xref: /rk3399_ARM-atf/include/lib/utils_def.h (revision a4ac07c7a553b00a48219823e543c96828c99186)
1 /*
2  * Copyright (c) 2016-2025, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2020, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #ifndef UTILS_DEF_H
9 #define UTILS_DEF_H
10 
11 #include <export/lib/utils_def_exp.h>
12 
13 /* Compute the number of elements in the given array */
14 #define ARRAY_SIZE(a)				\
15 	(sizeof(a) / sizeof((a)[0]))
16 
17 #define IS_POWER_OF_TWO(x)			\
18 	(((x) & ((x) - 1)) == 0)
19 
20 #define SIZE_FROM_LOG2_WORDS(n)		(U(4) << (n))
21 
22 #if defined(__LINKER__) || defined(__ASSEMBLER__)
23 #define BIT_32(nr)			(U(1) << (nr))
24 #define BIT_64(nr)			(ULL(1) << (nr))
25 #else
26 #define BIT_32(nr)			(((uint32_t)(1U)) << (nr))
27 #define BIT_64(nr)			(((uint64_t)(1ULL)) << (nr))
28 #endif
29 
30 #ifdef __aarch64__
31 #define BIT				BIT_64
32 #else
33 #define BIT				BIT_32
34 #endif
35 
36 /*
37  * Create a contiguous bitmask starting at bit position @low and ending at
38  * position @high. For example
39  * GENMASK_64(39, 21) gives us the 64bit vector 0x000000ffffe00000.
40  */
41 #if defined(__LINKER__) || defined(__ASSEMBLER__)
42 #define GENMASK_32(high, low) \
43 	(((0xFFFFFFFF) << (low)) & (0xFFFFFFFF >> (32 - 1 - (high))))
44 
45 #define GENMASK_64(high, low) \
46 	((~0 << (low)) & (~0 >> (64 - 1 - (high))))
47 #else
48 #define GENMASK_32(high, low) \
49 	((~UINT32_C(0) >> (32U - 1U - (high))) ^ ((BIT_32(low) - 1U)))
50 
51 #define GENMASK_64(high, low) \
52 	((~UINT64_C(0) >> (64U - 1U - (high))) ^ ((BIT_64(low) - 1U)))
53 #endif
54 
55 #ifdef __aarch64__
56 #define GENMASK				GENMASK_64
57 #else
58 #define GENMASK				GENMASK_32
59 #endif
60 
61 /*
62  * Similar to GENMASK_64 but uses a named register field to compute the mask.
63  * For a register field REG_FIELD, the macros REG_FIELD_WIDTH and
64  * REG_FIELD_SHIFT must be defined.
65  */
66 #define MASK(regfield)							\
67 	((~0ULL >> (64ULL - (regfield##_WIDTH))) << (regfield##_SHIFT))
68 
69 #define HI(addr)			(addr >> 32)
70 #define LO(addr)			(addr & 0xffffffff)
71 
72 #define HI_64(addr)			(addr >> 64)
73 #define LO_64(addr)			(addr & 0xffffffffffffffff)
74 
75 /**
76  * EXTRACT_FIELD - Extracts a specific bit field from a value.
77  *
78  * @reg:      The input value containing the field.
79 
80  * @regfield: A bitmask representing the field. For a register field REG_FIELD,
81  *            the macros REG_FIELD_WIDTH and REG_FIELD_SHIFT must be defined.
82 
83  * The result of this macro is the contents of the field right shifted to the
84  * least significant bit positions, with the rest being zero.
85  */
86 #define EXTRACT(regfield, reg) \
87 	(((reg) & MASK(regfield)) >> (regfield##_SHIFT))
88 
89 #define UPDATE_REG_FIELD(regfield, reg, val) \
90 	do { \
91 		(reg) &= ~(MASK(regfield)); \
92 		(reg) |= ((uint64_t)(val) << (regfield##_SHIFT)); \
93 	} while (0)
94 
95 /*
96  * This variant of div_round_up can be used in macro definition but should not
97  * be used in C code as the `div` parameter is evaluated twice.
98  */
99 #define DIV_ROUND_UP_2EVAL(n, d)	(((n) + (d) - 1) / (d))
100 
101 #define div_round_up(val, div) __extension__ ({	\
102 	__typeof__(div) _div = (div);		\
103 	((val) + _div - (__typeof__(div)) 1) / _div;		\
104 })
105 
106 #define MIN(x, y) __extension__ ({	\
107 	__typeof__(x) _x = (x);		\
108 	__typeof__(y) _y = (y);		\
109 	(void)(&_x == &_y);		\
110 	(_x < _y) ? _x : _y;		\
111 })
112 
113 #define MAX(x, y) __extension__ ({	\
114 	__typeof__(x) _x = (x);		\
115 	__typeof__(y) _y = (y);		\
116 	(void)(&_x == &_y);		\
117 	(_x > _y) ? _x : _y;		\
118 })
119 
120 #define CLAMP(x, min, max) __extension__ ({ \
121 	__typeof__(x) _x = (x); \
122 	__typeof__(min) _min = (min); \
123 	__typeof__(max) _max = (max); \
124 	(void)(&_x == &_min); \
125 	(void)(&_x == &_max); \
126 	((_x > _max) ? _max : ((_x < _min) ? _min : _x)); \
127 })
128 
129 /*
130  * The round_up() macro rounds up a value to the given boundary in a
131  * type-agnostic yet type-safe manner. The boundary must be a power of two.
132  * In other words, it computes the smallest multiple of boundary which is
133  * greater than or equal to value.
134  *
135  * round_down() is similar but rounds the value down instead.
136  */
137 #define round_boundary(value, boundary)		\
138 	((__typeof__(value))((boundary) - ((__typeof__(value))1U)))
139 
140 #define round_up(value, boundary)		\
141 	((((value) - ((__typeof__(value))1U)) | round_boundary(value, boundary)) + ((__typeof__(value))1U))
142 
143 #define round_down(value, boundary)		\
144 	((value) & ~round_boundary(value, boundary))
145 
146 /* add operation together with checking whether the operation overflowed
147  * The result is '*res',
148  * return 0 on success and 1 on overflow
149  */
150 #define add_overflow(a, b, res) __builtin_add_overflow((a), (b), (res))
151 
152 /*
153  * Round up a value to align with a given size and
154  * check whether overflow happens.
155  * The rounduped value is '*res',
156  * return 0 on success and 1 on overflow
157  */
158 #define round_up_overflow(v, size, res) (__extension__({ \
159 	typeof(res) __res = res; \
160 	typeof(*(__res)) __roundup_tmp = 0; \
161 	typeof(v) __roundup_mask = (typeof(v))(size) - 1; \
162 	\
163 	add_overflow((v), __roundup_mask, &__roundup_tmp) ? 1 : \
164 		(void)(*(__res) = __roundup_tmp & ~__roundup_mask), 0; \
165 }))
166 
167 /*
168  * Add a with b, then round up the result to align with a given size and
169  * check whether overflow happens.
170  * The rounduped value is '*res',
171  * return 0 on success and 1 on overflow
172  */
173 #define add_with_round_up_overflow(a, b, size, res) (__extension__({ \
174 	typeof(a) __a = (a); \
175 	typeof(__a) __add_res = 0; \
176 	\
177 	add_overflow((__a), (b), &__add_res) ? 1 : \
178 		round_up_overflow(__add_res, (size), (res)) ? 1 : 0; \
179 }))
180 
181 /**
182  * Helper macro to ensure a value lies on a given boundary.
183  */
184 #define is_aligned(value, boundary)			\
185 	(round_up((uintptr_t) value, boundary) ==	\
186 	 round_down((uintptr_t) value, boundary))
187 
188 /*
189  * Evaluates to 1 if (ptr + inc) overflows, 0 otherwise.
190  * Both arguments must be unsigned pointer values (i.e. uintptr_t).
191  */
192 #define check_uptr_overflow(_ptr, _inc)		\
193 	((_ptr) > (UINTPTR_MAX - (_inc)))
194 
195 /*
196  * Evaluates to 1 if (u32 + inc) overflows, 0 otherwise.
197  * Both arguments must be 32-bit unsigned integers (i.e. effectively uint32_t).
198  */
199 #define check_u32_overflow(_u32, _inc) \
200 	((_u32) > (UINT32_MAX - (_inc)))
201 
202 /* Register size of the current architecture. */
203 #ifdef __aarch64__
204 #define REGSZ		U(8)
205 #else
206 #define REGSZ		U(4)
207 #endif
208 
209 /*
210  * Test for the current architecture version to be at least the version
211  * expected.
212  */
213 #define ARM_ARCH_AT_LEAST(_maj, _min) \
214 	((ARM_ARCH_MAJOR > (_maj)) || \
215 	 ((ARM_ARCH_MAJOR == (_maj)) && (ARM_ARCH_MINOR >= (_min))))
216 
217 /*
218  * Import an assembly or linker symbol as a C expression with the specified
219  * type
220  */
221 #define IMPORT_SYM(type, sym, name) \
222 	extern char sym[];\
223 	static const __attribute__((unused)) type name = (type) sym;
224 
225 /*
226  * When the symbol is used to hold a pointer, its alignment can be asserted
227  * with this macro. For example, if there is a linker symbol that is going to
228  * be used as a 64-bit pointer, the value of the linker symbol must also be
229  * aligned to 64 bit. This macro makes sure this is the case.
230  */
231 #define ASSERT_SYM_PTR_ALIGN(sym) assert(((size_t)(sym) % __alignof__(*(sym))) == 0)
232 
233 #define COMPILER_BARRIER() __asm__ volatile ("" ::: "memory")
234 
235 /* Compiler builtin of GCC >= 9 and planned in llvm */
236 #ifdef __HAVE_SPECULATION_SAFE_VALUE
237 # define SPECULATION_SAFE_VALUE(var) __builtin_speculation_safe_value(var)
238 #else
239 # define SPECULATION_SAFE_VALUE(var) var
240 #endif
241 
242 /*
243  * Ticks elapsed in one second with a signal of 1 MHz
244  */
245 #define MHZ_TICKS_PER_SEC	U(1000000)
246 
247 /*
248  * Ticks elapsed in one second with a signal of 1 KHz
249  */
250 #define KHZ_TICKS_PER_SEC U(1000)
251 
252 #endif /* UTILS_DEF_H */
253