1 /* 2 * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #ifndef XLAT_TABLES_V2_H 8 #define XLAT_TABLES_V2_H 9 10 #include <xlat_tables_defs.h> 11 #include <xlat_tables_v2_helpers.h> 12 13 #ifndef __ASSEMBLY__ 14 #include <stddef.h> 15 #include <stdint.h> 16 #include <xlat_mmu_helpers.h> 17 18 /* 19 * Default granularity size for an mmap_region_t. 20 * Useful when no specific granularity is required. 21 * 22 * By default, choose the biggest possible block size allowed by the 23 * architectural state and granule size in order to minimize the number of page 24 * tables required for the mapping. 25 */ 26 #define REGION_DEFAULT_GRANULARITY XLAT_BLOCK_SIZE(MIN_LVL_BLOCK_DESC) 27 28 /* Helper macro to define an mmap_region_t. */ 29 #define MAP_REGION(_pa, _va, _sz, _attr) \ 30 MAP_REGION_FULL_SPEC(_pa, _va, _sz, _attr, REGION_DEFAULT_GRANULARITY) 31 32 /* Helper macro to define an mmap_region_t with an identity mapping. */ 33 #define MAP_REGION_FLAT(_adr, _sz, _attr) \ 34 MAP_REGION(_adr, _adr, _sz, _attr) 35 36 /* 37 * Helper macro to define an mmap_region_t to map with the desired granularity 38 * of translation tables. 39 * 40 * The granularity value passed to this macro must be a valid block or page 41 * size. When using a 4KB translation granule, this might be 4KB, 2MB or 1GB. 42 * Passing REGION_DEFAULT_GRANULARITY is also allowed and means that the library 43 * is free to choose the granularity for this region. In this case, it is 44 * equivalent to the MAP_REGION() macro. 45 */ 46 #define MAP_REGION2(_pa, _va, _sz, _attr, _gr) \ 47 MAP_REGION_FULL_SPEC(_pa, _va, _sz, _attr, _gr) 48 49 /* 50 * Shifts and masks to access fields of an mmap attribute 51 */ 52 #define MT_TYPE_MASK U(0x7) 53 #define MT_TYPE(_attr) ((_attr) & MT_TYPE_MASK) 54 /* Access permissions (RO/RW) */ 55 #define MT_PERM_SHIFT U(3) 56 /* Security state (SECURE/NS) */ 57 #define MT_SEC_SHIFT U(4) 58 /* Access permissions for instruction execution (EXECUTE/EXECUTE_NEVER) */ 59 #define MT_EXECUTE_SHIFT U(5) 60 /* In the EL1&0 translation regime, User (EL0) or Privileged (EL1). */ 61 #define MT_USER_SHIFT U(6) 62 /* All other bits are reserved */ 63 64 /* 65 * Memory mapping attributes 66 */ 67 68 /* 69 * Memory types supported. 70 * These are organised so that, going down the list, the memory types are 71 * getting weaker; conversely going up the list the memory types are getting 72 * stronger. 73 */ 74 #define MT_DEVICE U(0) 75 #define MT_NON_CACHEABLE U(1) 76 #define MT_MEMORY U(2) 77 /* Values up to 7 are reserved to add new memory types in the future */ 78 79 #define MT_RO (U(0) << MT_PERM_SHIFT) 80 #define MT_RW (U(1) << MT_PERM_SHIFT) 81 82 #define MT_SECURE (U(0) << MT_SEC_SHIFT) 83 #define MT_NS (U(1) << MT_SEC_SHIFT) 84 85 /* 86 * Access permissions for instruction execution are only relevant for normal 87 * read-only memory, i.e. MT_MEMORY | MT_RO. They are ignored (and potentially 88 * overridden) otherwise: 89 * - Device memory is always marked as execute-never. 90 * - Read-write normal memory is always marked as execute-never. 91 */ 92 #define MT_EXECUTE (U(0) << MT_EXECUTE_SHIFT) 93 #define MT_EXECUTE_NEVER (U(1) << MT_EXECUTE_SHIFT) 94 95 /* 96 * When mapping a region at EL0 or EL1, this attribute will be used to determine 97 * if a User mapping (EL0) will be created or a Privileged mapping (EL1). 98 */ 99 #define MT_USER (U(1) << MT_USER_SHIFT) 100 #define MT_PRIVILEGED (U(0) << MT_USER_SHIFT) 101 102 /* Compound attributes for most common usages */ 103 #define MT_CODE (MT_MEMORY | MT_RO | MT_EXECUTE) 104 #define MT_RO_DATA (MT_MEMORY | MT_RO | MT_EXECUTE_NEVER) 105 #define MT_RW_DATA (MT_MEMORY | MT_RW | MT_EXECUTE_NEVER) 106 107 /* 108 * Structure for specifying a single region of memory. 109 */ 110 typedef struct mmap_region { 111 unsigned long long base_pa; 112 uintptr_t base_va; 113 size_t size; 114 unsigned int attr; 115 /* Desired granularity. See the MAP_REGION2() macro for more details. */ 116 size_t granularity; 117 } mmap_region_t; 118 119 /* 120 * Translation regimes supported by this library. EL_REGIME_INVALID tells the 121 * library to detect it at runtime. 122 */ 123 #define EL1_EL0_REGIME 1 124 #define EL2_REGIME 2 125 #define EL3_REGIME 3 126 #define EL_REGIME_INVALID -1 127 128 /* 129 * Declare the translation context type. 130 * Its definition is private. 131 */ 132 typedef struct xlat_ctx xlat_ctx_t; 133 134 /* 135 * Statically allocate a translation context and associated structures. Also 136 * initialize them. 137 * 138 * _ctx_name: 139 * Prefix for the translation context variable. 140 * E.g. If _ctx_name is 'foo', the variable will be called 'foo_xlat_ctx'. 141 * Useful to distinguish multiple contexts from one another. 142 * 143 * _mmap_count: 144 * Number of mmap_region_t to allocate. 145 * Would typically be MAX_MMAP_REGIONS for the translation context describing 146 * the BL image currently executing. 147 * 148 * _xlat_tables_count: 149 * Number of sub-translation tables to allocate. 150 * Would typically be MAX_XLAT_TABLES for the translation context describing 151 * the BL image currently executing. 152 * Note that this is only for sub-tables ; at the initial lookup level, there 153 * is always a single table. 154 * 155 * _virt_addr_space_size, _phy_addr_space_size: 156 * Size (in bytes) of the virtual (resp. physical) address space. 157 * Would typically be PLAT_VIRT_ADDR_SPACE_SIZE 158 * (resp. PLAT_PHY_ADDR_SPACE_SIZE) for the translation context describing the 159 * BL image currently executing. 160 */ 161 #define REGISTER_XLAT_CONTEXT(_ctx_name, _mmap_count, _xlat_tables_count, \ 162 _virt_addr_space_size, _phy_addr_space_size) \ 163 REGISTER_XLAT_CONTEXT_FULL_SPEC(_ctx_name, (_mmap_count), \ 164 (_xlat_tables_count), \ 165 (_virt_addr_space_size), \ 166 (_phy_addr_space_size), \ 167 EL_REGIME_INVALID, "xlat_table") 168 169 /* 170 * Same as REGISTER_XLAT_CONTEXT plus the additional parameters: 171 * 172 * _xlat_regime: 173 * Specify the translation regime managed by this xlat_ctx_t instance. The 174 * values are the one from the EL*_REGIME definitions. 175 * 176 * _section_name: 177 * Specify the name of the section where the translation tables have to be 178 * placed by the linker. 179 */ 180 #define REGISTER_XLAT_CONTEXT2(_ctx_name, _mmap_count, _xlat_tables_count, \ 181 _virt_addr_space_size, _phy_addr_space_size, \ 182 _xlat_regime, _section_name) \ 183 REGISTER_XLAT_CONTEXT_FULL_SPEC(_ctx_name, (_mmap_count), \ 184 (_xlat_tables_count), \ 185 (_virt_addr_space_size), \ 186 (_phy_addr_space_size), \ 187 (_xlat_regime), (_section_name)) 188 189 /****************************************************************************** 190 * Generic translation table APIs. 191 * Each API comes in 2 variants: 192 * - one that acts on the current translation context for this BL image 193 * - another that acts on the given translation context instead. This variant 194 * is named after the 1st version, with an additional '_ctx' suffix. 195 *****************************************************************************/ 196 197 /* 198 * Initialize translation tables from the current list of mmap regions. Calling 199 * this function marks the transition point after which static regions can no 200 * longer be added. 201 */ 202 void init_xlat_tables(void); 203 void init_xlat_tables_ctx(xlat_ctx_t *ctx); 204 205 /* 206 * Add a static region with defined base PA and base VA. This function can only 207 * be used before initializing the translation tables. The region cannot be 208 * removed afterwards. 209 */ 210 void mmap_add_region(unsigned long long base_pa, uintptr_t base_va, 211 size_t size, unsigned int attr); 212 void mmap_add_region_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm); 213 214 /* 215 * Add an array of static regions with defined base PA and base VA. This 216 * function can only be used before initializing the translation tables. The 217 * regions cannot be removed afterwards. 218 */ 219 void mmap_add(const mmap_region_t *mm); 220 void mmap_add_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm); 221 222 223 #if PLAT_XLAT_TABLES_DYNAMIC 224 /* 225 * Add a dynamic region with defined base PA and base VA. This type of region 226 * can be added and removed even after the translation tables are initialized. 227 * 228 * Returns: 229 * 0: Success. 230 * EINVAL: Invalid values were used as arguments. 231 * ERANGE: Memory limits were surpassed. 232 * ENOMEM: Not enough space in the mmap array or not enough free xlat tables. 233 * EPERM: It overlaps another region in an invalid way. 234 */ 235 int mmap_add_dynamic_region(unsigned long long base_pa, uintptr_t base_va, 236 size_t size, unsigned int attr); 237 int mmap_add_dynamic_region_ctx(xlat_ctx_t *ctx, mmap_region_t *mm); 238 239 /* 240 * Remove a region with the specified base VA and size. Only dynamic regions can 241 * be removed, and they can be removed even if the translation tables are 242 * initialized. 243 * 244 * Returns: 245 * 0: Success. 246 * EINVAL: The specified region wasn't found. 247 * EPERM: Trying to remove a static region. 248 */ 249 int mmap_remove_dynamic_region(uintptr_t base_va, size_t size); 250 int mmap_remove_dynamic_region_ctx(xlat_ctx_t *ctx, 251 uintptr_t base_va, 252 size_t size); 253 254 #endif /* PLAT_XLAT_TABLES_DYNAMIC */ 255 256 /* 257 * Change the memory attributes of the memory region starting from a given 258 * virtual address in a set of translation tables. 259 * 260 * This function can only be used after the translation tables have been 261 * initialized. 262 * 263 * The base address of the memory region must be aligned on a page boundary. 264 * The size of this memory region must be a multiple of a page size. 265 * The memory region must be already mapped by the given translation tables 266 * and it must be mapped at the granularity of a page. 267 * 268 * Return 0 on success, a negative value on error. 269 * 270 * In case of error, the memory attributes remain unchanged and this function 271 * has no effect. 272 * 273 * ctx 274 * Translation context to work on. 275 * base_va: 276 * Virtual address of the 1st page to change the attributes of. 277 * size: 278 * Size in bytes of the memory region. 279 * attr: 280 * New attributes of the page tables. The attributes that can be changed are 281 * data access (MT_RO/MT_RW), instruction access (MT_EXECUTE_NEVER/MT_EXECUTE) 282 * and user/privileged access (MT_USER/MT_PRIVILEGED) in the case of contexts 283 * that are used in the EL1&0 translation regime. Also, note that this 284 * function doesn't allow to remap a region as RW and executable, or to remap 285 * device memory as executable. 286 * 287 * NOTE: The caller of this function must be able to write to the translation 288 * tables, i.e. the memory where they are stored must be mapped with read-write 289 * access permissions. This function assumes it is the case. If this is not 290 * the case then this function might trigger a data abort exception. 291 * 292 * NOTE2: The caller is responsible for making sure that the targeted 293 * translation tables are not modified by any other code while this function is 294 * executing. 295 */ 296 int xlat_change_mem_attributes_ctx(const xlat_ctx_t *ctx, uintptr_t base_va, 297 size_t size, uint32_t attr); 298 int xlat_change_mem_attributes(uintptr_t base_va, size_t size, uint32_t attr); 299 300 /* 301 * Query the memory attributes of a memory page in a set of translation tables. 302 * 303 * Return 0 on success, a negative error code on error. 304 * On success, the attributes are stored into *attr. 305 * 306 * ctx 307 * Translation context to work on. 308 * base_va 309 * Virtual address of the page to get the attributes of. 310 * There are no alignment restrictions on this address. The attributes of the 311 * memory page it lies within are returned. 312 * attr 313 * Output parameter where to store the attributes of the targeted memory page. 314 */ 315 int xlat_get_mem_attributes_ctx(const xlat_ctx_t *ctx, uintptr_t base_va, 316 uint32_t *attr); 317 int xlat_get_mem_attributes(uintptr_t base_va, uint32_t *attr); 318 319 #endif /*__ASSEMBLY__*/ 320 #endif /* XLAT_TABLES_V2_H */ 321