xref: /rk3399_ARM-atf/include/arch/aarch64/el3_common_macros.S (revision 1123a5e2f973dc9f0223467f4782f6b2df542620)
1/*
2 * Copyright (c) 2015-2020, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7#ifndef EL3_COMMON_MACROS_S
8#define EL3_COMMON_MACROS_S
9
10#include <arch.h>
11#include <asm_macros.S>
12#include <context.h>
13#include <lib/xlat_tables/xlat_tables_defs.h>
14
15	/*
16	 * Helper macro to initialise EL3 registers we care about.
17	 */
18	.macro el3_arch_init_common
19	/* ---------------------------------------------------------------------
20	 * SCTLR_EL3 has already been initialised - read current value before
21	 * modifying.
22	 *
23	 * SCTLR_EL3.I: Enable the instruction cache.
24	 *
25	 * SCTLR_EL3.SA: Enable Stack Alignment check. A SP alignment fault
26	 *  exception is generated if a load or store instruction executed at
27	 *  EL3 uses the SP as the base address and the SP is not aligned to a
28	 *  16-byte boundary.
29	 *
30	 * SCTLR_EL3.A: Enable Alignment fault checking. All instructions that
31	 *  load or store one or more registers have an alignment check that the
32	 *  address being accessed is aligned to the size of the data element(s)
33	 *  being accessed.
34	 * ---------------------------------------------------------------------
35	 */
36	mov	x1, #(SCTLR_I_BIT | SCTLR_A_BIT | SCTLR_SA_BIT)
37	mrs	x0, sctlr_el3
38	orr	x0, x0, x1
39	msr	sctlr_el3, x0
40	isb
41
42#ifdef IMAGE_BL31
43	/* ---------------------------------------------------------------------
44	 * Initialise the per-cpu cache pointer to the CPU.
45	 * This is done early to enable crash reporting to have access to crash
46	 * stack. Since crash reporting depends on cpu_data to report the
47	 * unhandled exception, not doing so can lead to recursive exceptions
48	 * due to a NULL TPIDR_EL3.
49	 * ---------------------------------------------------------------------
50	 */
51	bl	init_cpu_data_ptr
52#endif /* IMAGE_BL31 */
53
54	/* ---------------------------------------------------------------------
55	 * Initialise SCR_EL3, setting all fields rather than relying on hw.
56	 * All fields are architecturally UNKNOWN on reset. The following fields
57	 * do not change during the TF lifetime. The remaining fields are set to
58	 * zero here but are updated ahead of transitioning to a lower EL in the
59	 * function cm_init_context_common().
60	 *
61	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
62	 *  EL2, EL1 and EL0 are not trapped to EL3.
63	 *
64	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
65	 *  EL2, EL1 and EL0 are not trapped to EL3.
66	 *
67	 * SCR_EL3.SIF: Set to one to disable instruction fetches from
68	 *  Non-secure memory.
69	 *
70	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
71	 *  both Security states and both Execution states.
72	 *
73	 * SCR_EL3.EA: Set to one to route External Aborts and SError Interrupts
74	 *  to EL3 when executing at any EL.
75	 *
76	 * SCR_EL3.{API,APK}: For Armv8.3 pointer authentication feature,
77	 * disable traps to EL3 when accessing key registers or using pointer
78	 * authentication instructions from lower ELs.
79	 * ---------------------------------------------------------------------
80	 */
81	mov_imm	x0, ((SCR_RESET_VAL | SCR_EA_BIT | SCR_SIF_BIT) \
82			& ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT))
83#if CTX_INCLUDE_PAUTH_REGS
84	/*
85	 * If the pointer authentication registers are saved during world
86	 * switches, enable pointer authentication everywhere, as it is safe to
87	 * do so.
88	 */
89	orr	x0, x0, #(SCR_API_BIT | SCR_APK_BIT)
90#endif
91	msr	scr_el3, x0
92
93	/* ---------------------------------------------------------------------
94	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
95	 * Some fields are architecturally UNKNOWN on reset.
96	 *
97	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
98	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
99	 *  disabled from all ELs in Secure state.
100	 *
101	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
102	 *  privileged debug from S-EL1.
103	 *
104	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
105	 *  access to the powerdown debug registers do not trap to EL3.
106	 *
107	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
108	 *  debug registers, other than those registers that are controlled by
109	 *  MDCR_EL3.TDOSA.
110	 *
111	 * MDCR_EL3.TPM: Set to zero so that EL0, EL1, and EL2 System register
112	 *  accesses to all Performance Monitors registers do not trap to EL3.
113	 *
114	 * MDCR_EL3.SCCD: Set to one so that cycle counting by PMCCNTR_EL0 is
115	 *  prohibited in Secure state. This bit is RES0 in versions of the
116	 *  architecture earlier than ARMv8.5, setting it to 1 doesn't have any
117	 *  effect on them.
118	 *
119	 * MDCR_EL3.SPME: Set to zero so that event counting by the programmable
120	 *  counters PMEVCNTR<n>_EL0 is prohibited in Secure state. If ARMv8.2
121	 *  Debug is not implemented this bit does not have any effect on the
122	 *  counters unless there is support for the implementation defined
123	 *  authentication interface ExternalSecureNoninvasiveDebugEnabled().
124	 * ---------------------------------------------------------------------
125	 */
126	mov_imm	x0, ((MDCR_EL3_RESET_VAL | MDCR_SDD_BIT | \
127		      MDCR_SPD32(MDCR_SPD32_DISABLE) | MDCR_SCCD_BIT) & \
128		    ~(MDCR_SPME_BIT | MDCR_TDOSA_BIT | MDCR_TDA_BIT | \
129		      MDCR_TPM_BIT))
130
131	msr	mdcr_el3, x0
132
133	/* ---------------------------------------------------------------------
134	 * Initialise PMCR_EL0 setting all fields rather than relying
135	 * on hw. Some fields are architecturally UNKNOWN on reset.
136	 *
137	 * PMCR_EL0.LP: Set to one so that event counter overflow, that
138	 *  is recorded in PMOVSCLR_EL0[0-30], occurs on the increment
139	 *  that changes PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU
140	 *  is implemented. This bit is RES0 in versions of the architecture
141	 *  earlier than ARMv8.5, setting it to 1 doesn't have any effect
142	 *  on them.
143	 *
144	 * PMCR_EL0.LC: Set to one so that cycle counter overflow, that
145	 *  is recorded in PMOVSCLR_EL0[31], occurs on the increment
146	 *  that changes PMCCNTR_EL0[63] from 1 to 0.
147	 *
148	 * PMCR_EL0.DP: Set to one so that the cycle counter,
149	 *  PMCCNTR_EL0 does not count when event counting is prohibited.
150	 *
151	 * PMCR_EL0.X: Set to zero to disable export of events.
152	 *
153	 * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0
154	 *  counts on every clock cycle.
155	 * ---------------------------------------------------------------------
156	 */
157	mov_imm	x0, ((PMCR_EL0_RESET_VAL | PMCR_EL0_LP_BIT | \
158		      PMCR_EL0_LC_BIT | PMCR_EL0_DP_BIT) & \
159		    ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT))
160
161	msr	pmcr_el0, x0
162
163	/* ---------------------------------------------------------------------
164	 * Enable External Aborts and SError Interrupts now that the exception
165	 * vectors have been setup.
166	 * ---------------------------------------------------------------------
167	 */
168	msr	daifclr, #DAIF_ABT_BIT
169
170	/* ---------------------------------------------------------------------
171	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
172	 * All fields are architecturally UNKNOWN on reset.
173	 *
174	 * CPTR_EL3.TCPAC: Set to zero so that any accesses to CPACR_EL1,
175	 *  CPTR_EL2, CPACR, or HCPTR do not trap to EL3.
176	 *
177	 * CPTR_EL3.TTA: Set to zero so that System register accesses to the
178	 *  trace registers do not trap to EL3.
179	 *
180	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
181	 *  by Advanced SIMD, floating-point or SVE instructions (if implemented)
182	 *  do not trap to EL3.
183	 */
184	mov_imm x0, (CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TTA_BIT | TFP_BIT))
185	msr	cptr_el3, x0
186
187	/*
188	 * If Data Independent Timing (DIT) functionality is implemented,
189	 * always enable DIT in EL3
190	 */
191	mrs	x0, id_aa64pfr0_el1
192	ubfx	x0, x0, #ID_AA64PFR0_DIT_SHIFT, #ID_AA64PFR0_DIT_LENGTH
193	cmp	x0, #ID_AA64PFR0_DIT_SUPPORTED
194	bne	1f
195	mov	x0, #DIT_BIT
196	msr	DIT, x0
1971:
198	.endm
199
200/* -----------------------------------------------------------------------------
201 * This is the super set of actions that need to be performed during a cold boot
202 * or a warm boot in EL3. This code is shared by BL1 and BL31.
203 *
204 * This macro will always perform reset handling, architectural initialisations
205 * and stack setup. The rest of the actions are optional because they might not
206 * be needed, depending on the context in which this macro is called. This is
207 * why this macro is parameterised ; each parameter allows to enable/disable
208 * some actions.
209 *
210 *  _init_sctlr:
211 *	Whether the macro needs to initialise SCTLR_EL3, including configuring
212 *      the endianness of data accesses.
213 *
214 *  _warm_boot_mailbox:
215 *	Whether the macro needs to detect the type of boot (cold/warm). The
216 *	detection is based on the platform entrypoint address : if it is zero
217 *	then it is a cold boot, otherwise it is a warm boot. In the latter case,
218 *	this macro jumps on the platform entrypoint address.
219 *
220 *  _secondary_cold_boot:
221 *	Whether the macro needs to identify the CPU that is calling it: primary
222 *	CPU or secondary CPU. The primary CPU will be allowed to carry on with
223 *	the platform initialisations, while the secondaries will be put in a
224 *	platform-specific state in the meantime.
225 *
226 *	If the caller knows this macro will only be called by the primary CPU
227 *	then this parameter can be defined to 0 to skip this step.
228 *
229 * _init_memory:
230 *	Whether the macro needs to initialise the memory.
231 *
232 * _init_c_runtime:
233 *	Whether the macro needs to initialise the C runtime environment.
234 *
235 * _exception_vectors:
236 *	Address of the exception vectors to program in the VBAR_EL3 register.
237 *
238 * _pie_fixup_size:
239 *	Size of memory region to fixup Global Descriptor Table (GDT).
240 *
241 *	A non-zero value is expected when firmware needs GDT to be fixed-up.
242 *
243 * -----------------------------------------------------------------------------
244 */
245	.macro el3_entrypoint_common					\
246		_init_sctlr, _warm_boot_mailbox, _secondary_cold_boot,	\
247		_init_memory, _init_c_runtime, _exception_vectors,	\
248		_pie_fixup_size
249
250	.if \_init_sctlr
251		/* -------------------------------------------------------------
252		 * This is the initialisation of SCTLR_EL3 and so must ensure
253		 * that all fields are explicitly set rather than relying on hw.
254		 * Some fields reset to an IMPLEMENTATION DEFINED value and
255		 * others are architecturally UNKNOWN on reset.
256		 *
257		 * SCTLR.EE: Set the CPU endianness before doing anything that
258		 *  might involve memory reads or writes. Set to zero to select
259		 *  Little Endian.
260		 *
261		 * SCTLR_EL3.WXN: For the EL3 translation regime, this field can
262		 *  force all memory regions that are writeable to be treated as
263		 *  XN (Execute-never). Set to zero so that this control has no
264		 *  effect on memory access permissions.
265		 *
266		 * SCTLR_EL3.SA: Set to zero to disable Stack Alignment check.
267		 *
268		 * SCTLR_EL3.A: Set to zero to disable Alignment fault checking.
269		 *
270		 * SCTLR.DSSBS: Set to zero to disable speculation store bypass
271		 *  safe behaviour upon exception entry to EL3.
272		 * -------------------------------------------------------------
273		 */
274		mov_imm	x0, (SCTLR_RESET_VAL & ~(SCTLR_EE_BIT | SCTLR_WXN_BIT \
275				| SCTLR_SA_BIT | SCTLR_A_BIT | SCTLR_DSSBS_BIT))
276		msr	sctlr_el3, x0
277		isb
278	.endif /* _init_sctlr */
279
280	.if \_warm_boot_mailbox
281		/* -------------------------------------------------------------
282		 * This code will be executed for both warm and cold resets.
283		 * Now is the time to distinguish between the two.
284		 * Query the platform entrypoint address and if it is not zero
285		 * then it means it is a warm boot so jump to this address.
286		 * -------------------------------------------------------------
287		 */
288		bl	plat_get_my_entrypoint
289		cbz	x0, do_cold_boot
290		br	x0
291
292	do_cold_boot:
293	.endif /* _warm_boot_mailbox */
294
295	.if \_pie_fixup_size
296#if ENABLE_PIE
297		/*
298		 * ------------------------------------------------------------
299		 * If PIE is enabled fixup the Global descriptor Table only
300		 * once during primary core cold boot path.
301		 *
302		 * Compile time base address, required for fixup, is calculated
303		 * using "pie_fixup" label present within first page.
304		 * ------------------------------------------------------------
305		 */
306	pie_fixup:
307		ldr	x0, =pie_fixup
308		and	x0, x0, #~(PAGE_SIZE - 1)
309		mov_imm	x1, \_pie_fixup_size
310		add	x1, x1, x0
311		bl	fixup_gdt_reloc
312#endif /* ENABLE_PIE */
313	.endif /* _pie_fixup_size */
314
315	/* ---------------------------------------------------------------------
316	 * Set the exception vectors.
317	 * ---------------------------------------------------------------------
318	 */
319	adr	x0, \_exception_vectors
320	msr	vbar_el3, x0
321	isb
322
323	/* ---------------------------------------------------------------------
324	 * It is a cold boot.
325	 * Perform any processor specific actions upon reset e.g. cache, TLB
326	 * invalidations etc.
327	 * ---------------------------------------------------------------------
328	 */
329	bl	reset_handler
330
331	el3_arch_init_common
332
333	.if \_secondary_cold_boot
334		/* -------------------------------------------------------------
335		 * Check if this is a primary or secondary CPU cold boot.
336		 * The primary CPU will set up the platform while the
337		 * secondaries are placed in a platform-specific state until the
338		 * primary CPU performs the necessary actions to bring them out
339		 * of that state and allows entry into the OS.
340		 * -------------------------------------------------------------
341		 */
342		bl	plat_is_my_cpu_primary
343		cbnz	w0, do_primary_cold_boot
344
345		/* This is a cold boot on a secondary CPU */
346		bl	plat_secondary_cold_boot_setup
347		/* plat_secondary_cold_boot_setup() is not supposed to return */
348		bl	el3_panic
349
350	do_primary_cold_boot:
351	.endif /* _secondary_cold_boot */
352
353	/* ---------------------------------------------------------------------
354	 * Initialize memory now. Secondary CPU initialization won't get to this
355	 * point.
356	 * ---------------------------------------------------------------------
357	 */
358
359	.if \_init_memory
360		bl	platform_mem_init
361	.endif /* _init_memory */
362
363	/* ---------------------------------------------------------------------
364	 * Init C runtime environment:
365	 *   - Zero-initialise the NOBITS sections. There are 2 of them:
366	 *       - the .bss section;
367	 *       - the coherent memory section (if any).
368	 *   - Relocate the data section from ROM to RAM, if required.
369	 * ---------------------------------------------------------------------
370	 */
371	.if \_init_c_runtime
372#if defined(IMAGE_BL31) || (defined(IMAGE_BL2) && BL2_AT_EL3 && BL2_INV_DCACHE)
373		/* -------------------------------------------------------------
374		 * Invalidate the RW memory used by the BL31 image. This
375		 * includes the data and NOBITS sections. This is done to
376		 * safeguard against possible corruption of this memory by
377		 * dirty cache lines in a system cache as a result of use by
378		 * an earlier boot loader stage.
379		 * -------------------------------------------------------------
380		 */
381		adrp	x0, __RW_START__
382		add	x0, x0, :lo12:__RW_START__
383		adrp	x1, __RW_END__
384		add	x1, x1, :lo12:__RW_END__
385		sub	x1, x1, x0
386		bl	inv_dcache_range
387#if defined(IMAGE_BL31) && SEPARATE_NOBITS_REGION
388		adrp	x0, __NOBITS_START__
389		add	x0, x0, :lo12:__NOBITS_START__
390		adrp	x1, __NOBITS_END__
391		add	x1, x1, :lo12:__NOBITS_END__
392		sub	x1, x1, x0
393		bl	inv_dcache_range
394#endif
395#endif
396		adrp	x0, __BSS_START__
397		add	x0, x0, :lo12:__BSS_START__
398
399		adrp	x1, __BSS_END__
400		add	x1, x1, :lo12:__BSS_END__
401		sub	x1, x1, x0
402		bl	zeromem
403
404#if USE_COHERENT_MEM
405		adrp	x0, __COHERENT_RAM_START__
406		add	x0, x0, :lo12:__COHERENT_RAM_START__
407		adrp	x1, __COHERENT_RAM_END_UNALIGNED__
408		add	x1, x1, :lo12: __COHERENT_RAM_END_UNALIGNED__
409		sub	x1, x1, x0
410		bl	zeromem
411#endif
412
413#if defined(IMAGE_BL1) || (defined(IMAGE_BL2) && BL2_AT_EL3 && BL2_IN_XIP_MEM)
414		adrp	x0, __DATA_RAM_START__
415		add	x0, x0, :lo12:__DATA_RAM_START__
416		adrp	x1, __DATA_ROM_START__
417		add	x1, x1, :lo12:__DATA_ROM_START__
418		adrp	x2, __DATA_RAM_END__
419		add	x2, x2, :lo12:__DATA_RAM_END__
420		sub	x2, x2, x0
421		bl	memcpy16
422#endif
423	.endif /* _init_c_runtime */
424
425	/* ---------------------------------------------------------------------
426	 * Use SP_EL0 for the C runtime stack.
427	 * ---------------------------------------------------------------------
428	 */
429	msr	spsel, #0
430
431	/* ---------------------------------------------------------------------
432	 * Allocate a stack whose memory will be marked as Normal-IS-WBWA when
433	 * the MMU is enabled. There is no risk of reading stale stack memory
434	 * after enabling the MMU as only the primary CPU is running at the
435	 * moment.
436	 * ---------------------------------------------------------------------
437	 */
438	bl	plat_set_my_stack
439
440#if STACK_PROTECTOR_ENABLED
441	.if \_init_c_runtime
442	bl	update_stack_protector_canary
443	.endif /* _init_c_runtime */
444#endif
445	.endm
446
447	.macro	apply_at_speculative_wa
448#if ERRATA_SPECULATIVE_AT
449	/*
450	 * Explicitly save x30 so as to free up a register and to enable
451	 * branching and also, save x29 which will be used in the called
452	 * function
453	 */
454	stp	x29, x30, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X29]
455	bl	save_and_update_ptw_el1_sys_regs
456	ldp	x29, x30, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X29]
457#endif
458	.endm
459
460	.macro	restore_ptw_el1_sys_regs
461#if ERRATA_SPECULATIVE_AT
462	/* -----------------------------------------------------------
463	 * In case of ERRATA_SPECULATIVE_AT, must follow below order
464	 * to ensure that page table walk is not enabled until
465	 * restoration of all EL1 system registers. TCR_EL1 register
466	 * should be updated at the end which restores previous page
467	 * table walk setting of stage1 i.e.(TCR_EL1.EPDx) bits. ISB
468	 * ensures that CPU does below steps in order.
469	 *
470	 * 1. Ensure all other system registers are written before
471	 *    updating SCTLR_EL1 using ISB.
472	 * 2. Restore SCTLR_EL1 register.
473	 * 3. Ensure SCTLR_EL1 written successfully using ISB.
474	 * 4. Restore TCR_EL1 register.
475	 * -----------------------------------------------------------
476	 */
477	isb
478	ldp	x28, x29, [sp, #CTX_EL1_SYSREGS_OFFSET + CTX_SCTLR_EL1]
479	msr	sctlr_el1, x28
480	isb
481	msr	tcr_el1, x29
482#endif
483	.endm
484
485#endif /* EL3_COMMON_MACROS_S */
486