * Prepare the CPU system registers for first entry into secure or normal world 146e33b78a6SSoby Mathew * 147e33b78a6SSoby Mathew * If execution is requested to hyp mode, HSCTLR is initialized 148e33b78a6SSoby Mathew * If execution is requested to non-secure PL1, and the CPU supports 149e33b78a6SSoby Mathew * HYP mode then HYP mode is disabled by configuring all necessary HYP mode 150e33b78a6SSoby Mathew * registers. 151e33b78a6SSoby Mathew ******************************************************************************/ 152e33b78a6SSoby Mathew void cm_prepare_el3_exit(uint32_t security_state) 153e33b78a6SSoby Mathew { 154e33b78a6SSoby Mathew uint32_t sctlr, scr, hcptr; 155e33b78a6SSoby Mathew cpu_context_t *ctx = cm_get_context(security_state); 156e33b78a6SSoby Mathew 157e33b78a6SSoby Mathew assert(ctx); 158e33b78a6SSoby Mathew 159e33b78a6SSoby Mathew if (security_state == NON_SECURE) { 160e33b78a6SSoby Mathew scr = read_ctx_reg(get_regs_ctx(ctx), CTX_SCR); 161e33b78a6SSoby Mathew if (scr & SCR_HCE_BIT) { 162e33b78a6SSoby Mathew /* Use SCTLR value to initialize HSCTLR */ 163e33b78a6SSoby Mathew sctlr = read_ctx_reg(get_regs_ctx(ctx), 164e33b78a6SSoby Mathew CTX_NS_SCTLR); 165e33b78a6SSoby Mathew sctlr |= HSCTLR_RES1; 166e33b78a6SSoby Mathew /* Temporarily set the NS bit to access HSCTLR */ 167e33b78a6SSoby Mathew write_scr(read_scr() | SCR_NS_BIT); 168e33b78a6SSoby Mathew /* 169e33b78a6SSoby Mathew * Make sure the write to SCR is complete so that 170e33b78a6SSoby Mathew * we can access HSCTLR 171e33b78a6SSoby Mathew */ 172e33b78a6SSoby Mathew isb(); 173e33b78a6SSoby Mathew write_hsctlr(sctlr); 174e33b78a6SSoby Mathew isb(); 175e33b78a6SSoby Mathew 176e33b78a6SSoby Mathew write_scr(read_scr() & ~SCR_NS_BIT); 177e33b78a6SSoby Mathew isb(); 178e33b78a6SSoby Mathew } else if (read_id_pfr1() & 179e33b78a6SSoby Mathew (ID_PFR1_VIRTEXT_MASK << ID_PFR1_VIRTEXT_SHIFT)) { 180495f3d3cSDavid Cunado /* 181495f3d3cSDavid Cunado * Set the NS bit to access NS copies of certain banked 182495f3d3cSDavid Cunado * registers 183495f3d3cSDavid Cunado */ 184e33b78a6SSoby Mathew write_scr(read_scr() | SCR_NS_BIT); 185e33b78a6SSoby Mathew isb(); 186e33b78a6SSoby Mathew 187e33b78a6SSoby Mathew /* PL2 present but unused, need to disable safely */ 188e33b78a6SSoby Mathew write_hcr(0); 189e33b78a6SSoby Mathew 190e33b78a6SSoby Mathew /* HSCTLR : can be ignored when bypassing */ 191e33b78a6SSoby Mathew 192e33b78a6SSoby Mathew /* HCPTR : disable all traps TCPAC, TTA, TCP */ 193e33b78a6SSoby Mathew hcptr = read_hcptr(); 194e33b78a6SSoby Mathew hcptr &= ~(TCPAC_BIT | TTA_BIT | TCP11_BIT | TCP10_BIT); 195e33b78a6SSoby Mathew write_hcptr(hcptr); 196e33b78a6SSoby Mathew 197e33b78a6SSoby Mathew /* Enable EL1 access to timer */ 198e33b78a6SSoby Mathew write_cnthctl(PL1PCEN_BIT | PL1PCTEN_BIT); 199e33b78a6SSoby Mathew 200e33b78a6SSoby Mathew /* Reset CNTVOFF_EL2 */ 201e33b78a6SSoby Mathew write64_cntvoff(0); 202e33b78a6SSoby Mathew 203e33b78a6SSoby Mathew /* Set VPIDR, VMPIDR to match MIDR, MPIDR */ 204e33b78a6SSoby Mathew write_vpidr(read_midr()); 205e33b78a6SSoby Mathew write_vmpidr(read_mpidr()); 206e33b78a6SSoby Mathew 207e33b78a6SSoby Mathew /* 208e33b78a6SSoby Mathew * Reset VTTBR. 209e33b78a6SSoby Mathew * Needed because cache maintenance operations depend on 210e33b78a6SSoby Mathew * the VMID even when non-secure EL1&0 stage 2 address 211e33b78a6SSoby Mathew * translation are disabled. 212e33b78a6SSoby Mathew */ 213e33b78a6SSoby Mathew write64_vttbr(0); 214495f3d3cSDavid Cunado 215495f3d3cSDavid Cunado /* 216495f3d3cSDavid Cunado * Avoid unexpected debug traps in case where HDCR 217495f3d3cSDavid Cunado * is not completely reset by the hardware - set 218495f3d3cSDavid Cunado * HDCR.HPMN to PMCR.N and zero the remaining bits. 219495f3d3cSDavid Cunado * The HDCR.HPMN and PMCR.N fields are the same size 220495f3d3cSDavid Cunado * (5 bits) and HPMN is at offset zero within HDCR. 221495f3d3cSDavid Cunado */ 222495f3d3cSDavid Cunado write_hdcr((read_pmcr() & PMCR_N_BITS) >> PMCR_N_SHIFT); 223939f66d6SDavid Cunado 224939f66d6SDavid Cunado /* 225939f66d6SDavid Cunado * Reset CNTHP_CTL to disable the EL2 physical timer and 226939f66d6SDavid Cunado * therefore prevent timer interrupts. 227939f66d6SDavid Cunado */ 228939f66d6SDavid Cunado write_cnthp_ctl(0); 229e33b78a6SSoby Mathew isb(); 230e33b78a6SSoby Mathew 231e33b78a6SSoby Mathew write_scr(read_scr() & ~SCR_NS_BIT); 232e33b78a6SSoby Mathew isb(); 233e33b78a6SSoby Mathew } 234e33b78a6SSoby Mathew } 235e33b78a6SSoby Mathew } 236