xref: /rk3399_ARM-atf/include/lib/xlat_tables/xlat_tables_v2.h (revision bbc8100720ee95478e90895f1061009551f92851)
1 /*
2  * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #ifndef XLAT_TABLES_V2_H
8 #define XLAT_TABLES_V2_H
9 
10 #include <xlat_tables_defs.h>
11 #include <xlat_tables_v2_helpers.h>
12 
13 #ifndef __ASSEMBLY__
14 #include <stddef.h>
15 #include <stdint.h>
16 #include <xlat_mmu_helpers.h>
17 
18 /*
19  * Default granularity size for an mmap_region_t.
20  * Useful when no specific granularity is required.
21  *
22  * By default, choose the biggest possible block size allowed by the
23  * architectural state and granule size in order to minimize the number of page
24  * tables required for the mapping.
25  */
26 #define REGION_DEFAULT_GRANULARITY	XLAT_BLOCK_SIZE(MIN_LVL_BLOCK_DESC)
27 
28 /* Helper macro to define an mmap_region_t. */
29 #define MAP_REGION(_pa, _va, _sz, _attr)	\
30 	MAP_REGION_FULL_SPEC(_pa, _va, _sz, _attr, REGION_DEFAULT_GRANULARITY)
31 
32 /* Helper macro to define an mmap_region_t with an identity mapping. */
33 #define MAP_REGION_FLAT(_adr, _sz, _attr)			\
34 	MAP_REGION(_adr, _adr, _sz, _attr)
35 
36 /*
37  * Helper macro to define entries for mmap_region_t. It allows to define 'pa'
38  * and sets 'va' to 0 for each region. To be used with mmap_add_alloc_va().
39  */
40 #define MAP_REGION_ALLOC_VA(pa, sz, attr)	MAP_REGION(pa, 0, sz, attr)
41 
42 /*
43  * Helper macro to define an mmap_region_t to map with the desired granularity
44  * of translation tables.
45  *
46  * The granularity value passed to this macro must be a valid block or page
47  * size. When using a 4KB translation granule, this might be 4KB, 2MB or 1GB.
48  * Passing REGION_DEFAULT_GRANULARITY is also allowed and means that the library
49  * is free to choose the granularity for this region. In this case, it is
50  * equivalent to the MAP_REGION() macro.
51  */
52 #define MAP_REGION2(_pa, _va, _sz, _attr, _gr)			\
53 	MAP_REGION_FULL_SPEC(_pa, _va, _sz, _attr, _gr)
54 
55 /*
56  * Shifts and masks to access fields of an mmap attribute
57  */
58 #define MT_TYPE_MASK		U(0x7)
59 #define MT_TYPE(_attr)		((_attr) & MT_TYPE_MASK)
60 /* Access permissions (RO/RW) */
61 #define MT_PERM_SHIFT		U(3)
62 /* Security state (SECURE/NS) */
63 #define MT_SEC_SHIFT		U(4)
64 /* Access permissions for instruction execution (EXECUTE/EXECUTE_NEVER) */
65 #define MT_EXECUTE_SHIFT	U(5)
66 /* In the EL1&0 translation regime, User (EL0) or Privileged (EL1). */
67 #define MT_USER_SHIFT		U(6)
68 /* All other bits are reserved */
69 
70 /*
71  * Memory mapping attributes
72  */
73 
74 /*
75  * Memory types supported.
76  * These are organised so that, going down the list, the memory types are
77  * getting weaker; conversely going up the list the memory types are getting
78  * stronger.
79  */
80 #define MT_DEVICE		U(0)
81 #define MT_NON_CACHEABLE	U(1)
82 #define MT_MEMORY		U(2)
83 /* Values up to 7 are reserved to add new memory types in the future */
84 
85 #define MT_RO			(U(0) << MT_PERM_SHIFT)
86 #define MT_RW			(U(1) << MT_PERM_SHIFT)
87 
88 #define MT_SECURE		(U(0) << MT_SEC_SHIFT)
89 #define MT_NS			(U(1) << MT_SEC_SHIFT)
90 
91 /*
92  * Access permissions for instruction execution are only relevant for normal
93  * read-only memory, i.e. MT_MEMORY | MT_RO. They are ignored (and potentially
94  * overridden) otherwise:
95  *  - Device memory is always marked as execute-never.
96  *  - Read-write normal memory is always marked as execute-never.
97  */
98 #define MT_EXECUTE		(U(0) << MT_EXECUTE_SHIFT)
99 #define MT_EXECUTE_NEVER	(U(1) << MT_EXECUTE_SHIFT)
100 
101 /*
102  * When mapping a region at EL0 or EL1, this attribute will be used to determine
103  * if a User mapping (EL0) will be created or a Privileged mapping (EL1).
104  */
105 #define MT_USER			(U(1) << MT_USER_SHIFT)
106 #define MT_PRIVILEGED		(U(0) << MT_USER_SHIFT)
107 
108 /* Compound attributes for most common usages */
109 #define MT_CODE			(MT_MEMORY | MT_RO | MT_EXECUTE)
110 #define MT_RO_DATA		(MT_MEMORY | MT_RO | MT_EXECUTE_NEVER)
111 #define MT_RW_DATA		(MT_MEMORY | MT_RW | MT_EXECUTE_NEVER)
112 
113 /*
114  * Structure for specifying a single region of memory.
115  */
116 typedef struct mmap_region {
117 	unsigned long long	base_pa;
118 	uintptr_t		base_va;
119 	size_t			size;
120 	unsigned int		attr;
121 	/* Desired granularity. See the MAP_REGION2() macro for more details. */
122 	size_t			granularity;
123 } mmap_region_t;
124 
125 /*
126  * Translation regimes supported by this library. EL_REGIME_INVALID tells the
127  * library to detect it at runtime.
128  */
129 #define EL1_EL0_REGIME		1
130 #define EL2_REGIME		2
131 #define EL3_REGIME		3
132 #define EL_REGIME_INVALID	-1
133 
134 /*
135  * Declare the translation context type.
136  * Its definition is private.
137  */
138 typedef struct xlat_ctx xlat_ctx_t;
139 
140 /*
141  * Statically allocate a translation context and associated structures. Also
142  * initialize them.
143  *
144  * _ctx_name:
145  *   Prefix for the translation context variable.
146  *   E.g. If _ctx_name is 'foo', the variable will be called 'foo_xlat_ctx'.
147  *   Useful to distinguish multiple contexts from one another.
148  *
149  * _mmap_count:
150  *   Number of mmap_region_t to allocate.
151  *   Would typically be MAX_MMAP_REGIONS for the translation context describing
152  *   the BL image currently executing.
153  *
154  * _xlat_tables_count:
155  *   Number of sub-translation tables to allocate.
156  *   Would typically be MAX_XLAT_TABLES for the translation context describing
157  *   the BL image currently executing.
158  *   Note that this is only for sub-tables ; at the initial lookup level, there
159  *   is always a single table.
160  *
161  * _virt_addr_space_size, _phy_addr_space_size:
162  *   Size (in bytes) of the virtual (resp. physical) address space.
163  *   Would typically be PLAT_VIRT_ADDR_SPACE_SIZE
164  *   (resp. PLAT_PHY_ADDR_SPACE_SIZE) for the translation context describing the
165  *   BL image currently executing.
166  */
167 #define REGISTER_XLAT_CONTEXT(_ctx_name, _mmap_count, _xlat_tables_count, \
168 			_virt_addr_space_size, _phy_addr_space_size)	\
169 	REGISTER_XLAT_CONTEXT_FULL_SPEC(_ctx_name, (_mmap_count),	\
170 					 (_xlat_tables_count),		\
171 					 (_virt_addr_space_size),	\
172 					 (_phy_addr_space_size),	\
173 					 EL_REGIME_INVALID, "xlat_table")
174 
175 /*
176  * Same as REGISTER_XLAT_CONTEXT plus the additional parameters:
177  *
178  * _xlat_regime:
179  *   Specify the translation regime managed by this xlat_ctx_t instance. The
180  *   values are the one from the EL*_REGIME definitions.
181  *
182  * _section_name:
183  *   Specify the name of the section where the translation tables have to be
184  *   placed by the linker.
185  */
186 #define REGISTER_XLAT_CONTEXT2(_ctx_name, _mmap_count, _xlat_tables_count, \
187 			_virt_addr_space_size, _phy_addr_space_size,	\
188 			_xlat_regime, _section_name)			\
189 	REGISTER_XLAT_CONTEXT_FULL_SPEC(_ctx_name, (_mmap_count),	\
190 					 (_xlat_tables_count),		\
191 					 (_virt_addr_space_size),	\
192 					 (_phy_addr_space_size),	\
193 					 (_xlat_regime), (_section_name))
194 
195 /******************************************************************************
196  * Generic translation table APIs.
197  * Each API comes in 2 variants:
198  * - one that acts on the current translation context for this BL image
199  * - another that acts on the given translation context instead. This variant
200  *   is named after the 1st version, with an additional '_ctx' suffix.
201  *****************************************************************************/
202 
203 /*
204  * Initialize translation tables from the current list of mmap regions. Calling
205  * this function marks the transition point after which static regions can no
206  * longer be added.
207  */
208 void init_xlat_tables(void);
209 void init_xlat_tables_ctx(xlat_ctx_t *ctx);
210 
211 /*
212  * Fill all fields of a dynamic translation tables context. It must be done
213  * either statically with REGISTER_XLAT_CONTEXT() or at runtime with this
214  * function.
215  */
216 void xlat_setup_dynamic_ctx(xlat_ctx_t *ctx, unsigned long long pa_max,
217 			    uintptr_t va_max, struct mmap_region *mmap,
218 			    unsigned int mmap_num, uint64_t **tables,
219 			    unsigned int tables_num, uint64_t *base_table,
220 			    int xlat_regime, int *mapped_regions);
221 
222 /*
223  * Add a static region with defined base PA and base VA. This function can only
224  * be used before initializing the translation tables. The region cannot be
225  * removed afterwards.
226  */
227 void mmap_add_region(unsigned long long base_pa, uintptr_t base_va,
228 		     size_t size, unsigned int attr);
229 void mmap_add_region_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm);
230 
231 /*
232  * Add an array of static regions with defined base PA and base VA. This
233  * function can only be used before initializing the translation tables. The
234  * regions cannot be removed afterwards.
235  */
236 void mmap_add(const mmap_region_t *mm);
237 void mmap_add_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm);
238 
239 /*
240  * Add a region with defined base PA. Returns base VA calculated using the
241  * highest existing region in the mmap array even if it fails to allocate the
242  * region.
243  */
244 void mmap_add_region_alloc_va(unsigned long long base_pa, uintptr_t *base_va,
245 			      size_t size, unsigned int attr);
246 void mmap_add_region_alloc_va_ctx(xlat_ctx_t *ctx, mmap_region_t *mm);
247 
248 /*
249  * Add an array of static regions with defined base PA, and fill the base VA
250  * field on the array of structs. This function can only be used before
251  * initializing the translation tables. The regions cannot be removed afterwards.
252  */
253 void mmap_add_alloc_va(mmap_region_t *mm);
254 
255 #if PLAT_XLAT_TABLES_DYNAMIC
256 /*
257  * Add a dynamic region with defined base PA and base VA. This type of region
258  * can be added and removed even after the translation tables are initialized.
259  *
260  * Returns:
261  *        0: Success.
262  *   EINVAL: Invalid values were used as arguments.
263  *   ERANGE: Memory limits were surpassed.
264  *   ENOMEM: Not enough space in the mmap array or not enough free xlat tables.
265  *    EPERM: It overlaps another region in an invalid way.
266  */
267 int mmap_add_dynamic_region(unsigned long long base_pa, uintptr_t base_va,
268 			    size_t size, unsigned int attr);
269 int mmap_add_dynamic_region_ctx(xlat_ctx_t *ctx, mmap_region_t *mm);
270 
271 /*
272  * Add a dynamic region with defined base PA. Returns base VA calculated using
273  * the highest existing region in the mmap array even if it fails to allocate
274  * the region.
275  *
276  * mmap_add_dynamic_region_alloc_va() returns the allocated VA in 'base_va'.
277  * mmap_add_dynamic_region_alloc_va_ctx() returns it in 'mm->base_va'.
278  *
279  * It returns the same error values as mmap_add_dynamic_region().
280  */
281 int mmap_add_dynamic_region_alloc_va(unsigned long long base_pa,
282 				     uintptr_t *base_va,
283 				     size_t size, unsigned int attr);
284 int mmap_add_dynamic_region_alloc_va_ctx(xlat_ctx_t *ctx, mmap_region_t *mm);
285 
286 /*
287  * Remove a region with the specified base VA and size. Only dynamic regions can
288  * be removed, and they can be removed even if the translation tables are
289  * initialized.
290  *
291  * Returns:
292  *        0: Success.
293  *   EINVAL: The specified region wasn't found.
294  *    EPERM: Trying to remove a static region.
295  */
296 int mmap_remove_dynamic_region(uintptr_t base_va, size_t size);
297 int mmap_remove_dynamic_region_ctx(xlat_ctx_t *ctx,
298 				uintptr_t base_va,
299 				size_t size);
300 
301 #endif /* PLAT_XLAT_TABLES_DYNAMIC */
302 
303 /*
304  * Change the memory attributes of the memory region starting from a given
305  * virtual address in a set of translation tables.
306  *
307  * This function can only be used after the translation tables have been
308  * initialized.
309  *
310  * The base address of the memory region must be aligned on a page boundary.
311  * The size of this memory region must be a multiple of a page size.
312  * The memory region must be already mapped by the given translation tables
313  * and it must be mapped at the granularity of a page.
314  *
315  * Return 0 on success, a negative value on error.
316  *
317  * In case of error, the memory attributes remain unchanged and this function
318  * has no effect.
319  *
320  * ctx
321  *   Translation context to work on.
322  * base_va:
323  *   Virtual address of the 1st page to change the attributes of.
324  * size:
325  *   Size in bytes of the memory region.
326  * attr:
327  *   New attributes of the page tables. The attributes that can be changed are
328  *   data access (MT_RO/MT_RW), instruction access (MT_EXECUTE_NEVER/MT_EXECUTE)
329  *   and user/privileged access (MT_USER/MT_PRIVILEGED) in the case of contexts
330  *   that are used in the EL1&0 translation regime. Also, note that this
331  *   function doesn't allow to remap a region as RW and executable, or to remap
332  *   device memory as executable.
333  *
334  * NOTE: The caller of this function must be able to write to the translation
335  * tables, i.e. the memory where they are stored must be mapped with read-write
336  * access permissions. This function assumes it is the case. If this is not
337  * the case then this function might trigger a data abort exception.
338  *
339  * NOTE2: The caller is responsible for making sure that the targeted
340  * translation tables are not modified by any other code while this function is
341  * executing.
342  */
343 int xlat_change_mem_attributes_ctx(const xlat_ctx_t *ctx, uintptr_t base_va,
344 				   size_t size, uint32_t attr);
345 int xlat_change_mem_attributes(uintptr_t base_va, size_t size, uint32_t attr);
346 
347 /*
348  * Query the memory attributes of a memory page in a set of translation tables.
349  *
350  * Return 0 on success, a negative error code on error.
351  * On success, the attributes are stored into *attr.
352  *
353  * ctx
354  *   Translation context to work on.
355  * base_va
356  *   Virtual address of the page to get the attributes of.
357  *   There are no alignment restrictions on this address. The attributes of the
358  *   memory page it lies within are returned.
359  * attr
360  *   Output parameter where to store the attributes of the targeted memory page.
361  */
362 int xlat_get_mem_attributes_ctx(const xlat_ctx_t *ctx, uintptr_t base_va,
363 				uint32_t *attr);
364 int xlat_get_mem_attributes(uintptr_t base_va, uint32_t *attr);
365 
366 #endif /*__ASSEMBLY__*/
367 #endif /* XLAT_TABLES_V2_H */
368