xref: /rk3399_ARM-atf/lib/aarch64/misc_helpers.S (revision b47dddd061e92054c3b2096fc8aa9688bfef68d6)
1/*
2 * Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7#include <arch.h>
8#include <asm_macros.S>
9#include <assert_macros.S>
10#include <common/bl_common.h>
11#include <lib/xlat_tables/xlat_tables_defs.h>
12
13	.globl	smc
14
15	.globl	zero_normalmem
16	.globl	zeromem
17	.globl	memcpy16
18
19	.globl	disable_mmu_el1
20	.globl	disable_mmu_el3
21	.globl	disable_mmu_icache_el1
22	.globl	disable_mmu_icache_el3
23	.globl	fixup_gdt_reloc
24#if SUPPORT_VFP
25	.globl	enable_vfp
26#endif
27
28func smc
29	smc	#0
30endfunc smc
31
32/* -----------------------------------------------------------------------
33 * void zero_normalmem(void *mem, unsigned int length);
34 *
35 * Initialise a region in normal memory to 0. This functions complies with the
36 * AAPCS and can be called from C code.
37 *
38 * NOTE: MMU must be enabled when using this function as it can only operate on
39 *       normal memory. It is intended to be mainly used from C code when MMU
40 *       is usually enabled.
41 * -----------------------------------------------------------------------
42 */
43.equ	zero_normalmem, zeromem_dczva
44
45/* -----------------------------------------------------------------------
46 * void zeromem(void *mem, unsigned int length);
47 *
48 * Initialise a region of device memory to 0. This functions complies with the
49 * AAPCS and can be called from C code.
50 *
51 * NOTE: When data caches and MMU are enabled, zero_normalmem can usually be
52 *       used instead for faster zeroing.
53 *
54 * -----------------------------------------------------------------------
55 */
56func zeromem
57	/* x2 is the address past the last zeroed address */
58	add	x2, x0, x1
59	/*
60	 * Uses the fallback path that does not use DC ZVA instruction and
61	 * therefore does not need enabled MMU
62	 */
63	b	.Lzeromem_dczva_fallback_entry
64endfunc zeromem
65
66/* -----------------------------------------------------------------------
67 * void zeromem_dczva(void *mem, unsigned int length);
68 *
69 * Fill a region of normal memory of size "length" in bytes with null bytes.
70 * MMU must be enabled and the memory be of
71 * normal type. This is because this function internally uses the DC ZVA
72 * instruction, which generates an Alignment fault if used on any type of
73 * Device memory (see section D3.4.9 of the ARMv8 ARM, issue k). When the MMU
74 * is disabled, all memory behaves like Device-nGnRnE memory (see section
75 * D4.2.8), hence the requirement on the MMU being enabled.
76 * NOTE: The code assumes that the block size as defined in DCZID_EL0
77 *       register is at least 16 bytes.
78 *
79 * -----------------------------------------------------------------------
80 */
81func zeromem_dczva
82
83	/*
84	 * The function consists of a series of loops that zero memory one byte
85	 * at a time, 16 bytes at a time or using the DC ZVA instruction to
86	 * zero aligned block of bytes, which is assumed to be more than 16.
87	 * In the case where the DC ZVA instruction cannot be used or if the
88	 * first 16 bytes loop would overflow, there is fallback path that does
89	 * not use DC ZVA.
90	 * Note: The fallback path is also used by the zeromem function that
91	 *       branches to it directly.
92	 *
93	 *              +---------+   zeromem_dczva
94	 *              |  entry  |
95	 *              +----+----+
96	 *                   |
97	 *                   v
98	 *              +---------+
99	 *              | checks  |>o-------+ (If any check fails, fallback)
100	 *              +----+----+         |
101	 *                   |              |---------------+
102	 *                   v              | Fallback path |
103	 *            +------+------+       |---------------+
104	 *            | 1 byte loop |       |
105	 *            +------+------+ .Lzeromem_dczva_initial_1byte_aligned_end
106	 *                   |              |
107	 *                   v              |
108	 *           +-------+-------+      |
109	 *           | 16 bytes loop |      |
110	 *           +-------+-------+      |
111	 *                   |              |
112	 *                   v              |
113	 *            +------+------+ .Lzeromem_dczva_blocksize_aligned
114	 *            | DC ZVA loop |       |
115	 *            +------+------+       |
116	 *       +--------+  |              |
117	 *       |        |  |              |
118	 *       |        v  v              |
119	 *       |   +-------+-------+ .Lzeromem_dczva_final_16bytes_aligned
120	 *       |   | 16 bytes loop |      |
121	 *       |   +-------+-------+      |
122	 *       |           |              |
123	 *       |           v              |
124	 *       |    +------+------+ .Lzeromem_dczva_final_1byte_aligned
125	 *       |    | 1 byte loop |       |
126	 *       |    +-------------+       |
127	 *       |           |              |
128	 *       |           v              |
129	 *       |       +---+--+           |
130	 *       |       | exit |           |
131	 *       |       +------+           |
132	 *       |			    |
133	 *       |           +--------------+    +------------------+ zeromem
134	 *       |           |  +----------------| zeromem function |
135	 *       |           |  |                +------------------+
136	 *       |           v  v
137	 *       |    +-------------+ .Lzeromem_dczva_fallback_entry
138	 *       |    | 1 byte loop |
139	 *       |    +------+------+
140	 *       |           |
141	 *       +-----------+
142	 */
143
144	/*
145	 * Readable names for registers
146	 *
147	 * Registers x0, x1 and x2 are also set by zeromem which
148	 * branches into the fallback path directly, so cursor, length and
149	 * stop_address should not be retargeted to other registers.
150	 */
151	cursor       .req x0 /* Start address and then current address */
152	length       .req x1 /* Length in bytes of the region to zero out */
153	/* Reusing x1 as length is never used after block_mask is set */
154	block_mask   .req x1 /* Bitmask of the block size read in DCZID_EL0 */
155	stop_address .req x2 /* Address past the last zeroed byte */
156	block_size   .req x3 /* Size of a block in bytes as read in DCZID_EL0 */
157	tmp1         .req x4
158	tmp2         .req x5
159
160#if ENABLE_ASSERTIONS
161	/*
162	 * Check for M bit (MMU enabled) of the current SCTLR_EL(1|3)
163	 * register value and panic if the MMU is disabled.
164	 */
165#if defined(IMAGE_BL1) || defined(IMAGE_BL31) || (defined(IMAGE_BL2) && \
166	BL2_RUNS_AT_EL3)
167	mrs	tmp1, sctlr_el3
168#else
169	mrs	tmp1, sctlr_el1
170#endif
171
172	tst	tmp1, #SCTLR_M_BIT
173	ASM_ASSERT(ne)
174#endif /* ENABLE_ASSERTIONS */
175
176	/* stop_address is the address past the last to zero */
177	add	stop_address, cursor, length
178
179	/*
180	 * Get block_size = (log2(<block size>) >> 2) (see encoding of
181	 * dczid_el0 reg)
182	 */
183	mrs	block_size, dczid_el0
184
185	/*
186	 * Select the 4 lowest bits and convert the extracted log2(<block size
187	 * in words>) to <block size in bytes>
188	 */
189	ubfx	block_size, block_size, #0, #4
190	mov	tmp2, #(1 << 2)
191	lsl	block_size, tmp2, block_size
192
193#if ENABLE_ASSERTIONS
194	/*
195	 * Assumes block size is at least 16 bytes to avoid manual realignment
196	 * of the cursor at the end of the DCZVA loop.
197	 */
198	cmp	block_size, #16
199	ASM_ASSERT(hs)
200#endif
201	/*
202	 * Not worth doing all the setup for a region less than a block and
203	 * protects against zeroing a whole block when the area to zero is
204	 * smaller than that. Also, as it is assumed that the block size is at
205	 * least 16 bytes, this also protects the initial aligning loops from
206	 * trying to zero 16 bytes when length is less than 16.
207	 */
208	cmp	length, block_size
209	b.lo	.Lzeromem_dczva_fallback_entry
210
211	/*
212	 * Calculate the bitmask of the block alignment. It will never
213	 * underflow as the block size is between 4 bytes and 2kB.
214	 * block_mask = block_size - 1
215	 */
216	sub	block_mask, block_size, #1
217
218	/*
219	 * length alias should not be used after this point unless it is
220	 * defined as a register other than block_mask's.
221	 */
222	 .unreq length
223
224	/*
225	 * If the start address is already aligned to zero block size, go
226	 * straight to the cache zeroing loop. This is safe because at this
227	 * point, the length cannot be smaller than a block size.
228	 */
229	tst	cursor, block_mask
230	b.eq	.Lzeromem_dczva_blocksize_aligned
231
232	/*
233	 * Calculate the first block-size-aligned address. It is assumed that
234	 * the zero block size is at least 16 bytes. This address is the last
235	 * address of this initial loop.
236	 */
237	orr	tmp1, cursor, block_mask
238	add	tmp1, tmp1, #1
239
240	/*
241	 * If the addition overflows, skip the cache zeroing loops. This is
242	 * quite unlikely however.
243	 */
244	cbz	tmp1, .Lzeromem_dczva_fallback_entry
245
246	/*
247	 * If the first block-size-aligned address is past the last address,
248	 * fallback to the simpler code.
249	 */
250	cmp	tmp1, stop_address
251	b.hi	.Lzeromem_dczva_fallback_entry
252
253	/*
254	 * If the start address is already aligned to 16 bytes, skip this loop.
255	 * It is safe to do this because tmp1 (the stop address of the initial
256	 * 16 bytes loop) will never be greater than the final stop address.
257	 */
258	tst	cursor, #0xf
259	b.eq	.Lzeromem_dczva_initial_1byte_aligned_end
260
261	/* Calculate the next address aligned to 16 bytes */
262	orr	tmp2, cursor, #0xf
263	add	tmp2, tmp2, #1
264	/* If it overflows, fallback to the simple path (unlikely) */
265	cbz	tmp2, .Lzeromem_dczva_fallback_entry
266	/*
267	 * Next aligned address cannot be after the stop address because the
268	 * length cannot be smaller than 16 at this point.
269	 */
270
271	/* First loop: zero byte per byte */
2721:
273	strb	wzr, [cursor], #1
274	cmp	cursor, tmp2
275	b.ne	1b
276.Lzeromem_dczva_initial_1byte_aligned_end:
277
278	/*
279	 * Second loop: we need to zero 16 bytes at a time from cursor to tmp1
280	 * before being able to use the code that deals with block-size-aligned
281	 * addresses.
282	 */
283	cmp	cursor, tmp1
284	b.hs	2f
2851:
286	stp	xzr, xzr, [cursor], #16
287	cmp	cursor, tmp1
288	b.lo	1b
2892:
290
291	/*
292	 * Third loop: zero a block at a time using DC ZVA cache block zeroing
293	 * instruction.
294	 */
295.Lzeromem_dczva_blocksize_aligned:
296	/*
297	 * Calculate the last block-size-aligned address. If the result equals
298	 * to the start address, the loop will exit immediately.
299	 */
300	bic	tmp1, stop_address, block_mask
301
302	cmp	cursor, tmp1
303	b.hs	2f
3041:
305	/* Zero the block containing the cursor */
306	dc	zva, cursor
307	/* Increment the cursor by the size of a block */
308	add	cursor, cursor, block_size
309	cmp	cursor, tmp1
310	b.lo	1b
3112:
312
313	/*
314	 * Fourth loop: zero 16 bytes at a time and then byte per byte the
315	 * remaining area
316	 */
317.Lzeromem_dczva_final_16bytes_aligned:
318	/*
319	 * Calculate the last 16 bytes aligned address. It is assumed that the
320	 * block size will never be smaller than 16 bytes so that the current
321	 * cursor is aligned to at least 16 bytes boundary.
322	 */
323	bic	tmp1, stop_address, #15
324
325	cmp	cursor, tmp1
326	b.hs	2f
3271:
328	stp	xzr, xzr, [cursor], #16
329	cmp	cursor, tmp1
330	b.lo	1b
3312:
332
333	/* Fifth and final loop: zero byte per byte */
334.Lzeromem_dczva_final_1byte_aligned:
335	cmp	cursor, stop_address
336	b.eq	2f
3371:
338	strb	wzr, [cursor], #1
339	cmp	cursor, stop_address
340	b.ne	1b
3412:
342	ret
343
344	/* Fallback for unaligned start addresses */
345.Lzeromem_dczva_fallback_entry:
346	/*
347	 * If the start address is already aligned to 16 bytes, skip this loop.
348	 */
349	tst	cursor, #0xf
350	b.eq	.Lzeromem_dczva_final_16bytes_aligned
351
352	/* Calculate the next address aligned to 16 bytes */
353	orr	tmp1, cursor, #15
354	add	tmp1, tmp1, #1
355	/* If it overflows, fallback to byte per byte zeroing */
356	cbz	tmp1, .Lzeromem_dczva_final_1byte_aligned
357	/* If the next aligned address is after the stop address, fall back */
358	cmp	tmp1, stop_address
359	b.hs	.Lzeromem_dczva_final_1byte_aligned
360
361	/* Fallback entry loop: zero byte per byte */
3621:
363	strb	wzr, [cursor], #1
364	cmp	cursor, tmp1
365	b.ne	1b
366
367	b	.Lzeromem_dczva_final_16bytes_aligned
368
369	.unreq	cursor
370	/*
371	 * length is already unreq'ed to reuse the register for another
372	 * variable.
373	 */
374	.unreq	stop_address
375	.unreq	block_size
376	.unreq	block_mask
377	.unreq	tmp1
378	.unreq	tmp2
379endfunc zeromem_dczva
380
381/* --------------------------------------------------------------------------
382 * void memcpy16(void *dest, const void *src, unsigned int length)
383 *
384 * Copy length bytes from memory area src to memory area dest.
385 * The memory areas should not overlap.
386 * Destination and source addresses must be 16-byte aligned.
387 * --------------------------------------------------------------------------
388 */
389func memcpy16
390#if ENABLE_ASSERTIONS
391	orr	x3, x0, x1
392	tst	x3, #0xf
393	ASM_ASSERT(eq)
394#endif
395/* copy 16 bytes at a time */
396m_loop16:
397	cmp	x2, #16
398	b.lo	m_loop1
399	ldp	x3, x4, [x1], #16
400	stp	x3, x4, [x0], #16
401	sub	x2, x2, #16
402	b	m_loop16
403/* copy byte per byte */
404m_loop1:
405	cbz	x2, m_end
406	ldrb	w3, [x1], #1
407	strb	w3, [x0], #1
408	subs	x2, x2, #1
409	b.ne	m_loop1
410m_end:
411	ret
412endfunc memcpy16
413
414/* ---------------------------------------------------------------------------
415 * Disable the MMU at EL3
416 * ---------------------------------------------------------------------------
417 */
418
419func disable_mmu_el3
420	mov	x1, #(SCTLR_M_BIT | SCTLR_C_BIT)
421do_disable_mmu_el3:
422	mrs	x0, sctlr_el3
423	bic	x0, x0, x1
424	msr	sctlr_el3, x0
425	isb	/* ensure MMU is off */
426	dsb	sy
427	ret
428endfunc disable_mmu_el3
429
430
431func disable_mmu_icache_el3
432	mov	x1, #(SCTLR_M_BIT | SCTLR_C_BIT | SCTLR_I_BIT)
433	b	do_disable_mmu_el3
434endfunc disable_mmu_icache_el3
435
436/* ---------------------------------------------------------------------------
437 * Disable the MMU at EL1
438 * ---------------------------------------------------------------------------
439 */
440
441func disable_mmu_el1
442	mov	x1, #(SCTLR_M_BIT | SCTLR_C_BIT)
443do_disable_mmu_el1:
444	mrs	x0, sctlr_el1
445	bic	x0, x0, x1
446	msr	sctlr_el1, x0
447	isb	/* ensure MMU is off */
448	dsb	sy
449	ret
450endfunc disable_mmu_el1
451
452
453func disable_mmu_icache_el1
454	mov	x1, #(SCTLR_M_BIT | SCTLR_C_BIT | SCTLR_I_BIT)
455	b	do_disable_mmu_el1
456endfunc disable_mmu_icache_el1
457
458/* ---------------------------------------------------------------------------
459 * Enable the use of VFP at EL3
460 * ---------------------------------------------------------------------------
461 */
462#if SUPPORT_VFP
463func enable_vfp
464	mrs	x0, cpacr_el1
465	orr	x0, x0, #CPACR_VFP_BITS
466	msr	cpacr_el1, x0
467	mrs	x0, cptr_el3
468	mov	x1, #AARCH64_CPTR_TFP
469	bic	x0, x0, x1
470	msr	cptr_el3, x0
471	isb
472	ret
473endfunc enable_vfp
474#endif
475
476/* ---------------------------------------------------------------------------
477 * Helper to fixup Global Descriptor table (GDT) and dynamic relocations
478 * (.rela.dyn) at runtime.
479 *
480 * This function is meant to be used when the firmware is compiled with -fpie
481 * and linked with -pie options. We rely on the linker script exporting
482 * appropriate markers for start and end of the section. For GOT, we
483 * expect __GOT_START__ and __GOT_END__. Similarly for .rela.dyn, we expect
484 * __RELA_START__ and __RELA_END__.
485 *
486 * The function takes the limits of the memory to apply fixups to as
487 * arguments (which is usually the limits of the relocable BL image).
488 *   x0 -  the start of the fixup region
489 *   x1 -  the limit of the fixup region
490 * These addresses have to be 4KB page aligned.
491 * ---------------------------------------------------------------------------
492 */
493
494/* Relocation codes */
495#define	R_AARCH64_NONE		0
496#define	R_AARCH64_RELATIVE	1027
497
498func fixup_gdt_reloc
499	mov	x6, x0
500	mov	x7, x1
501
502#if ENABLE_ASSERTIONS
503	/* Test if the limits are 4KB aligned */
504	orr	x0, x0, x1
505	tst	x0, #(PAGE_SIZE_MASK)
506	ASM_ASSERT(eq)
507#endif
508	/*
509	 * Calculate the offset based on return address in x30.
510	 * Assume that this function is called within a page at the start of
511	 * fixup region.
512	 */
513	and	x2, x30, #~(PAGE_SIZE_MASK)
514	subs	x0, x2, x6	/* Diff(S) = Current Address - Compiled Address */
515	b.eq	3f		/* Diff(S) = 0. No relocation needed */
516
517	adrp	x1, __GOT_START__
518	add	x1, x1, :lo12:__GOT_START__
519	adrp	x2, __GOT_END__
520	add	x2, x2, :lo12:__GOT_END__
521
522	/*
523	 * GOT is an array of 64_bit addresses which must be fixed up as
524	 * new_addr = old_addr + Diff(S).
525	 * The new_addr is the address currently the binary is executing from
526	 * and old_addr is the address at compile time.
527	 */
5281:	ldr	x3, [x1]
529
530	/* Skip adding offset if address is < lower limit */
531	cmp	x3, x6
532	b.lo	2f
533
534	/* Skip adding offset if address is > upper limit */
535	cmp	x3, x7
536	b.hi	2f
537	add	x3, x3, x0
538	str	x3, [x1]
539
5402:	add	x1, x1, #8
541	cmp	x1, x2
542	b.lo	1b
543
544	/* Starting dynamic relocations. Use adrp/adr to get RELA_START and END */
5453:	adrp	x1, __RELA_START__
546	add	x1, x1, :lo12:__RELA_START__
547	adrp	x2, __RELA_END__
548	add	x2, x2, :lo12:__RELA_END__
549
550	/*
551	 * According to ELF-64 specification, the RELA data structure is as
552	 * follows:
553	 *	typedef struct {
554	 *		Elf64_Addr r_offset;
555	 *		Elf64_Xword r_info;
556	 *		Elf64_Sxword r_addend;
557	 *	} Elf64_Rela;
558	 *
559	 * r_offset is address of reference
560	 * r_info is symbol index and type of relocation (in this case
561	 * code 1027 which corresponds to R_AARCH64_RELATIVE).
562	 * r_addend is constant part of expression.
563	 *
564	 * Size of Elf64_Rela structure is 24 bytes.
565	 */
566
567	/* Skip R_AARCH64_NONE entry with code 0 */
5681:	ldr	x3, [x1, #8]
569	cbz	x3, 2f
570
571#if ENABLE_ASSERTIONS
572	/* Assert that the relocation type is R_AARCH64_RELATIVE */
573	cmp	x3, #R_AARCH64_RELATIVE
574	ASM_ASSERT(eq)
575#endif
576	ldr	x3, [x1]	/* r_offset */
577	add	x3, x0, x3
578	ldr	x4, [x1, #16]	/* r_addend */
579
580	/* Skip adding offset if r_addend is < lower limit */
581	cmp	x4, x6
582	b.lo	2f
583
584	/* Skip adding offset if r_addend entry is > upper limit */
585	cmp	x4, x7
586	b.hi	2f
587
588	add	x4, x0, x4	/* Diff(S) + r_addend */
589	str	x4, [x3]
590
5912:	add	x1, x1, #24
592	cmp	x1, x2
593	b.lo	1b
594	ret
595endfunc fixup_gdt_reloc
596