xref: /rk3399_ARM-atf/drivers/st/ddr/stm32mp1_ddr.c (revision e0a8ce5d0d1395da3b442c7c019ba62d1361e92b)
1 /*
2  * Copyright (C) 2018-2019, STMicroelectronics - All Rights Reserved
3  *
4  * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
5  */
6 
7 #include <errno.h>
8 #include <stddef.h>
9 
10 #include <platform_def.h>
11 
12 #include <arch.h>
13 #include <arch_helpers.h>
14 #include <common/debug.h>
15 #include <drivers/delay_timer.h>
16 #include <drivers/st/stm32mp_pmic.h>
17 #include <drivers/st/stm32mp1_ddr.h>
18 #include <drivers/st/stm32mp1_ddr_regs.h>
19 #include <drivers/st/stm32mp1_pwr.h>
20 #include <drivers/st/stm32mp1_ram.h>
21 #include <lib/mmio.h>
22 #include <plat/common/platform.h>
23 
24 struct reg_desc {
25 	const char *name;
26 	uint16_t offset;	/* Offset for base address */
27 	uint8_t par_offset;	/* Offset for parameter array */
28 };
29 
30 #define INVALID_OFFSET	0xFFU
31 
32 #define TIMESLOT_1US	(plat_get_syscnt_freq2() / 1000000U)
33 
34 #define DDRCTL_REG(x, y)					\
35 	{							\
36 		.name = #x,					\
37 		.offset = offsetof(struct stm32mp1_ddrctl, x),	\
38 		.par_offset = offsetof(struct y, x)		\
39 	}
40 
41 #define DDRPHY_REG(x, y)					\
42 	{							\
43 		.name = #x,					\
44 		.offset = offsetof(struct stm32mp1_ddrphy, x),	\
45 		.par_offset = offsetof(struct y, x)		\
46 	}
47 
48 #define DDRCTL_REG_REG(x)	DDRCTL_REG(x, stm32mp1_ddrctrl_reg)
49 static const struct reg_desc ddr_reg[] = {
50 	DDRCTL_REG_REG(mstr),
51 	DDRCTL_REG_REG(mrctrl0),
52 	DDRCTL_REG_REG(mrctrl1),
53 	DDRCTL_REG_REG(derateen),
54 	DDRCTL_REG_REG(derateint),
55 	DDRCTL_REG_REG(pwrctl),
56 	DDRCTL_REG_REG(pwrtmg),
57 	DDRCTL_REG_REG(hwlpctl),
58 	DDRCTL_REG_REG(rfshctl0),
59 	DDRCTL_REG_REG(rfshctl3),
60 	DDRCTL_REG_REG(crcparctl0),
61 	DDRCTL_REG_REG(zqctl0),
62 	DDRCTL_REG_REG(dfitmg0),
63 	DDRCTL_REG_REG(dfitmg1),
64 	DDRCTL_REG_REG(dfilpcfg0),
65 	DDRCTL_REG_REG(dfiupd0),
66 	DDRCTL_REG_REG(dfiupd1),
67 	DDRCTL_REG_REG(dfiupd2),
68 	DDRCTL_REG_REG(dfiphymstr),
69 	DDRCTL_REG_REG(odtmap),
70 	DDRCTL_REG_REG(dbg0),
71 	DDRCTL_REG_REG(dbg1),
72 	DDRCTL_REG_REG(dbgcmd),
73 	DDRCTL_REG_REG(poisoncfg),
74 	DDRCTL_REG_REG(pccfg),
75 };
76 
77 #define DDRCTL_REG_TIMING(x)	DDRCTL_REG(x, stm32mp1_ddrctrl_timing)
78 static const struct reg_desc ddr_timing[] = {
79 	DDRCTL_REG_TIMING(rfshtmg),
80 	DDRCTL_REG_TIMING(dramtmg0),
81 	DDRCTL_REG_TIMING(dramtmg1),
82 	DDRCTL_REG_TIMING(dramtmg2),
83 	DDRCTL_REG_TIMING(dramtmg3),
84 	DDRCTL_REG_TIMING(dramtmg4),
85 	DDRCTL_REG_TIMING(dramtmg5),
86 	DDRCTL_REG_TIMING(dramtmg6),
87 	DDRCTL_REG_TIMING(dramtmg7),
88 	DDRCTL_REG_TIMING(dramtmg8),
89 	DDRCTL_REG_TIMING(dramtmg14),
90 	DDRCTL_REG_TIMING(odtcfg),
91 };
92 
93 #define DDRCTL_REG_MAP(x)	DDRCTL_REG(x, stm32mp1_ddrctrl_map)
94 static const struct reg_desc ddr_map[] = {
95 	DDRCTL_REG_MAP(addrmap1),
96 	DDRCTL_REG_MAP(addrmap2),
97 	DDRCTL_REG_MAP(addrmap3),
98 	DDRCTL_REG_MAP(addrmap4),
99 	DDRCTL_REG_MAP(addrmap5),
100 	DDRCTL_REG_MAP(addrmap6),
101 	DDRCTL_REG_MAP(addrmap9),
102 	DDRCTL_REG_MAP(addrmap10),
103 	DDRCTL_REG_MAP(addrmap11),
104 };
105 
106 #define DDRCTL_REG_PERF(x)	DDRCTL_REG(x, stm32mp1_ddrctrl_perf)
107 static const struct reg_desc ddr_perf[] = {
108 	DDRCTL_REG_PERF(sched),
109 	DDRCTL_REG_PERF(sched1),
110 	DDRCTL_REG_PERF(perfhpr1),
111 	DDRCTL_REG_PERF(perflpr1),
112 	DDRCTL_REG_PERF(perfwr1),
113 	DDRCTL_REG_PERF(pcfgr_0),
114 	DDRCTL_REG_PERF(pcfgw_0),
115 	DDRCTL_REG_PERF(pcfgqos0_0),
116 	DDRCTL_REG_PERF(pcfgqos1_0),
117 	DDRCTL_REG_PERF(pcfgwqos0_0),
118 	DDRCTL_REG_PERF(pcfgwqos1_0),
119 	DDRCTL_REG_PERF(pcfgr_1),
120 	DDRCTL_REG_PERF(pcfgw_1),
121 	DDRCTL_REG_PERF(pcfgqos0_1),
122 	DDRCTL_REG_PERF(pcfgqos1_1),
123 	DDRCTL_REG_PERF(pcfgwqos0_1),
124 	DDRCTL_REG_PERF(pcfgwqos1_1),
125 };
126 
127 #define DDRPHY_REG_REG(x)	DDRPHY_REG(x, stm32mp1_ddrphy_reg)
128 static const struct reg_desc ddrphy_reg[] = {
129 	DDRPHY_REG_REG(pgcr),
130 	DDRPHY_REG_REG(aciocr),
131 	DDRPHY_REG_REG(dxccr),
132 	DDRPHY_REG_REG(dsgcr),
133 	DDRPHY_REG_REG(dcr),
134 	DDRPHY_REG_REG(odtcr),
135 	DDRPHY_REG_REG(zq0cr1),
136 	DDRPHY_REG_REG(dx0gcr),
137 	DDRPHY_REG_REG(dx1gcr),
138 	DDRPHY_REG_REG(dx2gcr),
139 	DDRPHY_REG_REG(dx3gcr),
140 };
141 
142 #define DDRPHY_REG_TIMING(x)	DDRPHY_REG(x, stm32mp1_ddrphy_timing)
143 static const struct reg_desc ddrphy_timing[] = {
144 	DDRPHY_REG_TIMING(ptr0),
145 	DDRPHY_REG_TIMING(ptr1),
146 	DDRPHY_REG_TIMING(ptr2),
147 	DDRPHY_REG_TIMING(dtpr0),
148 	DDRPHY_REG_TIMING(dtpr1),
149 	DDRPHY_REG_TIMING(dtpr2),
150 	DDRPHY_REG_TIMING(mr0),
151 	DDRPHY_REG_TIMING(mr1),
152 	DDRPHY_REG_TIMING(mr2),
153 	DDRPHY_REG_TIMING(mr3),
154 };
155 
156 #define DDRPHY_REG_CAL(x)	DDRPHY_REG(x, stm32mp1_ddrphy_cal)
157 static const struct reg_desc ddrphy_cal[] = {
158 	DDRPHY_REG_CAL(dx0dllcr),
159 	DDRPHY_REG_CAL(dx0dqtr),
160 	DDRPHY_REG_CAL(dx0dqstr),
161 	DDRPHY_REG_CAL(dx1dllcr),
162 	DDRPHY_REG_CAL(dx1dqtr),
163 	DDRPHY_REG_CAL(dx1dqstr),
164 	DDRPHY_REG_CAL(dx2dllcr),
165 	DDRPHY_REG_CAL(dx2dqtr),
166 	DDRPHY_REG_CAL(dx2dqstr),
167 	DDRPHY_REG_CAL(dx3dllcr),
168 	DDRPHY_REG_CAL(dx3dqtr),
169 	DDRPHY_REG_CAL(dx3dqstr),
170 };
171 
172 #define DDR_REG_DYN(x)						\
173 	{							\
174 		.name = #x,					\
175 		.offset = offsetof(struct stm32mp1_ddrctl, x),	\
176 		.par_offset = INVALID_OFFSET \
177 	}
178 
179 static const struct reg_desc ddr_dyn[] = {
180 	DDR_REG_DYN(stat),
181 	DDR_REG_DYN(init0),
182 	DDR_REG_DYN(dfimisc),
183 	DDR_REG_DYN(dfistat),
184 	DDR_REG_DYN(swctl),
185 	DDR_REG_DYN(swstat),
186 	DDR_REG_DYN(pctrl_0),
187 	DDR_REG_DYN(pctrl_1),
188 };
189 
190 #define DDRPHY_REG_DYN(x)					\
191 	{							\
192 		.name = #x,					\
193 		.offset = offsetof(struct stm32mp1_ddrphy, x),	\
194 		.par_offset = INVALID_OFFSET			\
195 	}
196 
197 static const struct reg_desc ddrphy_dyn[] = {
198 	DDRPHY_REG_DYN(pir),
199 	DDRPHY_REG_DYN(pgsr),
200 };
201 
202 enum reg_type {
203 	REG_REG,
204 	REG_TIMING,
205 	REG_PERF,
206 	REG_MAP,
207 	REGPHY_REG,
208 	REGPHY_TIMING,
209 	REGPHY_CAL,
210 /*
211  * Dynamic registers => managed in driver or not changed,
212  * can be dumped in interactive mode.
213  */
214 	REG_DYN,
215 	REGPHY_DYN,
216 	REG_TYPE_NB
217 };
218 
219 enum base_type {
220 	DDR_BASE,
221 	DDRPHY_BASE,
222 	NONE_BASE
223 };
224 
225 struct ddr_reg_info {
226 	const char *name;
227 	const struct reg_desc *desc;
228 	uint8_t size;
229 	enum base_type base;
230 };
231 
232 static const struct ddr_reg_info ddr_registers[REG_TYPE_NB] = {
233 	[REG_REG] = {
234 		.name = "static",
235 		.desc = ddr_reg,
236 		.size = ARRAY_SIZE(ddr_reg),
237 		.base = DDR_BASE
238 	},
239 	[REG_TIMING] = {
240 		.name = "timing",
241 		.desc = ddr_timing,
242 		.size = ARRAY_SIZE(ddr_timing),
243 		.base = DDR_BASE
244 	},
245 	[REG_PERF] = {
246 		.name = "perf",
247 		.desc = ddr_perf,
248 		.size = ARRAY_SIZE(ddr_perf),
249 		.base = DDR_BASE
250 	},
251 	[REG_MAP] = {
252 		.name = "map",
253 		.desc = ddr_map,
254 		.size = ARRAY_SIZE(ddr_map),
255 		.base = DDR_BASE
256 	},
257 	[REGPHY_REG] = {
258 		.name = "static",
259 		.desc = ddrphy_reg,
260 		.size = ARRAY_SIZE(ddrphy_reg),
261 		.base = DDRPHY_BASE
262 	},
263 	[REGPHY_TIMING] = {
264 		.name = "timing",
265 		.desc = ddrphy_timing,
266 		.size = ARRAY_SIZE(ddrphy_timing),
267 		.base = DDRPHY_BASE
268 	},
269 	[REGPHY_CAL] = {
270 		.name = "cal",
271 		.desc = ddrphy_cal,
272 		.size = ARRAY_SIZE(ddrphy_cal),
273 		.base = DDRPHY_BASE
274 	},
275 	[REG_DYN] = {
276 		.name = "dyn",
277 		.desc = ddr_dyn,
278 		.size = ARRAY_SIZE(ddr_dyn),
279 		.base = DDR_BASE
280 	},
281 	[REGPHY_DYN] = {
282 		.name = "dyn",
283 		.desc = ddrphy_dyn,
284 		.size = ARRAY_SIZE(ddrphy_dyn),
285 		.base = DDRPHY_BASE
286 	},
287 };
288 
289 static uintptr_t get_base_addr(const struct ddr_info *priv, enum base_type base)
290 {
291 	if (base == DDRPHY_BASE) {
292 		return (uintptr_t)priv->phy;
293 	} else {
294 		return (uintptr_t)priv->ctl;
295 	}
296 }
297 
298 static void set_reg(const struct ddr_info *priv,
299 		    enum reg_type type,
300 		    const void *param)
301 {
302 	unsigned int i;
303 	unsigned int value;
304 	enum base_type base = ddr_registers[type].base;
305 	uintptr_t base_addr = get_base_addr(priv, base);
306 	const struct reg_desc *desc = ddr_registers[type].desc;
307 
308 	VERBOSE("init %s\n", ddr_registers[type].name);
309 	for (i = 0; i < ddr_registers[type].size; i++) {
310 		uintptr_t ptr = base_addr + desc[i].offset;
311 
312 		if (desc[i].par_offset == INVALID_OFFSET) {
313 			ERROR("invalid parameter offset for %s", desc[i].name);
314 			panic();
315 		} else {
316 			value = *((uint32_t *)((uintptr_t)param +
317 					       desc[i].par_offset));
318 			mmio_write_32(ptr, value);
319 		}
320 	}
321 }
322 
323 static void stm32mp1_ddrphy_idone_wait(struct stm32mp1_ddrphy *phy)
324 {
325 	uint32_t pgsr;
326 	int error = 0;
327 	unsigned long start;
328 	unsigned long time0, time;
329 
330 	start = get_timer(0);
331 	time0 = start;
332 
333 	do {
334 		pgsr = mmio_read_32((uintptr_t)&phy->pgsr);
335 		time = get_timer(start);
336 		if (time != time0) {
337 			VERBOSE("  > [0x%lx] pgsr = 0x%x &\n",
338 				(uintptr_t)&phy->pgsr, pgsr);
339 			VERBOSE("    [0x%lx] pir = 0x%x (time=%lx)\n",
340 				(uintptr_t)&phy->pir,
341 				mmio_read_32((uintptr_t)&phy->pir),
342 				time);
343 		}
344 
345 		time0 = time;
346 		if (time > plat_get_syscnt_freq2()) {
347 			panic();
348 		}
349 		if ((pgsr & DDRPHYC_PGSR_DTERR) != 0U) {
350 			VERBOSE("DQS Gate Trainig Error\n");
351 			error++;
352 		}
353 		if ((pgsr & DDRPHYC_PGSR_DTIERR) != 0U) {
354 			VERBOSE("DQS Gate Trainig Intermittent Error\n");
355 			error++;
356 		}
357 		if ((pgsr & DDRPHYC_PGSR_DFTERR) != 0U) {
358 			VERBOSE("DQS Drift Error\n");
359 			error++;
360 		}
361 		if ((pgsr & DDRPHYC_PGSR_RVERR) != 0U) {
362 			VERBOSE("Read Valid Training Error\n");
363 			error++;
364 		}
365 		if ((pgsr & DDRPHYC_PGSR_RVEIRR) != 0U) {
366 			VERBOSE("Read Valid Training Intermittent Error\n");
367 			error++;
368 		}
369 	} while ((pgsr & DDRPHYC_PGSR_IDONE) == 0U && error == 0);
370 	VERBOSE("\n[0x%lx] pgsr = 0x%x\n",
371 		(uintptr_t)&phy->pgsr, pgsr);
372 }
373 
374 static void stm32mp1_ddrphy_init(struct stm32mp1_ddrphy *phy, uint32_t pir)
375 {
376 	uint32_t pir_init = pir | DDRPHYC_PIR_INIT;
377 
378 	mmio_write_32((uintptr_t)&phy->pir, pir_init);
379 	VERBOSE("[0x%lx] pir = 0x%x -> 0x%x\n",
380 		(uintptr_t)&phy->pir, pir_init,
381 		mmio_read_32((uintptr_t)&phy->pir));
382 
383 	/* Need to wait 10 configuration clock before start polling */
384 	udelay(10);
385 
386 	/* Wait DRAM initialization and Gate Training Evaluation complete */
387 	stm32mp1_ddrphy_idone_wait(phy);
388 }
389 
390 /* Start quasi dynamic register update */
391 static void stm32mp1_start_sw_done(struct stm32mp1_ddrctl *ctl)
392 {
393 	mmio_clrbits_32((uintptr_t)&ctl->swctl, DDRCTRL_SWCTL_SW_DONE);
394 	VERBOSE("[0x%lx] swctl = 0x%x\n",
395 		(uintptr_t)&ctl->swctl,  mmio_read_32((uintptr_t)&ctl->swctl));
396 }
397 
398 /* Wait quasi dynamic register update */
399 static void stm32mp1_wait_sw_done_ack(struct stm32mp1_ddrctl *ctl)
400 {
401 	unsigned long start;
402 	uint32_t swstat;
403 
404 	mmio_setbits_32((uintptr_t)&ctl->swctl, DDRCTRL_SWCTL_SW_DONE);
405 	VERBOSE("[0x%lx] swctl = 0x%x\n",
406 		(uintptr_t)&ctl->swctl, mmio_read_32((uintptr_t)&ctl->swctl));
407 
408 	start = get_timer(0);
409 	do {
410 		swstat = mmio_read_32((uintptr_t)&ctl->swstat);
411 		VERBOSE("[0x%lx] swstat = 0x%x ",
412 			(uintptr_t)&ctl->swstat, swstat);
413 		VERBOSE("timer in ms 0x%x = start 0x%lx\r",
414 			get_timer(0), start);
415 		if (get_timer(start) > plat_get_syscnt_freq2()) {
416 			panic();
417 		}
418 	} while ((swstat & DDRCTRL_SWSTAT_SW_DONE_ACK) == 0U);
419 
420 	VERBOSE("[0x%lx] swstat = 0x%x\n",
421 		(uintptr_t)&ctl->swstat, swstat);
422 }
423 
424 /* Wait quasi dynamic register update */
425 static void stm32mp1_wait_operating_mode(struct ddr_info *priv, uint32_t mode)
426 {
427 	unsigned long start;
428 	uint32_t stat;
429 	uint32_t operating_mode;
430 	uint32_t selref_type;
431 	int break_loop = 0;
432 
433 	start = get_timer(0);
434 	for ( ; ; ) {
435 		stat = mmio_read_32((uintptr_t)&priv->ctl->stat);
436 		operating_mode = stat & DDRCTRL_STAT_OPERATING_MODE_MASK;
437 		selref_type = stat & DDRCTRL_STAT_SELFREF_TYPE_MASK;
438 		VERBOSE("[0x%lx] stat = 0x%x\n",
439 			(uintptr_t)&priv->ctl->stat, stat);
440 		VERBOSE("timer in ms 0x%x = start 0x%lx\r",
441 			get_timer(0), start);
442 		if (get_timer(start) > plat_get_syscnt_freq2()) {
443 			panic();
444 		}
445 
446 		if (mode == DDRCTRL_STAT_OPERATING_MODE_SR) {
447 			/*
448 			 * Self-refresh due to software
449 			 * => checking also STAT.selfref_type.
450 			 */
451 			if ((operating_mode ==
452 			     DDRCTRL_STAT_OPERATING_MODE_SR) &&
453 			    (selref_type == DDRCTRL_STAT_SELFREF_TYPE_SR)) {
454 				break_loop = 1;
455 			}
456 		} else if (operating_mode == mode) {
457 			break_loop = 1;
458 		} else if ((mode == DDRCTRL_STAT_OPERATING_MODE_NORMAL) &&
459 			   (operating_mode == DDRCTRL_STAT_OPERATING_MODE_SR) &&
460 			   (selref_type == DDRCTRL_STAT_SELFREF_TYPE_ASR)) {
461 			/* Normal mode: handle also automatic self refresh */
462 			break_loop = 1;
463 		}
464 
465 		if (break_loop == 1) {
466 			break;
467 		}
468 	}
469 
470 	VERBOSE("[0x%lx] stat = 0x%x\n",
471 		(uintptr_t)&priv->ctl->stat, stat);
472 }
473 
474 /* Mode Register Writes (MRW or MRS) */
475 static void stm32mp1_mode_register_write(struct ddr_info *priv, uint8_t addr,
476 					 uint32_t data)
477 {
478 	uint32_t mrctrl0;
479 
480 	VERBOSE("MRS: %d = %x\n", addr, data);
481 
482 	/*
483 	 * 1. Poll MRSTAT.mr_wr_busy until it is '0'.
484 	 *    This checks that there is no outstanding MR transaction.
485 	 *    No write should be performed to MRCTRL0 and MRCTRL1
486 	 *    if MRSTAT.mr_wr_busy = 1.
487 	 */
488 	while ((mmio_read_32((uintptr_t)&priv->ctl->mrstat) &
489 		DDRCTRL_MRSTAT_MR_WR_BUSY) != 0U) {
490 		;
491 	}
492 
493 	/*
494 	 * 2. Write the MRCTRL0.mr_type, MRCTRL0.mr_addr, MRCTRL0.mr_rank
495 	 *    and (for MRWs) MRCTRL1.mr_data to define the MR transaction.
496 	 */
497 	mrctrl0 = DDRCTRL_MRCTRL0_MR_TYPE_WRITE |
498 		  DDRCTRL_MRCTRL0_MR_RANK_ALL |
499 		  (((uint32_t)addr << DDRCTRL_MRCTRL0_MR_ADDR_SHIFT) &
500 		   DDRCTRL_MRCTRL0_MR_ADDR_MASK);
501 	mmio_write_32((uintptr_t)&priv->ctl->mrctrl0, mrctrl0);
502 	VERBOSE("[0x%lx] mrctrl0 = 0x%x (0x%x)\n",
503 		(uintptr_t)&priv->ctl->mrctrl0,
504 		mmio_read_32((uintptr_t)&priv->ctl->mrctrl0), mrctrl0);
505 	mmio_write_32((uintptr_t)&priv->ctl->mrctrl1, data);
506 	VERBOSE("[0x%lx] mrctrl1 = 0x%x\n",
507 		(uintptr_t)&priv->ctl->mrctrl1,
508 		mmio_read_32((uintptr_t)&priv->ctl->mrctrl1));
509 
510 	/*
511 	 * 3. In a separate APB transaction, write the MRCTRL0.mr_wr to 1. This
512 	 *    bit is self-clearing, and triggers the MR transaction.
513 	 *    The uMCTL2 then asserts the MRSTAT.mr_wr_busy while it performs
514 	 *    the MR transaction to SDRAM, and no further access can be
515 	 *    initiated until it is deasserted.
516 	 */
517 	mrctrl0 |= DDRCTRL_MRCTRL0_MR_WR;
518 	mmio_write_32((uintptr_t)&priv->ctl->mrctrl0, mrctrl0);
519 
520 	while ((mmio_read_32((uintptr_t)&priv->ctl->mrstat) &
521 	       DDRCTRL_MRSTAT_MR_WR_BUSY) != 0U) {
522 		;
523 	}
524 
525 	VERBOSE("[0x%lx] mrctrl0 = 0x%x\n",
526 		(uintptr_t)&priv->ctl->mrctrl0, mrctrl0);
527 }
528 
529 /* Switch DDR3 from DLL-on to DLL-off */
530 static void stm32mp1_ddr3_dll_off(struct ddr_info *priv)
531 {
532 	uint32_t mr1 = mmio_read_32((uintptr_t)&priv->phy->mr1);
533 	uint32_t mr2 = mmio_read_32((uintptr_t)&priv->phy->mr2);
534 	uint32_t dbgcam;
535 
536 	VERBOSE("mr1: 0x%x\n", mr1);
537 	VERBOSE("mr2: 0x%x\n", mr2);
538 
539 	/*
540 	 * 1. Set the DBG1.dis_hif = 1.
541 	 *    This prevents further reads/writes being received on the HIF.
542 	 */
543 	mmio_setbits_32((uintptr_t)&priv->ctl->dbg1, DDRCTRL_DBG1_DIS_HIF);
544 	VERBOSE("[0x%lx] dbg1 = 0x%x\n",
545 		(uintptr_t)&priv->ctl->dbg1,
546 		mmio_read_32((uintptr_t)&priv->ctl->dbg1));
547 
548 	/*
549 	 * 2. Ensure all commands have been flushed from the uMCTL2 by polling
550 	 *    DBGCAM.wr_data_pipeline_empty = 1,
551 	 *    DBGCAM.rd_data_pipeline_empty = 1,
552 	 *    DBGCAM.dbg_wr_q_depth = 0 ,
553 	 *    DBGCAM.dbg_lpr_q_depth = 0, and
554 	 *    DBGCAM.dbg_hpr_q_depth = 0.
555 	 */
556 	do {
557 		dbgcam = mmio_read_32((uintptr_t)&priv->ctl->dbgcam);
558 		VERBOSE("[0x%lx] dbgcam = 0x%x\n",
559 			(uintptr_t)&priv->ctl->dbgcam, dbgcam);
560 	} while ((((dbgcam & DDRCTRL_DBGCAM_DATA_PIPELINE_EMPTY) ==
561 		   DDRCTRL_DBGCAM_DATA_PIPELINE_EMPTY)) &&
562 		 ((dbgcam & DDRCTRL_DBGCAM_DBG_Q_DEPTH) == 0U));
563 
564 	/*
565 	 * 3. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers)
566 	 *    to disable RTT_NOM:
567 	 *    a. DDR3: Write to MR1[9], MR1[6] and MR1[2]
568 	 *    b. DDR4: Write to MR1[10:8]
569 	 */
570 	mr1 &= ~(BIT(9) | BIT(6) | BIT(2));
571 	stm32mp1_mode_register_write(priv, 1, mr1);
572 
573 	/*
574 	 * 4. For DDR4 only: Perform an MRS command
575 	 *    (using MRCTRL0 and MRCTRL1 registers) to write to MR5[8:6]
576 	 *    to disable RTT_PARK
577 	 */
578 
579 	/*
580 	 * 5. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers)
581 	 *    to write to MR2[10:9], to disable RTT_WR
582 	 *    (and therefore disable dynamic ODT).
583 	 *    This applies for both DDR3 and DDR4.
584 	 */
585 	mr2 &= ~GENMASK(10, 9);
586 	stm32mp1_mode_register_write(priv, 2, mr2);
587 
588 	/*
589 	 * 6. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers)
590 	 *    to disable the DLL. The timing of this MRS is automatically
591 	 *    handled by the uMCTL2.
592 	 *    a. DDR3: Write to MR1[0]
593 	 *    b. DDR4: Write to MR1[0]
594 	 */
595 	mr1 |= BIT(0);
596 	stm32mp1_mode_register_write(priv, 1, mr1);
597 
598 	/*
599 	 * 7. Put the SDRAM into self-refresh mode by setting
600 	 *    PWRCTL.selfref_sw = 1, and polling STAT.operating_mode to ensure
601 	 *    the DDRC has entered self-refresh.
602 	 */
603 	mmio_setbits_32((uintptr_t)&priv->ctl->pwrctl,
604 			DDRCTRL_PWRCTL_SELFREF_SW);
605 	VERBOSE("[0x%lx] pwrctl = 0x%x\n",
606 		(uintptr_t)&priv->ctl->pwrctl,
607 		mmio_read_32((uintptr_t)&priv->ctl->pwrctl));
608 
609 	/*
610 	 * 8. Wait until STAT.operating_mode[1:0]==11 indicating that the
611 	 *    DWC_ddr_umctl2 core is in self-refresh mode.
612 	 *    Ensure transition to self-refresh was due to software
613 	 *    by checking that STAT.selfref_type[1:0]=2.
614 	 */
615 	stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_SR);
616 
617 	/*
618 	 * 9. Set the MSTR.dll_off_mode = 1.
619 	 *    warning: MSTR.dll_off_mode is a quasi-dynamic type 2 field
620 	 */
621 	stm32mp1_start_sw_done(priv->ctl);
622 
623 	mmio_setbits_32((uintptr_t)&priv->ctl->mstr, DDRCTRL_MSTR_DLL_OFF_MODE);
624 	VERBOSE("[0x%lx] mstr = 0x%x\n",
625 		(uintptr_t)&priv->ctl->mstr,
626 		mmio_read_32((uintptr_t)&priv->ctl->mstr));
627 
628 	stm32mp1_wait_sw_done_ack(priv->ctl);
629 
630 	/* 10. Change the clock frequency to the desired value. */
631 
632 	/*
633 	 * 11. Update any registers which may be required to change for the new
634 	 *     frequency. This includes static and dynamic registers.
635 	 *     This includes both uMCTL2 registers and PHY registers.
636 	 */
637 
638 	/* Change Bypass Mode Frequency Range */
639 	if (stm32mp_clk_get_rate(DDRPHYC) < 100000000U) {
640 		mmio_clrbits_32((uintptr_t)&priv->phy->dllgcr,
641 				DDRPHYC_DLLGCR_BPS200);
642 	} else {
643 		mmio_setbits_32((uintptr_t)&priv->phy->dllgcr,
644 				DDRPHYC_DLLGCR_BPS200);
645 	}
646 
647 	mmio_setbits_32((uintptr_t)&priv->phy->acdllcr, DDRPHYC_ACDLLCR_DLLDIS);
648 
649 	mmio_setbits_32((uintptr_t)&priv->phy->dx0dllcr,
650 			DDRPHYC_DXNDLLCR_DLLDIS);
651 	mmio_setbits_32((uintptr_t)&priv->phy->dx1dllcr,
652 			DDRPHYC_DXNDLLCR_DLLDIS);
653 	mmio_setbits_32((uintptr_t)&priv->phy->dx2dllcr,
654 			DDRPHYC_DXNDLLCR_DLLDIS);
655 	mmio_setbits_32((uintptr_t)&priv->phy->dx3dllcr,
656 			DDRPHYC_DXNDLLCR_DLLDIS);
657 
658 	/* 12. Exit the self-refresh state by setting PWRCTL.selfref_sw = 0. */
659 	mmio_clrbits_32((uintptr_t)&priv->ctl->pwrctl,
660 			DDRCTRL_PWRCTL_SELFREF_SW);
661 	stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_NORMAL);
662 
663 	/*
664 	 * 13. If ZQCTL0.dis_srx_zqcl = 0, the uMCTL2 performs a ZQCL command
665 	 *     at this point.
666 	 */
667 
668 	/*
669 	 * 14. Perform MRS commands as required to re-program timing registers
670 	 *     in the SDRAM for the new frequency
671 	 *     (in particular, CL, CWL and WR may need to be changed).
672 	 */
673 
674 	/* 15. Write DBG1.dis_hif = 0 to re-enable reads and writes. */
675 	mmio_clrbits_32((uintptr_t)&priv->ctl->dbg1, DDRCTRL_DBG1_DIS_HIF);
676 	VERBOSE("[0x%lx] dbg1 = 0x%x\n",
677 		(uintptr_t)&priv->ctl->dbg1,
678 		mmio_read_32((uintptr_t)&priv->ctl->dbg1));
679 }
680 
681 static void stm32mp1_refresh_disable(struct stm32mp1_ddrctl *ctl)
682 {
683 	stm32mp1_start_sw_done(ctl);
684 	/* Quasi-dynamic register update*/
685 	mmio_setbits_32((uintptr_t)&ctl->rfshctl3,
686 			DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH);
687 	mmio_clrbits_32((uintptr_t)&ctl->pwrctl, DDRCTRL_PWRCTL_POWERDOWN_EN);
688 	mmio_clrbits_32((uintptr_t)&ctl->dfimisc,
689 			DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
690 	stm32mp1_wait_sw_done_ack(ctl);
691 }
692 
693 static void stm32mp1_refresh_restore(struct stm32mp1_ddrctl *ctl,
694 				     uint32_t rfshctl3, uint32_t pwrctl)
695 {
696 	stm32mp1_start_sw_done(ctl);
697 	if ((rfshctl3 & DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH) == 0U) {
698 		mmio_clrbits_32((uintptr_t)&ctl->rfshctl3,
699 				DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH);
700 	}
701 	if ((pwrctl & DDRCTRL_PWRCTL_POWERDOWN_EN) != 0U) {
702 		mmio_setbits_32((uintptr_t)&ctl->pwrctl,
703 				DDRCTRL_PWRCTL_POWERDOWN_EN);
704 	}
705 	mmio_setbits_32((uintptr_t)&ctl->dfimisc,
706 			DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
707 	stm32mp1_wait_sw_done_ack(ctl);
708 }
709 
710 static int board_ddr_power_init(enum ddr_type ddr_type)
711 {
712 	if (dt_check_pmic()) {
713 		return pmic_ddr_power_init(ddr_type);
714 	}
715 
716 	return 0;
717 }
718 
719 void stm32mp1_ddr_init(struct ddr_info *priv,
720 		       struct stm32mp1_ddr_config *config)
721 {
722 	uint32_t pir;
723 	int ret = -EINVAL;
724 
725 	if ((config->c_reg.mstr & DDRCTRL_MSTR_DDR3) != 0U) {
726 		ret = board_ddr_power_init(STM32MP_DDR3);
727 	} else if ((config->c_reg.mstr & DDRCTRL_MSTR_LPDDR2) != 0U) {
728 		ret = board_ddr_power_init(STM32MP_LPDDR2);
729 	} else {
730 		ERROR("DDR type not supported\n");
731 	}
732 
733 	if (ret != 0) {
734 		panic();
735 	}
736 
737 	VERBOSE("name = %s\n", config->info.name);
738 	VERBOSE("speed = %d kHz\n", config->info.speed);
739 	VERBOSE("size  = 0x%x\n", config->info.size);
740 
741 	/* DDR INIT SEQUENCE */
742 
743 	/*
744 	 * 1. Program the DWC_ddr_umctl2 registers
745 	 *     nota: check DFIMISC.dfi_init_complete = 0
746 	 */
747 
748 	/* 1.1 RESETS: presetn, core_ddrc_rstn, aresetn */
749 	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAPBRST);
750 	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAXIRST);
751 	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCORERST);
752 	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYAPBRST);
753 	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYRST);
754 	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYCTLRST);
755 
756 	/* 1.2. start CLOCK */
757 	if (stm32mp1_ddr_clk_enable(priv, config->info.speed) != 0) {
758 		panic();
759 	}
760 
761 	/* 1.3. deassert reset */
762 	/* De-assert PHY rstn and ctl_rstn via DPHYRST and DPHYCTLRST. */
763 	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYRST);
764 	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYCTLRST);
765 	/*
766 	 * De-assert presetn once the clocks are active
767 	 * and stable via DDRCAPBRST bit.
768 	 */
769 	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAPBRST);
770 
771 	/* 1.4. wait 128 cycles to permit initialization of end logic */
772 	udelay(2);
773 	/* For PCLK = 133MHz => 1 us is enough, 2 to allow lower frequency */
774 
775 	/* 1.5. initialize registers ddr_umctl2 */
776 	/* Stop uMCTL2 before PHY is ready */
777 	mmio_clrbits_32((uintptr_t)&priv->ctl->dfimisc,
778 			DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
779 	VERBOSE("[0x%lx] dfimisc = 0x%x\n",
780 		(uintptr_t)&priv->ctl->dfimisc,
781 		mmio_read_32((uintptr_t)&priv->ctl->dfimisc));
782 
783 	set_reg(priv, REG_REG, &config->c_reg);
784 
785 	/* DDR3 = don't set DLLOFF for init mode */
786 	if ((config->c_reg.mstr &
787 	     (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE))
788 	    == (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) {
789 		VERBOSE("deactivate DLL OFF in mstr\n");
790 		mmio_clrbits_32((uintptr_t)&priv->ctl->mstr,
791 				DDRCTRL_MSTR_DLL_OFF_MODE);
792 		VERBOSE("[0x%lx] mstr = 0x%x\n",
793 			(uintptr_t)&priv->ctl->mstr,
794 			mmio_read_32((uintptr_t)&priv->ctl->mstr));
795 	}
796 
797 	set_reg(priv, REG_TIMING, &config->c_timing);
798 	set_reg(priv, REG_MAP, &config->c_map);
799 
800 	/* Skip CTRL init, SDRAM init is done by PHY PUBL */
801 	mmio_clrsetbits_32((uintptr_t)&priv->ctl->init0,
802 			   DDRCTRL_INIT0_SKIP_DRAM_INIT_MASK,
803 			   DDRCTRL_INIT0_SKIP_DRAM_INIT_NORMAL);
804 	VERBOSE("[0x%lx] init0 = 0x%x\n",
805 		(uintptr_t)&priv->ctl->init0,
806 		mmio_read_32((uintptr_t)&priv->ctl->init0));
807 
808 	set_reg(priv, REG_PERF, &config->c_perf);
809 
810 	/*  2. deassert reset signal core_ddrc_rstn, aresetn and presetn */
811 	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCORERST);
812 	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAXIRST);
813 	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYAPBRST);
814 
815 	/*
816 	 * 3. start PHY init by accessing relevant PUBL registers
817 	 *    (DXGCR, DCR, PTR*, MR*, DTPR*)
818 	 */
819 	set_reg(priv, REGPHY_REG, &config->p_reg);
820 	set_reg(priv, REGPHY_TIMING, &config->p_timing);
821 	set_reg(priv, REGPHY_CAL, &config->p_cal);
822 
823 	/* DDR3 = don't set DLLOFF for init mode */
824 	if ((config->c_reg.mstr &
825 	     (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE))
826 	    == (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) {
827 		VERBOSE("deactivate DLL OFF in mr1\n");
828 		mmio_clrbits_32((uintptr_t)&priv->phy->mr1, BIT(0));
829 		VERBOSE("[0x%lx] mr1 = 0x%x\n",
830 			(uintptr_t)&priv->phy->mr1,
831 			mmio_read_32((uintptr_t)&priv->phy->mr1));
832 	}
833 
834 	/*
835 	 *  4. Monitor PHY init status by polling PUBL register PGSR.IDONE
836 	 *     Perform DDR PHY DRAM initialization and Gate Training Evaluation
837 	 */
838 	stm32mp1_ddrphy_idone_wait(priv->phy);
839 
840 	/*
841 	 *  5. Indicate to PUBL that controller performs SDRAM initialization
842 	 *     by setting PIR.INIT and PIR CTLDINIT and pool PGSR.IDONE
843 	 *     DRAM init is done by PHY, init0.skip_dram.init = 1
844 	 */
845 
846 	pir = DDRPHYC_PIR_DLLSRST | DDRPHYC_PIR_DLLLOCK | DDRPHYC_PIR_ZCAL |
847 	      DDRPHYC_PIR_ITMSRST | DDRPHYC_PIR_DRAMINIT | DDRPHYC_PIR_ICPC;
848 
849 	if ((config->c_reg.mstr & DDRCTRL_MSTR_DDR3) != 0U) {
850 		pir |= DDRPHYC_PIR_DRAMRST; /* Only for DDR3 */
851 	}
852 
853 	stm32mp1_ddrphy_init(priv->phy, pir);
854 
855 	/*
856 	 *  6. SET DFIMISC.dfi_init_complete_en to 1
857 	 *  Enable quasi-dynamic register programming.
858 	 */
859 	stm32mp1_start_sw_done(priv->ctl);
860 
861 	mmio_setbits_32((uintptr_t)&priv->ctl->dfimisc,
862 			DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
863 	VERBOSE("[0x%lx] dfimisc = 0x%x\n",
864 		(uintptr_t)&priv->ctl->dfimisc,
865 		mmio_read_32((uintptr_t)&priv->ctl->dfimisc));
866 
867 	stm32mp1_wait_sw_done_ack(priv->ctl);
868 
869 	/*
870 	 *  7. Wait for DWC_ddr_umctl2 to move to normal operation mode
871 	 *     by monitoring STAT.operating_mode signal
872 	 */
873 
874 	/* Wait uMCTL2 ready */
875 	stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_NORMAL);
876 
877 	/* Switch to DLL OFF mode */
878 	if ((config->c_reg.mstr & DDRCTRL_MSTR_DLL_OFF_MODE) != 0U) {
879 		stm32mp1_ddr3_dll_off(priv);
880 	}
881 
882 	VERBOSE("DDR DQS training : ");
883 
884 	/*
885 	 *  8. Disable Auto refresh and power down by setting
886 	 *    - RFSHCTL3.dis_au_refresh = 1
887 	 *    - PWRCTL.powerdown_en = 0
888 	 *    - DFIMISC.dfiinit_complete_en = 0
889 	 */
890 	stm32mp1_refresh_disable(priv->ctl);
891 
892 	/*
893 	 *  9. Program PUBL PGCR to enable refresh during training
894 	 *     and rank to train
895 	 *     not done => keep the programed value in PGCR
896 	 */
897 
898 	/*
899 	 * 10. configure PUBL PIR register to specify which training step
900 	 * to run
901 	 * Warning : RVTRN  is not supported by this PUBL
902 	 */
903 	stm32mp1_ddrphy_init(priv->phy, DDRPHYC_PIR_QSTRN);
904 
905 	/* 11. monitor PUB PGSR.IDONE to poll cpmpletion of training sequence */
906 	stm32mp1_ddrphy_idone_wait(priv->phy);
907 
908 	/*
909 	 * 12. set back registers in step 8 to the orginal values if desidered
910 	 */
911 	stm32mp1_refresh_restore(priv->ctl, config->c_reg.rfshctl3,
912 				 config->c_reg.pwrctl);
913 
914 	/* Enable uMCTL2 AXI port 0 */
915 	mmio_setbits_32((uintptr_t)&priv->ctl->pctrl_0,
916 			DDRCTRL_PCTRL_N_PORT_EN);
917 	VERBOSE("[0x%lx] pctrl_0 = 0x%x\n",
918 		(uintptr_t)&priv->ctl->pctrl_0,
919 		mmio_read_32((uintptr_t)&priv->ctl->pctrl_0));
920 
921 	/* Enable uMCTL2 AXI port 1 */
922 	mmio_setbits_32((uintptr_t)&priv->ctl->pctrl_1,
923 			DDRCTRL_PCTRL_N_PORT_EN);
924 	VERBOSE("[0x%lx] pctrl_1 = 0x%x\n",
925 		(uintptr_t)&priv->ctl->pctrl_1,
926 		mmio_read_32((uintptr_t)&priv->ctl->pctrl_1));
927 }
928