1 /* 2 * Copyright (c) 2017, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #ifndef __XLAT_TABLES_V2_H__ 8 #define __XLAT_TABLES_V2_H__ 9 10 #include <xlat_tables_defs.h> 11 12 #ifndef __ASSEMBLY__ 13 #include <stddef.h> 14 #include <stdint.h> 15 #include <xlat_mmu_helpers.h> 16 #include <xlat_tables_v2_helpers.h> 17 18 /* 19 * Default granularity size for an mmap_region_t. 20 * Useful when no specific granularity is required. 21 * 22 * By default, choose the biggest possible block size allowed by the 23 * architectural state and granule size in order to minimize the number of page 24 * tables required for the mapping. 25 */ 26 #define REGION_DEFAULT_GRANULARITY XLAT_BLOCK_SIZE(MIN_LVL_BLOCK_DESC) 27 28 /* Helper macro to define an mmap_region_t. */ 29 #define MAP_REGION(_pa, _va, _sz, _attr) \ 30 _MAP_REGION_FULL_SPEC(_pa, _va, _sz, _attr, REGION_DEFAULT_GRANULARITY) 31 32 /* Helper macro to define an mmap_region_t with an identity mapping. */ 33 #define MAP_REGION_FLAT(_adr, _sz, _attr) \ 34 MAP_REGION(_adr, _adr, _sz, _attr) 35 36 /* 37 * Helper macro to define an mmap_region_t to map with the desired granularity 38 * of translation tables. 39 * 40 * The granularity value passed to this macro must be a valid block or page 41 * size. When using a 4KB translation granule, this might be 4KB, 2MB or 1GB. 42 * Passing REGION_DEFAULT_GRANULARITY is also allowed and means that the library 43 * is free to choose the granularity for this region. In this case, it is 44 * equivalent to the MAP_REGION() macro. 45 */ 46 #define MAP_REGION2(_pa, _va, _sz, _attr, _gr) \ 47 _MAP_REGION_FULL_SPEC(_pa, _va, _sz, _attr, _gr) 48 49 /* 50 * Shifts and masks to access fields of an mmap_attr_t 51 */ 52 #define MT_TYPE_MASK U(0x7) 53 #define MT_TYPE(_attr) ((_attr) & MT_TYPE_MASK) 54 /* Access permissions (RO/RW) */ 55 #define MT_PERM_SHIFT U(3) 56 /* Security state (SECURE/NS) */ 57 #define MT_SEC_SHIFT U(4) 58 /* Access permissions for instruction execution (EXECUTE/EXECUTE_NEVER) */ 59 #define MT_EXECUTE_SHIFT U(5) 60 /* 61 * In the EL1&0 translation regime, mark the region as User (EL0) or 62 * Privileged (EL1). In the EL3 translation regime this has no effect. 63 */ 64 #define MT_USER_SHIFT U(6) 65 /* All other bits are reserved */ 66 67 /* 68 * Memory mapping attributes 69 */ 70 typedef enum { 71 /* 72 * Memory types supported. 73 * These are organised so that, going down the list, the memory types 74 * are getting weaker; conversely going up the list the memory types are 75 * getting stronger. 76 */ 77 MT_DEVICE, 78 MT_NON_CACHEABLE, 79 MT_MEMORY, 80 /* Values up to 7 are reserved to add new memory types in the future */ 81 82 MT_RO = U(0) << MT_PERM_SHIFT, 83 MT_RW = U(1) << MT_PERM_SHIFT, 84 85 MT_SECURE = U(0) << MT_SEC_SHIFT, 86 MT_NS = U(1) << MT_SEC_SHIFT, 87 88 /* 89 * Access permissions for instruction execution are only relevant for 90 * normal read-only memory, i.e. MT_MEMORY | MT_RO. They are ignored 91 * (and potentially overridden) otherwise: 92 * - Device memory is always marked as execute-never. 93 * - Read-write normal memory is always marked as execute-never. 94 */ 95 MT_EXECUTE = U(0) << MT_EXECUTE_SHIFT, 96 MT_EXECUTE_NEVER = U(1) << MT_EXECUTE_SHIFT, 97 98 /* 99 * When mapping a region at EL0 or EL1, this attribute will be used to 100 * determine if a User mapping (EL0) will be created or a Privileged 101 * mapping (EL1). 102 */ 103 MT_USER = U(1) << MT_USER_SHIFT, 104 MT_PRIVILEGED = U(0) << MT_USER_SHIFT, 105 } mmap_attr_t; 106 107 /* Compound attributes for most common usages */ 108 #define MT_CODE (MT_MEMORY | MT_RO | MT_EXECUTE) 109 #define MT_RO_DATA (MT_MEMORY | MT_RO | MT_EXECUTE_NEVER) 110 #define MT_RW_DATA (MT_MEMORY | MT_RW | MT_EXECUTE_NEVER) 111 112 /* 113 * Structure for specifying a single region of memory. 114 */ 115 typedef struct mmap_region { 116 unsigned long long base_pa; 117 uintptr_t base_va; 118 size_t size; 119 mmap_attr_t attr; 120 /* Desired granularity. See the MAP_REGION2() macro for more details. */ 121 size_t granularity; 122 } mmap_region_t; 123 124 /* 125 * Translation regimes supported by this library. 126 */ 127 typedef enum xlat_regime { 128 EL1_EL0_REGIME, 129 EL3_REGIME, 130 } xlat_regime_t; 131 132 /* 133 * Declare the translation context type. 134 * Its definition is private. 135 */ 136 typedef struct xlat_ctx xlat_ctx_t; 137 138 /* 139 * Statically allocate a translation context and associated structures. Also 140 * initialize them. 141 * 142 * _ctx_name: 143 * Prefix for the translation context variable. 144 * E.g. If _ctx_name is 'foo', the variable will be called 'foo_xlat_ctx'. 145 * Useful to distinguish multiple contexts from one another. 146 * 147 * _mmap_count: 148 * Number of mmap_region_t to allocate. 149 * Would typically be MAX_MMAP_REGIONS for the translation context describing 150 * the BL image currently executing. 151 * 152 * _xlat_tables_count: 153 * Number of sub-translation tables to allocate. 154 * Would typically be MAX_XLAT_TABLES for the translation context describing 155 * the BL image currently executing. 156 * Note that this is only for sub-tables ; at the initial lookup level, there 157 * is always a single table. 158 * 159 * _virt_addr_space_size, _phy_addr_space_size: 160 * Size (in bytes) of the virtual (resp. physical) address space. 161 * Would typically be PLAT_VIRT_ADDR_SPACE_SIZE 162 * (resp. PLAT_PHY_ADDR_SPACE_SIZE) for the translation context describing the 163 * BL image currently executing. 164 */ 165 #define REGISTER_XLAT_CONTEXT(_ctx_name, _mmap_count, _xlat_tables_count, \ 166 _virt_addr_space_size, _phy_addr_space_size) \ 167 _REGISTER_XLAT_CONTEXT_FULL_SPEC(_ctx_name, _mmap_count, \ 168 _xlat_tables_count, \ 169 _virt_addr_space_size, \ 170 _phy_addr_space_size, \ 171 IMAGE_XLAT_DEFAULT_REGIME, \ 172 "xlat_table") 173 174 /* 175 * Same as REGISTER_XLAT_CONTEXT plus the additional parameters: 176 * 177 * _xlat_regime: 178 * Specify the translation regime managed by this xlat_ctx_t instance. The 179 * values are the one from xlat_regime_t enumeration. 180 * 181 * _section_name: 182 * Specify the name of the section where the translation tables have to be 183 * placed by the linker. 184 */ 185 #define REGISTER_XLAT_CONTEXT2(_ctx_name, _mmap_count, _xlat_tables_count, \ 186 _virt_addr_space_size, _phy_addr_space_size, \ 187 _xlat_regime, _section_name) \ 188 _REGISTER_XLAT_CONTEXT_FULL_SPEC(_ctx_name, _mmap_count, \ 189 _xlat_tables_count, \ 190 _virt_addr_space_size, \ 191 _phy_addr_space_size, \ 192 _xlat_regime, _section_name) 193 194 /****************************************************************************** 195 * Generic translation table APIs. 196 * Each API comes in 2 variants: 197 * - one that acts on the current translation context for this BL image 198 * - another that acts on the given translation context instead. This variant 199 * is named after the 1st version, with an additional '_ctx' suffix. 200 *****************************************************************************/ 201 202 /* 203 * Initialize translation tables from the current list of mmap regions. Calling 204 * this function marks the transition point after which static regions can no 205 * longer be added. 206 */ 207 void init_xlat_tables(void); 208 void init_xlat_tables_ctx(xlat_ctx_t *ctx); 209 210 /* 211 * Add a static region with defined base PA and base VA. This function can only 212 * be used before initializing the translation tables. The region cannot be 213 * removed afterwards. 214 */ 215 void mmap_add_region(unsigned long long base_pa, uintptr_t base_va, 216 size_t size, mmap_attr_t attr); 217 void mmap_add_region_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm); 218 219 /* 220 * Add an array of static regions with defined base PA and base VA. This 221 * function can only be used before initializing the translation tables. The 222 * regions cannot be removed afterwards. 223 */ 224 void mmap_add(const mmap_region_t *mm); 225 void mmap_add_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm); 226 227 228 #if PLAT_XLAT_TABLES_DYNAMIC 229 /* 230 * Add a dynamic region with defined base PA and base VA. This type of region 231 * can be added and removed even after the translation tables are initialized. 232 * 233 * Returns: 234 * 0: Success. 235 * EINVAL: Invalid values were used as arguments. 236 * ERANGE: Memory limits were surpassed. 237 * ENOMEM: Not enough space in the mmap array or not enough free xlat tables. 238 * EPERM: It overlaps another region in an invalid way. 239 */ 240 int mmap_add_dynamic_region(unsigned long long base_pa, uintptr_t base_va, 241 size_t size, mmap_attr_t attr); 242 int mmap_add_dynamic_region_ctx(xlat_ctx_t *ctx, mmap_region_t *mm); 243 244 /* 245 * Remove a region with the specified base VA and size. Only dynamic regions can 246 * be removed, and they can be removed even if the translation tables are 247 * initialized. 248 * 249 * Returns: 250 * 0: Success. 251 * EINVAL: The specified region wasn't found. 252 * EPERM: Trying to remove a static region. 253 */ 254 int mmap_remove_dynamic_region(uintptr_t base_va, size_t size); 255 int mmap_remove_dynamic_region_ctx(xlat_ctx_t *ctx, 256 uintptr_t base_va, 257 size_t size); 258 259 #endif /* PLAT_XLAT_TABLES_DYNAMIC */ 260 261 /* 262 * Change the memory attributes of the memory region starting from a given 263 * virtual address in a set of translation tables. 264 * 265 * This function can only be used after the translation tables have been 266 * initialized. 267 * 268 * The base address of the memory region must be aligned on a page boundary. 269 * The size of this memory region must be a multiple of a page size. 270 * The memory region must be already mapped by the given translation tables 271 * and it must be mapped at the granularity of a page. 272 * 273 * Return 0 on success, a negative value on error. 274 * 275 * In case of error, the memory attributes remain unchanged and this function 276 * has no effect. 277 * 278 * ctx 279 * Translation context to work on. 280 * base_va: 281 * Virtual address of the 1st page to change the attributes of. 282 * size: 283 * Size in bytes of the memory region. 284 * attr: 285 * New attributes of the page tables. The attributes that can be changed are 286 * data access (MT_RO/MT_RW), instruction access (MT_EXECUTE_NEVER/MT_EXECUTE) 287 * and user/privileged access (MT_USER/MT_PRIVILEGED) in the case of contexts 288 * that are used in the EL1&0 translation regime. Also, note that this 289 * function doesn't allow to remap a region as RW and executable, or to remap 290 * device memory as executable. 291 * 292 * NOTE: The caller of this function must be able to write to the translation 293 * tables, i.e. the memory where they are stored must be mapped with read-write 294 * access permissions. This function assumes it is the case. If this is not 295 * the case then this function might trigger a data abort exception. 296 * 297 * NOTE2: The caller is responsible for making sure that the targeted 298 * translation tables are not modified by any other code while this function is 299 * executing. 300 */ 301 int change_mem_attributes(xlat_ctx_t *ctx, uintptr_t base_va, size_t size, 302 uint32_t attr); 303 304 /* 305 * Query the memory attributes of a memory page in a set of translation tables. 306 * 307 * Return 0 on success, a negative error code on error. 308 * On success, the attributes are stored into *attributes. 309 * 310 * ctx 311 * Translation context to work on. 312 * base_va 313 * Virtual address of the page to get the attributes of. 314 * There are no alignment restrictions on this address. The attributes of the 315 * memory page it lies within are returned. 316 * attributes 317 * Output parameter where to store the attributes of the targeted memory page. 318 */ 319 int get_mem_attributes(const xlat_ctx_t *ctx, uintptr_t base_va, 320 uint32_t *attributes); 321 322 #endif /*__ASSEMBLY__*/ 323 #endif /* __XLAT_TABLES_V2_H__ */ 324