xref: /rk3399_ARM-atf/include/arch/aarch32/el3_common_macros.S (revision ed4fc6f026999daad19b4bb47e6b6626078206c2)
1/*
2 * Copyright (c) 2016-2019, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7#ifndef EL3_COMMON_MACROS_S
8#define EL3_COMMON_MACROS_S
9
10#include <arch.h>
11#include <asm_macros.S>
12#include <assert_macros.S>
13
14	/*
15	 * Helper macro to initialise EL3 registers we care about.
16	 */
17	.macro el3_arch_init_common
18	/* ---------------------------------------------------------------------
19	 * SCTLR has already been initialised - read current value before
20	 * modifying.
21	 *
22	 * SCTLR.I: Enable the instruction cache.
23	 *
24	 * SCTLR.A: Enable Alignment fault checking. All instructions that load
25	 *  or store one or more registers have an alignment check that the
26	 *  address being accessed is aligned to the size of the data element(s)
27	 *  being accessed.
28	 * ---------------------------------------------------------------------
29	 */
30	ldr	r1, =(SCTLR_I_BIT | SCTLR_A_BIT)
31	ldcopr	r0, SCTLR
32	orr	r0, r0, r1
33	stcopr	r0, SCTLR
34	isb
35
36	/* ---------------------------------------------------------------------
37	 * Initialise SCR, setting all fields rather than relying on the hw.
38	 *
39	 * SCR.SIF: Enabled so that Secure state instruction fetches from
40	 *  Non-secure memory are not permitted.
41	 * ---------------------------------------------------------------------
42	 */
43	ldr	r0, =(SCR_RESET_VAL | SCR_SIF_BIT)
44	stcopr	r0, SCR
45
46	/* -----------------------------------------------------
47	 * Enable the Asynchronous data abort now that the
48	 * exception vectors have been setup.
49	 * -----------------------------------------------------
50	 */
51	cpsie   a
52	isb
53
54	/* ---------------------------------------------------------------------
55	 * Initialise NSACR, setting all the fields, except for the
56	 * IMPLEMENTATION DEFINED field, rather than relying on the hw. Some
57	 * fields are architecturally UNKNOWN on reset.
58	 *
59	 * NSACR_ENABLE_FP_ACCESS: Represents NSACR.cp11 and NSACR.cp10. The
60	 *  cp11 field is ignored, but is set to same value as cp10. The cp10
61	 *  field is set to allow access to Advanced SIMD and floating point
62	 *  features from both Security states.
63	 * ---------------------------------------------------------------------
64	 */
65	ldcopr	r0, NSACR
66	and	r0, r0, #NSACR_IMP_DEF_MASK
67	orr	r0, r0, #(NSACR_RESET_VAL | NSACR_ENABLE_FP_ACCESS)
68	stcopr	r0, NSACR
69	isb
70
71	/* ---------------------------------------------------------------------
72	 * Initialise CPACR, setting all fields rather than relying on hw. Some
73	 * fields are architecturally UNKNOWN on reset.
74	 *
75	 * CPACR.TRCDIS: Trap control for PL0 and PL1 System register accesses
76	 *  to trace registers. Set to zero to allow access.
77	 *
78	 * CPACR_ENABLE_FP_ACCESS: Represents CPACR.cp11 and CPACR.cp10. The
79	 *  cp11 field is ignored, but is set to same value as cp10. The cp10
80	 *  field is set to allow full access from PL0 and PL1 to floating-point
81	 *  and Advanced SIMD features.
82	 * ---------------------------------------------------------------------
83	 */
84	ldr	r0, =((CPACR_RESET_VAL | CPACR_ENABLE_FP_ACCESS) & ~(TRCDIS_BIT))
85	stcopr	r0, CPACR
86	isb
87
88	/* ---------------------------------------------------------------------
89	 * Initialise FPEXC, setting all fields rather than relying on hw. Some
90	 * fields are architecturally UNKNOWN on reset and are set to zero
91	 * except for field(s) listed below.
92	 *
93	 * FPEXC.EN: Enable access to Advanced SIMD and floating point features
94	 *  from all exception levels.
95	 * ---------------------------------------------------------------------
96	 */
97	ldr	r0, =(FPEXC_RESET_VAL | FPEXC_EN_BIT)
98	vmsr	FPEXC, r0
99	isb
100
101#if (ARM_ARCH_MAJOR > 7)
102	/* ---------------------------------------------------------------------
103	 * Initialise SDCR, setting all the fields rather than relying on hw.
104	 *
105	 * SDCR.SPD: Disable AArch32 privileged debug. Debug exceptions from
106	 *  Secure EL1 are disabled.
107	 *
108	 * SDCR: Set to one so that cycle counting by PMCCNTR is prohibited in
109	 *  Secure state. This bit is RES0 in versions of the architecture
110	 *  earlier than ARMv8.5, setting it to 1 doesn't have any effect on
111	 *  them.
112	 * ---------------------------------------------------------------------
113	 */
114	ldr	r0, =(SDCR_RESET_VAL | SDCR_SPD(SDCR_SPD_DISABLE) | SDCR_SCCD_BIT)
115	stcopr	r0, SDCR
116#endif
117
118	/*
119	 * If Data Independent Timing (DIT) functionality is implemented,
120	 * always enable DIT in EL3
121	 */
122	ldcopr	r0, ID_PFR0
123	and	r0, r0, #(ID_PFR0_DIT_MASK << ID_PFR0_DIT_SHIFT)
124	cmp	r0, #ID_PFR0_DIT_SUPPORTED
125	bne	1f
126	mrs	r0, cpsr
127	orr	r0, r0, #CPSR_DIT_BIT
128	msr	cpsr_cxsf, r0
1291:
130	.endm
131
132/* -----------------------------------------------------------------------------
133 * This is the super set of actions that need to be performed during a cold boot
134 * or a warm boot in EL3. This code is shared by BL1 and BL32 (SP_MIN).
135 *
136 * This macro will always perform reset handling, architectural initialisations
137 * and stack setup. The rest of the actions are optional because they might not
138 * be needed, depending on the context in which this macro is called. This is
139 * why this macro is parameterised ; each parameter allows to enable/disable
140 * some actions.
141 *
142 *  _init_sctlr:
143 *	Whether the macro needs to initialise the SCTLR register including
144 *	configuring the endianness of data accesses.
145 *
146 *  _warm_boot_mailbox:
147 *	Whether the macro needs to detect the type of boot (cold/warm). The
148 *	detection is based on the platform entrypoint address : if it is zero
149 *	then it is a cold boot, otherwise it is a warm boot. In the latter case,
150 *	this macro jumps on the platform entrypoint address.
151 *
152 *  _secondary_cold_boot:
153 *	Whether the macro needs to identify the CPU that is calling it: primary
154 *	CPU or secondary CPU. The primary CPU will be allowed to carry on with
155 *	the platform initialisations, while the secondaries will be put in a
156 *	platform-specific state in the meantime.
157 *
158 *	If the caller knows this macro will only be called by the primary CPU
159 *	then this parameter can be defined to 0 to skip this step.
160 *
161 * _init_memory:
162 *	Whether the macro needs to initialise the memory.
163 *
164 * _init_c_runtime:
165 *	Whether the macro needs to initialise the C runtime environment.
166 *
167 * _exception_vectors:
168 *	Address of the exception vectors to program in the VBAR_EL3 register.
169 * -----------------------------------------------------------------------------
170 */
171	.macro el3_entrypoint_common					\
172		_init_sctlr, _warm_boot_mailbox, _secondary_cold_boot,	\
173		_init_memory, _init_c_runtime, _exception_vectors
174
175	/* Make sure we are in Secure Mode */
176#if ENABLE_ASSERTIONS
177	ldcopr	r0, SCR
178	tst	r0, #SCR_NS_BIT
179	ASM_ASSERT(eq)
180#endif
181
182	.if \_init_sctlr
183		/* -------------------------------------------------------------
184		 * This is the initialisation of SCTLR and so must ensure that
185		 * all fields are explicitly set rather than relying on hw. Some
186		 * fields reset to an IMPLEMENTATION DEFINED value.
187		 *
188		 * SCTLR.TE: Set to zero so that exceptions to an Exception
189		 *  Level executing at PL1 are taken to A32 state.
190		 *
191		 * SCTLR.EE: Set the CPU endianness before doing anything that
192		 *  might involve memory reads or writes. Set to zero to select
193		 *  Little Endian.
194		 *
195		 * SCTLR.V: Set to zero to select the normal exception vectors
196		 *  with base address held in VBAR.
197		 *
198		 * SCTLR.DSSBS: Set to zero to disable speculation store bypass
199		 *  safe behaviour upon exception entry to EL3.
200		 * -------------------------------------------------------------
201		 */
202		ldr     r0, =(SCTLR_RESET_VAL & ~(SCTLR_TE_BIT | SCTLR_EE_BIT | \
203				SCTLR_V_BIT | SCTLR_DSSBS_BIT))
204		stcopr	r0, SCTLR
205		isb
206	.endif /* _init_sctlr */
207
208	/* Switch to monitor mode */
209	cps	#MODE32_mon
210	isb
211
212	.if \_warm_boot_mailbox
213		/* -------------------------------------------------------------
214		 * This code will be executed for both warm and cold resets.
215		 * Now is the time to distinguish between the two.
216		 * Query the platform entrypoint address and if it is not zero
217		 * then it means it is a warm boot so jump to this address.
218		 * -------------------------------------------------------------
219		 */
220		bl	plat_get_my_entrypoint
221		cmp	r0, #0
222		bxne	r0
223	.endif /* _warm_boot_mailbox */
224
225	/* ---------------------------------------------------------------------
226	 * Set the exception vectors (VBAR/MVBAR).
227	 * ---------------------------------------------------------------------
228	 */
229	ldr	r0, =\_exception_vectors
230	stcopr	r0, VBAR
231	stcopr	r0, MVBAR
232	isb
233
234	/* ---------------------------------------------------------------------
235	 * It is a cold boot.
236	 * Perform any processor specific actions upon reset e.g. cache, TLB
237	 * invalidations etc.
238	 * ---------------------------------------------------------------------
239	 */
240	bl	reset_handler
241
242	el3_arch_init_common
243
244	.if \_secondary_cold_boot
245		/* -------------------------------------------------------------
246		 * Check if this is a primary or secondary CPU cold boot.
247		 * The primary CPU will set up the platform while the
248		 * secondaries are placed in a platform-specific state until the
249		 * primary CPU performs the necessary actions to bring them out
250		 * of that state and allows entry into the OS.
251		 * -------------------------------------------------------------
252		 */
253		bl	plat_is_my_cpu_primary
254		cmp	r0, #0
255		bne	do_primary_cold_boot
256
257		/* This is a cold boot on a secondary CPU */
258		bl	plat_secondary_cold_boot_setup
259		/* plat_secondary_cold_boot_setup() is not supposed to return */
260		no_ret	plat_panic_handler
261
262	do_primary_cold_boot:
263	.endif /* _secondary_cold_boot */
264
265	/* ---------------------------------------------------------------------
266	 * Initialize memory now. Secondary CPU initialization won't get to this
267	 * point.
268	 * ---------------------------------------------------------------------
269	 */
270
271	.if \_init_memory
272		bl	platform_mem_init
273	.endif /* _init_memory */
274
275	/* ---------------------------------------------------------------------
276	 * Init C runtime environment:
277	 *   - Zero-initialise the NOBITS sections. There are 2 of them:
278	 *       - the .bss section;
279	 *       - the coherent memory section (if any).
280	 *   - Relocate the data section from ROM to RAM, if required.
281	 * ---------------------------------------------------------------------
282	 */
283	.if \_init_c_runtime
284#if defined(IMAGE_BL32) || (defined(IMAGE_BL2) && BL2_AT_EL3)
285		/* -----------------------------------------------------------------
286		 * Invalidate the RW memory used by the image. This
287		 * includes the data and NOBITS sections. This is done to
288		 * safeguard against possible corruption of this memory by
289		 * dirty cache lines in a system cache as a result of use by
290		 * an earlier boot loader stage.
291		 * -----------------------------------------------------------------
292		 */
293		ldr	r0, =__RW_START__
294		ldr	r1, =__RW_END__
295		sub	r1, r1, r0
296		bl	inv_dcache_range
297#endif
298
299		ldr	r0, =__BSS_START__
300		ldr	r1, =__BSS_SIZE__
301		bl	zeromem
302
303#if USE_COHERENT_MEM
304		ldr	r0, =__COHERENT_RAM_START__
305		ldr	r1, =__COHERENT_RAM_UNALIGNED_SIZE__
306		bl	zeromem
307#endif
308
309#ifdef IMAGE_BL1
310		/* -----------------------------------------------------
311		 * Copy data from ROM to RAM.
312		 * -----------------------------------------------------
313		 */
314		ldr	r0, =__DATA_RAM_START__
315		ldr	r1, =__DATA_ROM_START__
316		ldr	r2, =__DATA_SIZE__
317		bl	memcpy4
318#endif
319	.endif /* _init_c_runtime */
320
321	/* ---------------------------------------------------------------------
322	 * Allocate a stack whose memory will be marked as Normal-IS-WBWA when
323	 * the MMU is enabled. There is no risk of reading stale stack memory
324	 * after enabling the MMU as only the primary CPU is running at the
325	 * moment.
326	 * ---------------------------------------------------------------------
327	 */
328	bl	plat_set_my_stack
329
330#if STACK_PROTECTOR_ENABLED
331	.if \_init_c_runtime
332	bl	update_stack_protector_canary
333	.endif /* _init_c_runtime */
334#endif
335	.endm
336
337#endif /* EL3_COMMON_MACROS_S */
338