1 /* 2 * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #ifndef XLAT_TABLES_V2_H 8 #define XLAT_TABLES_V2_H 9 10 #include <xlat_tables_defs.h> 11 #include <xlat_tables_v2_helpers.h> 12 13 #ifndef __ASSEMBLY__ 14 #include <stddef.h> 15 #include <stdint.h> 16 #include <xlat_mmu_helpers.h> 17 18 /* 19 * Default granularity size for an mmap_region_t. 20 * Useful when no specific granularity is required. 21 * 22 * By default, choose the biggest possible block size allowed by the 23 * architectural state and granule size in order to minimize the number of page 24 * tables required for the mapping. 25 */ 26 #define REGION_DEFAULT_GRANULARITY XLAT_BLOCK_SIZE(MIN_LVL_BLOCK_DESC) 27 28 /* Helper macro to define an mmap_region_t. */ 29 #define MAP_REGION(_pa, _va, _sz, _attr) \ 30 MAP_REGION_FULL_SPEC(_pa, _va, _sz, _attr, REGION_DEFAULT_GRANULARITY) 31 32 /* Helper macro to define an mmap_region_t with an identity mapping. */ 33 #define MAP_REGION_FLAT(_adr, _sz, _attr) \ 34 MAP_REGION(_adr, _adr, _sz, _attr) 35 36 /* 37 * Helper macro to define an mmap_region_t to map with the desired granularity 38 * of translation tables. 39 * 40 * The granularity value passed to this macro must be a valid block or page 41 * size. When using a 4KB translation granule, this might be 4KB, 2MB or 1GB. 42 * Passing REGION_DEFAULT_GRANULARITY is also allowed and means that the library 43 * is free to choose the granularity for this region. In this case, it is 44 * equivalent to the MAP_REGION() macro. 45 */ 46 #define MAP_REGION2(_pa, _va, _sz, _attr, _gr) \ 47 MAP_REGION_FULL_SPEC(_pa, _va, _sz, _attr, _gr) 48 49 /* 50 * Shifts and masks to access fields of an mmap attribute 51 */ 52 #define MT_TYPE_MASK U(0x7) 53 #define MT_TYPE(_attr) ((_attr) & MT_TYPE_MASK) 54 /* Access permissions (RO/RW) */ 55 #define MT_PERM_SHIFT U(3) 56 /* Security state (SECURE/NS) */ 57 #define MT_SEC_SHIFT U(4) 58 /* Access permissions for instruction execution (EXECUTE/EXECUTE_NEVER) */ 59 #define MT_EXECUTE_SHIFT U(5) 60 /* In the EL1&0 translation regime, User (EL0) or Privileged (EL1). */ 61 #define MT_USER_SHIFT U(6) 62 /* All other bits are reserved */ 63 64 /* 65 * Memory mapping attributes 66 */ 67 68 /* 69 * Memory types supported. 70 * These are organised so that, going down the list, the memory types are 71 * getting weaker; conversely going up the list the memory types are getting 72 * stronger. 73 */ 74 #define MT_DEVICE U(0) 75 #define MT_NON_CACHEABLE U(1) 76 #define MT_MEMORY U(2) 77 /* Values up to 7 are reserved to add new memory types in the future */ 78 79 #define MT_RO (U(0) << MT_PERM_SHIFT) 80 #define MT_RW (U(1) << MT_PERM_SHIFT) 81 82 #define MT_SECURE (U(0) << MT_SEC_SHIFT) 83 #define MT_NS (U(1) << MT_SEC_SHIFT) 84 85 /* 86 * Access permissions for instruction execution are only relevant for normal 87 * read-only memory, i.e. MT_MEMORY | MT_RO. They are ignored (and potentially 88 * overridden) otherwise: 89 * - Device memory is always marked as execute-never. 90 * - Read-write normal memory is always marked as execute-never. 91 */ 92 #define MT_EXECUTE (U(0) << MT_EXECUTE_SHIFT) 93 #define MT_EXECUTE_NEVER (U(1) << MT_EXECUTE_SHIFT) 94 95 /* 96 * When mapping a region at EL0 or EL1, this attribute will be used to determine 97 * if a User mapping (EL0) will be created or a Privileged mapping (EL1). 98 */ 99 #define MT_USER (U(1) << MT_USER_SHIFT) 100 #define MT_PRIVILEGED (U(0) << MT_USER_SHIFT) 101 102 /* Compound attributes for most common usages */ 103 #define MT_CODE (MT_MEMORY | MT_RO | MT_EXECUTE) 104 #define MT_RO_DATA (MT_MEMORY | MT_RO | MT_EXECUTE_NEVER) 105 #define MT_RW_DATA (MT_MEMORY | MT_RW | MT_EXECUTE_NEVER) 106 107 #if !ERROR_DEPRECATED 108 typedef unsigned int mmap_attr_t; 109 #endif 110 111 /* 112 * Structure for specifying a single region of memory. 113 */ 114 typedef struct mmap_region { 115 unsigned long long base_pa; 116 uintptr_t base_va; 117 size_t size; 118 unsigned int attr; 119 /* Desired granularity. See the MAP_REGION2() macro for more details. */ 120 size_t granularity; 121 } mmap_region_t; 122 123 /* 124 * Translation regimes supported by this library. EL_REGIME_INVALID tells the 125 * library to detect it at runtime. 126 */ 127 #define EL1_EL0_REGIME 1 128 #define EL3_REGIME 3 129 #define EL_REGIME_INVALID -1 130 131 /* 132 * Declare the translation context type. 133 * Its definition is private. 134 */ 135 typedef struct xlat_ctx xlat_ctx_t; 136 137 /* 138 * Statically allocate a translation context and associated structures. Also 139 * initialize them. 140 * 141 * _ctx_name: 142 * Prefix for the translation context variable. 143 * E.g. If _ctx_name is 'foo', the variable will be called 'foo_xlat_ctx'. 144 * Useful to distinguish multiple contexts from one another. 145 * 146 * _mmap_count: 147 * Number of mmap_region_t to allocate. 148 * Would typically be MAX_MMAP_REGIONS for the translation context describing 149 * the BL image currently executing. 150 * 151 * _xlat_tables_count: 152 * Number of sub-translation tables to allocate. 153 * Would typically be MAX_XLAT_TABLES for the translation context describing 154 * the BL image currently executing. 155 * Note that this is only for sub-tables ; at the initial lookup level, there 156 * is always a single table. 157 * 158 * _virt_addr_space_size, _phy_addr_space_size: 159 * Size (in bytes) of the virtual (resp. physical) address space. 160 * Would typically be PLAT_VIRT_ADDR_SPACE_SIZE 161 * (resp. PLAT_PHY_ADDR_SPACE_SIZE) for the translation context describing the 162 * BL image currently executing. 163 */ 164 #define REGISTER_XLAT_CONTEXT(_ctx_name, _mmap_count, _xlat_tables_count, \ 165 _virt_addr_space_size, _phy_addr_space_size) \ 166 REGISTER_XLAT_CONTEXT_FULL_SPEC(_ctx_name, (_mmap_count), \ 167 (_xlat_tables_count), \ 168 (_virt_addr_space_size), \ 169 (_phy_addr_space_size), \ 170 EL_REGIME_INVALID, "xlat_table") 171 172 /* 173 * Same as REGISTER_XLAT_CONTEXT plus the additional parameters: 174 * 175 * _xlat_regime: 176 * Specify the translation regime managed by this xlat_ctx_t instance. The 177 * values are the one from the EL*_REGIME definitions. 178 * 179 * _section_name: 180 * Specify the name of the section where the translation tables have to be 181 * placed by the linker. 182 */ 183 #define REGISTER_XLAT_CONTEXT2(_ctx_name, _mmap_count, _xlat_tables_count, \ 184 _virt_addr_space_size, _phy_addr_space_size, \ 185 _xlat_regime, _section_name) \ 186 REGISTER_XLAT_CONTEXT_FULL_SPEC(_ctx_name, (_mmap_count), \ 187 (_xlat_tables_count), \ 188 (_virt_addr_space_size), \ 189 (_phy_addr_space_size), \ 190 (_xlat_regime), (_section_name)) 191 192 /****************************************************************************** 193 * Generic translation table APIs. 194 * Each API comes in 2 variants: 195 * - one that acts on the current translation context for this BL image 196 * - another that acts on the given translation context instead. This variant 197 * is named after the 1st version, with an additional '_ctx' suffix. 198 *****************************************************************************/ 199 200 /* 201 * Initialize translation tables from the current list of mmap regions. Calling 202 * this function marks the transition point after which static regions can no 203 * longer be added. 204 */ 205 void init_xlat_tables(void); 206 void init_xlat_tables_ctx(xlat_ctx_t *ctx); 207 208 /* 209 * Add a static region with defined base PA and base VA. This function can only 210 * be used before initializing the translation tables. The region cannot be 211 * removed afterwards. 212 */ 213 void mmap_add_region(unsigned long long base_pa, uintptr_t base_va, 214 size_t size, unsigned int attr); 215 void mmap_add_region_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm); 216 217 /* 218 * Add an array of static regions with defined base PA and base VA. This 219 * function can only be used before initializing the translation tables. The 220 * regions cannot be removed afterwards. 221 */ 222 void mmap_add(const mmap_region_t *mm); 223 void mmap_add_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm); 224 225 226 #if PLAT_XLAT_TABLES_DYNAMIC 227 /* 228 * Add a dynamic region with defined base PA and base VA. This type of region 229 * can be added and removed even after the translation tables are initialized. 230 * 231 * Returns: 232 * 0: Success. 233 * EINVAL: Invalid values were used as arguments. 234 * ERANGE: Memory limits were surpassed. 235 * ENOMEM: Not enough space in the mmap array or not enough free xlat tables. 236 * EPERM: It overlaps another region in an invalid way. 237 */ 238 int mmap_add_dynamic_region(unsigned long long base_pa, uintptr_t base_va, 239 size_t size, unsigned int attr); 240 int mmap_add_dynamic_region_ctx(xlat_ctx_t *ctx, mmap_region_t *mm); 241 242 /* 243 * Remove a region with the specified base VA and size. Only dynamic regions can 244 * be removed, and they can be removed even if the translation tables are 245 * initialized. 246 * 247 * Returns: 248 * 0: Success. 249 * EINVAL: The specified region wasn't found. 250 * EPERM: Trying to remove a static region. 251 */ 252 int mmap_remove_dynamic_region(uintptr_t base_va, size_t size); 253 int mmap_remove_dynamic_region_ctx(xlat_ctx_t *ctx, 254 uintptr_t base_va, 255 size_t size); 256 257 #endif /* PLAT_XLAT_TABLES_DYNAMIC */ 258 259 /* 260 * Change the memory attributes of the memory region starting from a given 261 * virtual address in a set of translation tables. 262 * 263 * This function can only be used after the translation tables have been 264 * initialized. 265 * 266 * The base address of the memory region must be aligned on a page boundary. 267 * The size of this memory region must be a multiple of a page size. 268 * The memory region must be already mapped by the given translation tables 269 * and it must be mapped at the granularity of a page. 270 * 271 * Return 0 on success, a negative value on error. 272 * 273 * In case of error, the memory attributes remain unchanged and this function 274 * has no effect. 275 * 276 * ctx 277 * Translation context to work on. 278 * base_va: 279 * Virtual address of the 1st page to change the attributes of. 280 * size: 281 * Size in bytes of the memory region. 282 * attr: 283 * New attributes of the page tables. The attributes that can be changed are 284 * data access (MT_RO/MT_RW), instruction access (MT_EXECUTE_NEVER/MT_EXECUTE) 285 * and user/privileged access (MT_USER/MT_PRIVILEGED) in the case of contexts 286 * that are used in the EL1&0 translation regime. Also, note that this 287 * function doesn't allow to remap a region as RW and executable, or to remap 288 * device memory as executable. 289 * 290 * NOTE: The caller of this function must be able to write to the translation 291 * tables, i.e. the memory where they are stored must be mapped with read-write 292 * access permissions. This function assumes it is the case. If this is not 293 * the case then this function might trigger a data abort exception. 294 * 295 * NOTE2: The caller is responsible for making sure that the targeted 296 * translation tables are not modified by any other code while this function is 297 * executing. 298 */ 299 int change_mem_attributes(const xlat_ctx_t *ctx, uintptr_t base_va, size_t size, 300 uint32_t attr); 301 302 /* 303 * Query the memory attributes of a memory page in a set of translation tables. 304 * 305 * Return 0 on success, a negative error code on error. 306 * On success, the attributes are stored into *attributes. 307 * 308 * ctx 309 * Translation context to work on. 310 * base_va 311 * Virtual address of the page to get the attributes of. 312 * There are no alignment restrictions on this address. The attributes of the 313 * memory page it lies within are returned. 314 * attributes 315 * Output parameter where to store the attributes of the targeted memory page. 316 */ 317 int get_mem_attributes(const xlat_ctx_t *ctx, uintptr_t base_va, 318 uint32_t *attributes); 319 320 #endif /*__ASSEMBLY__*/ 321 #endif /* XLAT_TABLES_V2_H */ 322