xref: /rk3399_ARM-atf/lib/aarch64/misc_helpers.S (revision 609e053caabf0807a71243eec11f49120eaaab61)
1/*
2 * Copyright (c) 2013-2019, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7#include <arch.h>
8#include <asm_macros.S>
9#include <assert_macros.S>
10#include <common/bl_common.h>
11#include <lib/xlat_tables/xlat_tables_defs.h>
12
13#if !ERROR_DEPRECATED
14	.globl	get_afflvl_shift
15	.globl	mpidr_mask_lower_afflvls
16	.globl	eret
17#endif /* ERROR_DEPRECATED */
18	.globl	smc
19
20	.globl	zero_normalmem
21	.globl	zeromem
22	.globl	memcpy16
23
24	.globl	disable_mmu_el1
25	.globl	disable_mmu_el3
26	.globl	disable_mmu_icache_el1
27	.globl	disable_mmu_icache_el3
28	.globl	fixup_gdt_reloc
29#if SUPPORT_VFP
30	.globl	enable_vfp
31#endif
32
33#if !ERROR_DEPRECATED
34func get_afflvl_shift
35	cmp	x0, #3
36	cinc	x0, x0, eq
37	mov	x1, #MPIDR_AFFLVL_SHIFT
38	lsl	x0, x0, x1
39	ret
40endfunc get_afflvl_shift
41
42func mpidr_mask_lower_afflvls
43	cmp	x1, #3
44	cinc	x1, x1, eq
45	mov	x2, #MPIDR_AFFLVL_SHIFT
46	lsl	x2, x1, x2
47	lsr	x0, x0, x2
48	lsl	x0, x0, x2
49	ret
50endfunc mpidr_mask_lower_afflvls
51
52
53func eret
54	eret
55endfunc eret
56#endif /* ERROR_DEPRECATED */
57
58func smc
59	smc	#0
60endfunc smc
61
62/* -----------------------------------------------------------------------
63 * void zero_normalmem(void *mem, unsigned int length);
64 *
65 * Initialise a region in normal memory to 0. This functions complies with the
66 * AAPCS and can be called from C code.
67 *
68 * NOTE: MMU must be enabled when using this function as it can only operate on
69 *       normal memory. It is intended to be mainly used from C code when MMU
70 *       is usually enabled.
71 * -----------------------------------------------------------------------
72 */
73.equ	zero_normalmem, zeromem_dczva
74
75/* -----------------------------------------------------------------------
76 * void zeromem(void *mem, unsigned int length);
77 *
78 * Initialise a region of device memory to 0. This functions complies with the
79 * AAPCS and can be called from C code.
80 *
81 * NOTE: When data caches and MMU are enabled, zero_normalmem can usually be
82 *       used instead for faster zeroing.
83 *
84 * -----------------------------------------------------------------------
85 */
86func zeromem
87	/* x2 is the address past the last zeroed address */
88	add	x2, x0, x1
89	/*
90	 * Uses the fallback path that does not use DC ZVA instruction and
91	 * therefore does not need enabled MMU
92	 */
93	b	.Lzeromem_dczva_fallback_entry
94endfunc zeromem
95
96/* -----------------------------------------------------------------------
97 * void zeromem_dczva(void *mem, unsigned int length);
98 *
99 * Fill a region of normal memory of size "length" in bytes with null bytes.
100 * MMU must be enabled and the memory be of
101 * normal type. This is because this function internally uses the DC ZVA
102 * instruction, which generates an Alignment fault if used on any type of
103 * Device memory (see section D3.4.9 of the ARMv8 ARM, issue k). When the MMU
104 * is disabled, all memory behaves like Device-nGnRnE memory (see section
105 * D4.2.8), hence the requirement on the MMU being enabled.
106 * NOTE: The code assumes that the block size as defined in DCZID_EL0
107 *       register is at least 16 bytes.
108 *
109 * -----------------------------------------------------------------------
110 */
111func zeromem_dczva
112
113	/*
114	 * The function consists of a series of loops that zero memory one byte
115	 * at a time, 16 bytes at a time or using the DC ZVA instruction to
116	 * zero aligned block of bytes, which is assumed to be more than 16.
117	 * In the case where the DC ZVA instruction cannot be used or if the
118	 * first 16 bytes loop would overflow, there is fallback path that does
119	 * not use DC ZVA.
120	 * Note: The fallback path is also used by the zeromem function that
121	 *       branches to it directly.
122	 *
123	 *              +---------+   zeromem_dczva
124	 *              |  entry  |
125	 *              +----+----+
126	 *                   |
127	 *                   v
128	 *              +---------+
129	 *              | checks  |>o-------+ (If any check fails, fallback)
130	 *              +----+----+         |
131	 *                   |              |---------------+
132	 *                   v              | Fallback path |
133	 *            +------+------+       |---------------+
134	 *            | 1 byte loop |       |
135	 *            +------+------+ .Lzeromem_dczva_initial_1byte_aligned_end
136	 *                   |              |
137	 *                   v              |
138	 *           +-------+-------+      |
139	 *           | 16 bytes loop |      |
140	 *           +-------+-------+      |
141	 *                   |              |
142	 *                   v              |
143	 *            +------+------+ .Lzeromem_dczva_blocksize_aligned
144	 *            | DC ZVA loop |       |
145	 *            +------+------+       |
146	 *       +--------+  |              |
147	 *       |        |  |              |
148	 *       |        v  v              |
149	 *       |   +-------+-------+ .Lzeromem_dczva_final_16bytes_aligned
150	 *       |   | 16 bytes loop |      |
151	 *       |   +-------+-------+      |
152	 *       |           |              |
153	 *       |           v              |
154	 *       |    +------+------+ .Lzeromem_dczva_final_1byte_aligned
155	 *       |    | 1 byte loop |       |
156	 *       |    +-------------+       |
157	 *       |           |              |
158	 *       |           v              |
159	 *       |       +---+--+           |
160	 *       |       | exit |           |
161	 *       |       +------+           |
162	 *       |			    |
163	 *       |           +--------------+    +------------------+ zeromem
164	 *       |           |  +----------------| zeromem function |
165	 *       |           |  |                +------------------+
166	 *       |           v  v
167	 *       |    +-------------+ .Lzeromem_dczva_fallback_entry
168	 *       |    | 1 byte loop |
169	 *       |    +------+------+
170	 *       |           |
171	 *       +-----------+
172	 */
173
174	/*
175	 * Readable names for registers
176	 *
177	 * Registers x0, x1 and x2 are also set by zeromem which
178	 * branches into the fallback path directly, so cursor, length and
179	 * stop_address should not be retargeted to other registers.
180	 */
181	cursor       .req x0 /* Start address and then current address */
182	length       .req x1 /* Length in bytes of the region to zero out */
183	/* Reusing x1 as length is never used after block_mask is set */
184	block_mask   .req x1 /* Bitmask of the block size read in DCZID_EL0 */
185	stop_address .req x2 /* Address past the last zeroed byte */
186	block_size   .req x3 /* Size of a block in bytes as read in DCZID_EL0 */
187	tmp1         .req x4
188	tmp2         .req x5
189
190#if ENABLE_ASSERTIONS
191	/*
192	 * Check for M bit (MMU enabled) of the current SCTLR_EL(1|3)
193	 * register value and panic if the MMU is disabled.
194	 */
195#if defined(IMAGE_BL1) || defined(IMAGE_BL31) || (defined(IMAGE_BL2) && BL2_AT_EL3)
196	mrs	tmp1, sctlr_el3
197#else
198	mrs	tmp1, sctlr_el1
199#endif
200
201	tst	tmp1, #SCTLR_M_BIT
202	ASM_ASSERT(ne)
203#endif /* ENABLE_ASSERTIONS */
204
205	/* stop_address is the address past the last to zero */
206	add	stop_address, cursor, length
207
208	/*
209	 * Get block_size = (log2(<block size>) >> 2) (see encoding of
210	 * dczid_el0 reg)
211	 */
212	mrs	block_size, dczid_el0
213
214	/*
215	 * Select the 4 lowest bits and convert the extracted log2(<block size
216	 * in words>) to <block size in bytes>
217	 */
218	ubfx	block_size, block_size, #0, #4
219	mov	tmp2, #(1 << 2)
220	lsl	block_size, tmp2, block_size
221
222#if ENABLE_ASSERTIONS
223	/*
224	 * Assumes block size is at least 16 bytes to avoid manual realignment
225	 * of the cursor at the end of the DCZVA loop.
226	 */
227	cmp	block_size, #16
228	ASM_ASSERT(hs)
229#endif
230	/*
231	 * Not worth doing all the setup for a region less than a block and
232	 * protects against zeroing a whole block when the area to zero is
233	 * smaller than that. Also, as it is assumed that the block size is at
234	 * least 16 bytes, this also protects the initial aligning loops from
235	 * trying to zero 16 bytes when length is less than 16.
236	 */
237	cmp	length, block_size
238	b.lo	.Lzeromem_dczva_fallback_entry
239
240	/*
241	 * Calculate the bitmask of the block alignment. It will never
242	 * underflow as the block size is between 4 bytes and 2kB.
243	 * block_mask = block_size - 1
244	 */
245	sub	block_mask, block_size, #1
246
247	/*
248	 * length alias should not be used after this point unless it is
249	 * defined as a register other than block_mask's.
250	 */
251	 .unreq length
252
253	/*
254	 * If the start address is already aligned to zero block size, go
255	 * straight to the cache zeroing loop. This is safe because at this
256	 * point, the length cannot be smaller than a block size.
257	 */
258	tst	cursor, block_mask
259	b.eq	.Lzeromem_dczva_blocksize_aligned
260
261	/*
262	 * Calculate the first block-size-aligned address. It is assumed that
263	 * the zero block size is at least 16 bytes. This address is the last
264	 * address of this initial loop.
265	 */
266	orr	tmp1, cursor, block_mask
267	add	tmp1, tmp1, #1
268
269	/*
270	 * If the addition overflows, skip the cache zeroing loops. This is
271	 * quite unlikely however.
272	 */
273	cbz	tmp1, .Lzeromem_dczva_fallback_entry
274
275	/*
276	 * If the first block-size-aligned address is past the last address,
277	 * fallback to the simpler code.
278	 */
279	cmp	tmp1, stop_address
280	b.hi	.Lzeromem_dczva_fallback_entry
281
282	/*
283	 * If the start address is already aligned to 16 bytes, skip this loop.
284	 * It is safe to do this because tmp1 (the stop address of the initial
285	 * 16 bytes loop) will never be greater than the final stop address.
286	 */
287	tst	cursor, #0xf
288	b.eq	.Lzeromem_dczva_initial_1byte_aligned_end
289
290	/* Calculate the next address aligned to 16 bytes */
291	orr	tmp2, cursor, #0xf
292	add	tmp2, tmp2, #1
293	/* If it overflows, fallback to the simple path (unlikely) */
294	cbz	tmp2, .Lzeromem_dczva_fallback_entry
295	/*
296	 * Next aligned address cannot be after the stop address because the
297	 * length cannot be smaller than 16 at this point.
298	 */
299
300	/* First loop: zero byte per byte */
3011:
302	strb	wzr, [cursor], #1
303	cmp	cursor, tmp2
304	b.ne	1b
305.Lzeromem_dczva_initial_1byte_aligned_end:
306
307	/*
308	 * Second loop: we need to zero 16 bytes at a time from cursor to tmp1
309	 * before being able to use the code that deals with block-size-aligned
310	 * addresses.
311	 */
312	cmp	cursor, tmp1
313	b.hs	2f
3141:
315	stp	xzr, xzr, [cursor], #16
316	cmp	cursor, tmp1
317	b.lo	1b
3182:
319
320	/*
321	 * Third loop: zero a block at a time using DC ZVA cache block zeroing
322	 * instruction.
323	 */
324.Lzeromem_dczva_blocksize_aligned:
325	/*
326	 * Calculate the last block-size-aligned address. If the result equals
327	 * to the start address, the loop will exit immediately.
328	 */
329	bic	tmp1, stop_address, block_mask
330
331	cmp	cursor, tmp1
332	b.hs	2f
3331:
334	/* Zero the block containing the cursor */
335	dc	zva, cursor
336	/* Increment the cursor by the size of a block */
337	add	cursor, cursor, block_size
338	cmp	cursor, tmp1
339	b.lo	1b
3402:
341
342	/*
343	 * Fourth loop: zero 16 bytes at a time and then byte per byte the
344	 * remaining area
345	 */
346.Lzeromem_dczva_final_16bytes_aligned:
347	/*
348	 * Calculate the last 16 bytes aligned address. It is assumed that the
349	 * block size will never be smaller than 16 bytes so that the current
350	 * cursor is aligned to at least 16 bytes boundary.
351	 */
352	bic	tmp1, stop_address, #15
353
354	cmp	cursor, tmp1
355	b.hs	2f
3561:
357	stp	xzr, xzr, [cursor], #16
358	cmp	cursor, tmp1
359	b.lo	1b
3602:
361
362	/* Fifth and final loop: zero byte per byte */
363.Lzeromem_dczva_final_1byte_aligned:
364	cmp	cursor, stop_address
365	b.eq	2f
3661:
367	strb	wzr, [cursor], #1
368	cmp	cursor, stop_address
369	b.ne	1b
3702:
371	ret
372
373	/* Fallback for unaligned start addresses */
374.Lzeromem_dczva_fallback_entry:
375	/*
376	 * If the start address is already aligned to 16 bytes, skip this loop.
377	 */
378	tst	cursor, #0xf
379	b.eq	.Lzeromem_dczva_final_16bytes_aligned
380
381	/* Calculate the next address aligned to 16 bytes */
382	orr	tmp1, cursor, #15
383	add	tmp1, tmp1, #1
384	/* If it overflows, fallback to byte per byte zeroing */
385	cbz	tmp1, .Lzeromem_dczva_final_1byte_aligned
386	/* If the next aligned address is after the stop address, fall back */
387	cmp	tmp1, stop_address
388	b.hs	.Lzeromem_dczva_final_1byte_aligned
389
390	/* Fallback entry loop: zero byte per byte */
3911:
392	strb	wzr, [cursor], #1
393	cmp	cursor, tmp1
394	b.ne	1b
395
396	b	.Lzeromem_dczva_final_16bytes_aligned
397
398	.unreq	cursor
399	/*
400	 * length is already unreq'ed to reuse the register for another
401	 * variable.
402	 */
403	.unreq	stop_address
404	.unreq	block_size
405	.unreq	block_mask
406	.unreq	tmp1
407	.unreq	tmp2
408endfunc zeromem_dczva
409
410/* --------------------------------------------------------------------------
411 * void memcpy16(void *dest, const void *src, unsigned int length)
412 *
413 * Copy length bytes from memory area src to memory area dest.
414 * The memory areas should not overlap.
415 * Destination and source addresses must be 16-byte aligned.
416 * --------------------------------------------------------------------------
417 */
418func memcpy16
419#if ENABLE_ASSERTIONS
420	orr	x3, x0, x1
421	tst	x3, #0xf
422	ASM_ASSERT(eq)
423#endif
424/* copy 16 bytes at a time */
425m_loop16:
426	cmp	x2, #16
427	b.lo	m_loop1
428	ldp	x3, x4, [x1], #16
429	stp	x3, x4, [x0], #16
430	sub	x2, x2, #16
431	b	m_loop16
432/* copy byte per byte */
433m_loop1:
434	cbz	x2, m_end
435	ldrb	w3, [x1], #1
436	strb	w3, [x0], #1
437	subs	x2, x2, #1
438	b.ne	m_loop1
439m_end:
440	ret
441endfunc memcpy16
442
443/* ---------------------------------------------------------------------------
444 * Disable the MMU at EL3
445 * ---------------------------------------------------------------------------
446 */
447
448func disable_mmu_el3
449	mov	x1, #(SCTLR_M_BIT | SCTLR_C_BIT)
450do_disable_mmu_el3:
451	mrs	x0, sctlr_el3
452	bic	x0, x0, x1
453	msr	sctlr_el3, x0
454	isb	/* ensure MMU is off */
455	dsb	sy
456	ret
457endfunc disable_mmu_el3
458
459
460func disable_mmu_icache_el3
461	mov	x1, #(SCTLR_M_BIT | SCTLR_C_BIT | SCTLR_I_BIT)
462	b	do_disable_mmu_el3
463endfunc disable_mmu_icache_el3
464
465/* ---------------------------------------------------------------------------
466 * Disable the MMU at EL1
467 * ---------------------------------------------------------------------------
468 */
469
470func disable_mmu_el1
471	mov	x1, #(SCTLR_M_BIT | SCTLR_C_BIT)
472do_disable_mmu_el1:
473	mrs	x0, sctlr_el1
474	bic	x0, x0, x1
475	msr	sctlr_el1, x0
476	isb	/* ensure MMU is off */
477	dsb	sy
478	ret
479endfunc disable_mmu_el1
480
481
482func disable_mmu_icache_el1
483	mov	x1, #(SCTLR_M_BIT | SCTLR_C_BIT | SCTLR_I_BIT)
484	b	do_disable_mmu_el1
485endfunc disable_mmu_icache_el1
486
487/* ---------------------------------------------------------------------------
488 * Enable the use of VFP at EL3
489 * ---------------------------------------------------------------------------
490 */
491#if SUPPORT_VFP
492func enable_vfp
493	mrs	x0, cpacr_el1
494	orr	x0, x0, #CPACR_VFP_BITS
495	msr	cpacr_el1, x0
496	mrs	x0, cptr_el3
497	mov	x1, #AARCH64_CPTR_TFP
498	bic	x0, x0, x1
499	msr	cptr_el3, x0
500	isb
501	ret
502endfunc enable_vfp
503#endif
504
505/* ---------------------------------------------------------------------------
506 * Helper to fixup Global Descriptor table (GDT) and dynamic relocations
507 * (.rela.dyn) at runtime.
508 *
509 * This function is meant to be used when the firmware is compiled with -fpie
510 * and linked with -pie options. We rely on the linker script exporting
511 * appropriate markers for start and end of the section. For GOT, we
512 * expect __GOT_START__ and __GOT_END__. Similarly for .rela.dyn, we expect
513 * __RELA_START__ and __RELA_END__.
514 *
515 * The function takes the limits of the memory to apply fixups to as
516 * arguments (which is usually the limits of the relocable BL image).
517 *   x0 -  the start of the fixup region
518 *   x1 -  the limit of the fixup region
519 * These addresses have to be page (4KB aligned).
520 * ---------------------------------------------------------------------------
521 */
522func fixup_gdt_reloc
523	mov	x6, x0
524	mov	x7, x1
525
526	/* Test if the limits are 4K aligned */
527#if ENABLE_ASSERTIONS
528	orr	x0, x0, x1
529	tst	x0, #(PAGE_SIZE - 1)
530	ASM_ASSERT(eq)
531#endif
532	/*
533	 * Calculate the offset based on return address in x30.
534	 * Assume that this function is called within a page at the start of
535	 * fixup region.
536	 */
537	and	x2, x30, #~(PAGE_SIZE - 1)
538	sub	x0, x2, x6	/* Diff(S) = Current Address - Compiled Address */
539
540	adrp	x1, __GOT_START__
541	add	x1, x1, :lo12:__GOT_START__
542	adrp	x2, __GOT_END__
543	add	x2, x2, :lo12:__GOT_END__
544
545	/*
546	 * GOT is an array of 64_bit addresses which must be fixed up as
547	 * new_addr = old_addr + Diff(S).
548	 * The new_addr is the address currently the binary is executing from
549	 * and old_addr is the address at compile time.
550	 */
5511:
552	ldr	x3, [x1]
553	/* Skip adding offset if address is < lower limit */
554	cmp	x3, x6
555	b.lo	2f
556	/* Skip adding offset if address is >= upper limit */
557	cmp	x3, x7
558	b.ge	2f
559	add	x3, x3, x0
560	str	x3, [x1]
5612:
562	add	x1, x1, #8
563	cmp	x1, x2
564	b.lo	1b
565
566	/* Starting dynamic relocations. Use adrp/adr to get RELA_START and END */
567	adrp	x1, __RELA_START__
568	add	x1, x1, :lo12:__RELA_START__
569	adrp	x2, __RELA_END__
570	add	x2, x2, :lo12:__RELA_END__
571	/*
572	 * According to ELF-64 specification, the RELA data structure is as
573	 * follows:
574	 *	typedef struct
575	 * 	{
576	 *		Elf64_Addr r_offset;
577	 *		Elf64_Xword r_info;
578	 *		Elf64_Sxword r_addend;
579	 *	} Elf64_Rela;
580	 *
581	 * r_offset is address of reference
582	 * r_info is symbol index and type of relocation (in this case
583	 * 0x403 which corresponds to R_AARCH64_RELATIVE).
584	 * r_addend is constant part of expression.
585	 *
586	 * Size of Elf64_Rela structure is 24 bytes.
587	 */
5881:
589	/* Assert that the relocation type is R_AARCH64_RELATIVE */
590#if ENABLE_ASSERTIONS
591	ldr	x3, [x1, #8]
592	cmp	x3, #0x403
593	ASM_ASSERT(eq)
594#endif
595	ldr	x3, [x1]	/* r_offset */
596	add	x3, x0, x3
597	ldr	x4, [x1, #16]	/* r_addend */
598
599	/* Skip adding offset if r_addend is < lower limit */
600	cmp	x4, x6
601	b.lo	2f
602	/* Skip adding offset if r_addend entry is >= upper limit */
603	cmp	x4, x7
604	b.ge	2f
605
606	add	x4, x0, x4	/* Diff(S) + r_addend */
607	str	x4, [x3]
608
6092:	add	x1, x1, #24
610	cmp	x1, x2
611	b.lo	1b
612
613	ret
614endfunc fixup_gdt_reloc
615