xref: /rk3399_ARM-atf/include/arch/aarch32/el3_common_macros.S (revision 45a95e3908591634a3fbfd5490ec1ec695f89394)
1/*
2 * Copyright (c) 2016-2018, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7#ifndef EL3_COMMON_MACROS_S
8#define EL3_COMMON_MACROS_S
9
10#include <arch.h>
11#include <asm_macros.S>
12#include <assert_macros.S>
13
14	/*
15	 * Helper macro to initialise EL3 registers we care about.
16	 */
17	.macro el3_arch_init_common
18	/* ---------------------------------------------------------------------
19	 * SCTLR has already been initialised - read current value before
20	 * modifying.
21	 *
22	 * SCTLR.I: Enable the instruction cache.
23	 *
24	 * SCTLR.A: Enable Alignment fault checking. All instructions that load
25	 *  or store one or more registers have an alignment check that the
26	 *  address being accessed is aligned to the size of the data element(s)
27	 *  being accessed.
28	 * ---------------------------------------------------------------------
29	 */
30	ldr	r1, =(SCTLR_I_BIT | SCTLR_A_BIT)
31	ldcopr	r0, SCTLR
32	orr	r0, r0, r1
33	stcopr	r0, SCTLR
34	isb
35
36	/* ---------------------------------------------------------------------
37	 * Initialise SCR, setting all fields rather than relying on the hw.
38	 *
39	 * SCR.SIF: Enabled so that Secure state instruction fetches from
40	 *  Non-secure memory are not permitted.
41	 * ---------------------------------------------------------------------
42	 */
43	ldr	r0, =(SCR_RESET_VAL | SCR_SIF_BIT)
44	stcopr	r0, SCR
45
46	/* -----------------------------------------------------
47	 * Enable the Asynchronous data abort now that the
48	 * exception vectors have been setup.
49	 * -----------------------------------------------------
50	 */
51	cpsie   a
52	isb
53
54	/* ---------------------------------------------------------------------
55	 * Initialise NSACR, setting all the fields, except for the
56	 * IMPLEMENTATION DEFINED field, rather than relying on the hw. Some
57	 * fields are architecturally UNKNOWN on reset.
58	 *
59	 * NSACR_ENABLE_FP_ACCESS: Represents NSACR.cp11 and NSACR.cp10. The
60	 *  cp11 field is ignored, but is set to same value as cp10. The cp10
61	 *  field is set to allow access to Advanced SIMD and floating point
62	 *  features from both Security states.
63	 * ---------------------------------------------------------------------
64	 */
65	ldcopr	r0, NSACR
66	and	r0, r0, #NSACR_IMP_DEF_MASK
67	orr	r0, r0, #(NSACR_RESET_VAL | NSACR_ENABLE_FP_ACCESS)
68	stcopr	r0, NSACR
69	isb
70
71	/* ---------------------------------------------------------------------
72	 * Initialise CPACR, setting all fields rather than relying on hw. Some
73	 * fields are architecturally UNKNOWN on reset.
74	 *
75	 * CPACR.TRCDIS: Trap control for PL0 and PL1 System register accesses
76	 *  to trace registers. Set to zero to allow access.
77	 *
78	 * CPACR_ENABLE_FP_ACCESS: Represents CPACR.cp11 and CPACR.cp10. The
79	 *  cp11 field is ignored, but is set to same value as cp10. The cp10
80	 *  field is set to allow full access from PL0 and PL1 to floating-point
81	 *  and Advanced SIMD features.
82	 * ---------------------------------------------------------------------
83	 */
84	ldr	r0, =((CPACR_RESET_VAL | CPACR_ENABLE_FP_ACCESS) & ~(TRCDIS_BIT))
85	stcopr	r0, CPACR
86	isb
87
88	/* ---------------------------------------------------------------------
89	 * Initialise FPEXC, setting all fields rather than relying on hw. Some
90	 * fields are architecturally UNKNOWN on reset and are set to zero
91	 * except for field(s) listed below.
92	 *
93	 * FPEXC.EN: Enable access to Advanced SIMD and floating point features
94	 *  from all exception levels.
95	 * ---------------------------------------------------------------------
96	 */
97#if (ARM_ARCH_MAJOR > 7) || defined(ARMV7_SUPPORTS_VFP)
98	ldr	r0, =(FPEXC_RESET_VAL | FPEXC_EN_BIT)
99	vmsr	FPEXC, r0
100	isb
101#endif
102
103#if (ARM_ARCH_MAJOR > 7)
104	/* ---------------------------------------------------------------------
105	 * Initialise SDCR, setting all the fields rather than relying on hw.
106	 *
107	 * SDCR.SPD: Disable AArch32 privileged debug. Debug exceptions from
108	 * Secure EL1 are disabled.
109	 * ---------------------------------------------------------------------
110	 */
111	ldr	r0, =(SDCR_RESET_VAL | SDCR_SPD(SDCR_SPD_DISABLE))
112	stcopr	r0, SDCR
113#endif
114
115	/*
116	 * If Data Independent Timing (DIT) functionality is implemented,
117	 * always enable DIT in EL3
118	 */
119	ldcopr	r0, ID_PFR0
120	and	r0, r0, #(ID_PFR0_DIT_MASK << ID_PFR0_DIT_SHIFT)
121	cmp	r0, #ID_PFR0_DIT_SUPPORTED
122	bne	1f
123	mrs	r0, cpsr
124	orr	r0, r0, #CPSR_DIT_BIT
125	msr	cpsr_cxsf, r0
1261:
127	.endm
128
129/* -----------------------------------------------------------------------------
130 * This is the super set of actions that need to be performed during a cold boot
131 * or a warm boot in EL3. This code is shared by BL1 and BL32 (SP_MIN).
132 *
133 * This macro will always perform reset handling, architectural initialisations
134 * and stack setup. The rest of the actions are optional because they might not
135 * be needed, depending on the context in which this macro is called. This is
136 * why this macro is parameterised ; each parameter allows to enable/disable
137 * some actions.
138 *
139 *  _init_sctlr:
140 *	Whether the macro needs to initialise the SCTLR register including
141 *	configuring the endianness of data accesses.
142 *
143 *  _warm_boot_mailbox:
144 *	Whether the macro needs to detect the type of boot (cold/warm). The
145 *	detection is based on the platform entrypoint address : if it is zero
146 *	then it is a cold boot, otherwise it is a warm boot. In the latter case,
147 *	this macro jumps on the platform entrypoint address.
148 *
149 *  _secondary_cold_boot:
150 *	Whether the macro needs to identify the CPU that is calling it: primary
151 *	CPU or secondary CPU. The primary CPU will be allowed to carry on with
152 *	the platform initialisations, while the secondaries will be put in a
153 *	platform-specific state in the meantime.
154 *
155 *	If the caller knows this macro will only be called by the primary CPU
156 *	then this parameter can be defined to 0 to skip this step.
157 *
158 * _init_memory:
159 *	Whether the macro needs to initialise the memory.
160 *
161 * _init_c_runtime:
162 *	Whether the macro needs to initialise the C runtime environment.
163 *
164 * _exception_vectors:
165 *	Address of the exception vectors to program in the VBAR_EL3 register.
166 * -----------------------------------------------------------------------------
167 */
168	.macro el3_entrypoint_common					\
169		_init_sctlr, _warm_boot_mailbox, _secondary_cold_boot,	\
170		_init_memory, _init_c_runtime, _exception_vectors
171
172	/* Make sure we are in Secure Mode */
173#if ENABLE_ASSERTIONS
174	ldcopr	r0, SCR
175	tst	r0, #SCR_NS_BIT
176	ASM_ASSERT(eq)
177#endif
178
179	.if \_init_sctlr
180		/* -------------------------------------------------------------
181		 * This is the initialisation of SCTLR and so must ensure that
182		 * all fields are explicitly set rather than relying on hw. Some
183		 * fields reset to an IMPLEMENTATION DEFINED value.
184		 *
185		 * SCTLR.TE: Set to zero so that exceptions to an Exception
186		 *  Level executing at PL1 are taken to A32 state.
187		 *
188		 * SCTLR.EE: Set the CPU endianness before doing anything that
189		 *  might involve memory reads or writes. Set to zero to select
190		 *  Little Endian.
191		 *
192		 * SCTLR.V: Set to zero to select the normal exception vectors
193		 *  with base address held in VBAR.
194		 *
195		 * SCTLR.DSSBS: Set to zero to disable speculation store bypass
196		 *  safe behaviour upon exception entry to EL3.
197		 * -------------------------------------------------------------
198		 */
199		ldr     r0, =(SCTLR_RESET_VAL & ~(SCTLR_TE_BIT | SCTLR_EE_BIT | \
200				SCTLR_V_BIT | SCTLR_DSSBS_BIT))
201		stcopr	r0, SCTLR
202		isb
203	.endif /* _init_sctlr */
204
205	/* Switch to monitor mode */
206	cps	#MODE32_mon
207	isb
208
209	.if \_warm_boot_mailbox
210		/* -------------------------------------------------------------
211		 * This code will be executed for both warm and cold resets.
212		 * Now is the time to distinguish between the two.
213		 * Query the platform entrypoint address and if it is not zero
214		 * then it means it is a warm boot so jump to this address.
215		 * -------------------------------------------------------------
216		 */
217		bl	plat_get_my_entrypoint
218		cmp	r0, #0
219		bxne	r0
220	.endif /* _warm_boot_mailbox */
221
222	/* ---------------------------------------------------------------------
223	 * Set the exception vectors (VBAR/MVBAR).
224	 * ---------------------------------------------------------------------
225	 */
226	ldr	r0, =\_exception_vectors
227	stcopr	r0, VBAR
228	stcopr	r0, MVBAR
229	isb
230
231	/* ---------------------------------------------------------------------
232	 * It is a cold boot.
233	 * Perform any processor specific actions upon reset e.g. cache, TLB
234	 * invalidations etc.
235	 * ---------------------------------------------------------------------
236	 */
237	bl	reset_handler
238
239	el3_arch_init_common
240
241	.if \_secondary_cold_boot
242		/* -------------------------------------------------------------
243		 * Check if this is a primary or secondary CPU cold boot.
244		 * The primary CPU will set up the platform while the
245		 * secondaries are placed in a platform-specific state until the
246		 * primary CPU performs the necessary actions to bring them out
247		 * of that state and allows entry into the OS.
248		 * -------------------------------------------------------------
249		 */
250		bl	plat_is_my_cpu_primary
251		cmp	r0, #0
252		bne	do_primary_cold_boot
253
254		/* This is a cold boot on a secondary CPU */
255		bl	plat_secondary_cold_boot_setup
256		/* plat_secondary_cold_boot_setup() is not supposed to return */
257		no_ret	plat_panic_handler
258
259	do_primary_cold_boot:
260	.endif /* _secondary_cold_boot */
261
262	/* ---------------------------------------------------------------------
263	 * Initialize memory now. Secondary CPU initialization won't get to this
264	 * point.
265	 * ---------------------------------------------------------------------
266	 */
267
268	.if \_init_memory
269		bl	platform_mem_init
270	.endif /* _init_memory */
271
272	/* ---------------------------------------------------------------------
273	 * Init C runtime environment:
274	 *   - Zero-initialise the NOBITS sections. There are 2 of them:
275	 *       - the .bss section;
276	 *       - the coherent memory section (if any).
277	 *   - Relocate the data section from ROM to RAM, if required.
278	 * ---------------------------------------------------------------------
279	 */
280	.if \_init_c_runtime
281#if defined(IMAGE_BL32) || (defined(IMAGE_BL2) && BL2_AT_EL3)
282		/* -----------------------------------------------------------------
283		 * Invalidate the RW memory used by the image. This
284		 * includes the data and NOBITS sections. This is done to
285		 * safeguard against possible corruption of this memory by
286		 * dirty cache lines in a system cache as a result of use by
287		 * an earlier boot loader stage.
288		 * -----------------------------------------------------------------
289		 */
290		ldr	r0, =__RW_START__
291		ldr	r1, =__RW_END__
292		sub	r1, r1, r0
293		bl	inv_dcache_range
294#endif
295
296		ldr	r0, =__BSS_START__
297		ldr	r1, =__BSS_SIZE__
298		bl	zeromem
299
300#if USE_COHERENT_MEM
301		ldr	r0, =__COHERENT_RAM_START__
302		ldr	r1, =__COHERENT_RAM_UNALIGNED_SIZE__
303		bl	zeromem
304#endif
305
306#ifdef IMAGE_BL1
307		/* -----------------------------------------------------
308		 * Copy data from ROM to RAM.
309		 * -----------------------------------------------------
310		 */
311		ldr	r0, =__DATA_RAM_START__
312		ldr	r1, =__DATA_ROM_START__
313		ldr	r2, =__DATA_SIZE__
314		bl	memcpy4
315#endif
316	.endif /* _init_c_runtime */
317
318	/* ---------------------------------------------------------------------
319	 * Allocate a stack whose memory will be marked as Normal-IS-WBWA when
320	 * the MMU is enabled. There is no risk of reading stale stack memory
321	 * after enabling the MMU as only the primary CPU is running at the
322	 * moment.
323	 * ---------------------------------------------------------------------
324	 */
325	bl	plat_set_my_stack
326
327#if STACK_PROTECTOR_ENABLED
328	.if \_init_c_runtime
329	bl	update_stack_protector_canary
330	.endif /* _init_c_runtime */
331#endif
332	.endm
333
334#endif /* EL3_COMMON_MACROS_S */
335