xref: /rk3399_ARM-atf/drivers/st/ddr/stm32mp1_ddr.c (revision d87d524ee4482c00a15f6d72c6fe5ab02f5f4746)
1 /*
2  * Copyright (C) 2018, STMicroelectronics - All Rights Reserved
3  *
4  * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <debug.h>
10 #include <delay_timer.h>
11 #include <dt-bindings/clock/stm32mp1-clks.h>
12 #include <mmio.h>
13 #include <platform.h>
14 #include <stddef.h>
15 #include <stm32mp1_clk.h>
16 #include <stm32mp1_ddr.h>
17 #include <stm32mp1_ddr_regs.h>
18 #include <stm32mp1_dt.h>
19 #include <stm32mp1_pmic.h>
20 #include <stm32mp1_pwr.h>
21 #include <stm32mp1_ram.h>
22 #include <stm32mp1_rcc.h>
23 
24 struct reg_desc {
25 	const char *name;
26 	uint16_t offset;	/* Offset for base address */
27 	uint8_t par_offset;	/* Offset for parameter array */
28 };
29 
30 #define INVALID_OFFSET	0xFFU
31 
32 #define TIMESLOT_1US	(plat_get_syscnt_freq2() / 1000000U)
33 
34 #define DDRCTL_REG(x, y)					\
35 	{							\
36 		.name = #x,					\
37 		.offset = offsetof(struct stm32mp1_ddrctl, x),	\
38 		.par_offset = offsetof(struct y, x)		\
39 	}
40 
41 #define DDRPHY_REG(x, y)					\
42 	{							\
43 		.name = #x,					\
44 		.offset = offsetof(struct stm32mp1_ddrphy, x),	\
45 		.par_offset = offsetof(struct y, x)		\
46 	}
47 
48 #define DDRCTL_REG_REG(x)	DDRCTL_REG(x, stm32mp1_ddrctrl_reg)
49 static const struct reg_desc ddr_reg[] = {
50 	DDRCTL_REG_REG(mstr),
51 	DDRCTL_REG_REG(mrctrl0),
52 	DDRCTL_REG_REG(mrctrl1),
53 	DDRCTL_REG_REG(derateen),
54 	DDRCTL_REG_REG(derateint),
55 	DDRCTL_REG_REG(pwrctl),
56 	DDRCTL_REG_REG(pwrtmg),
57 	DDRCTL_REG_REG(hwlpctl),
58 	DDRCTL_REG_REG(rfshctl0),
59 	DDRCTL_REG_REG(rfshctl3),
60 	DDRCTL_REG_REG(crcparctl0),
61 	DDRCTL_REG_REG(zqctl0),
62 	DDRCTL_REG_REG(dfitmg0),
63 	DDRCTL_REG_REG(dfitmg1),
64 	DDRCTL_REG_REG(dfilpcfg0),
65 	DDRCTL_REG_REG(dfiupd0),
66 	DDRCTL_REG_REG(dfiupd1),
67 	DDRCTL_REG_REG(dfiupd2),
68 	DDRCTL_REG_REG(dfiphymstr),
69 	DDRCTL_REG_REG(odtmap),
70 	DDRCTL_REG_REG(dbg0),
71 	DDRCTL_REG_REG(dbg1),
72 	DDRCTL_REG_REG(dbgcmd),
73 	DDRCTL_REG_REG(poisoncfg),
74 	DDRCTL_REG_REG(pccfg),
75 };
76 
77 #define DDRCTL_REG_TIMING(x)	DDRCTL_REG(x, stm32mp1_ddrctrl_timing)
78 static const struct reg_desc ddr_timing[] = {
79 	DDRCTL_REG_TIMING(rfshtmg),
80 	DDRCTL_REG_TIMING(dramtmg0),
81 	DDRCTL_REG_TIMING(dramtmg1),
82 	DDRCTL_REG_TIMING(dramtmg2),
83 	DDRCTL_REG_TIMING(dramtmg3),
84 	DDRCTL_REG_TIMING(dramtmg4),
85 	DDRCTL_REG_TIMING(dramtmg5),
86 	DDRCTL_REG_TIMING(dramtmg6),
87 	DDRCTL_REG_TIMING(dramtmg7),
88 	DDRCTL_REG_TIMING(dramtmg8),
89 	DDRCTL_REG_TIMING(dramtmg14),
90 	DDRCTL_REG_TIMING(odtcfg),
91 };
92 
93 #define DDRCTL_REG_MAP(x)	DDRCTL_REG(x, stm32mp1_ddrctrl_map)
94 static const struct reg_desc ddr_map[] = {
95 	DDRCTL_REG_MAP(addrmap1),
96 	DDRCTL_REG_MAP(addrmap2),
97 	DDRCTL_REG_MAP(addrmap3),
98 	DDRCTL_REG_MAP(addrmap4),
99 	DDRCTL_REG_MAP(addrmap5),
100 	DDRCTL_REG_MAP(addrmap6),
101 	DDRCTL_REG_MAP(addrmap9),
102 	DDRCTL_REG_MAP(addrmap10),
103 	DDRCTL_REG_MAP(addrmap11),
104 };
105 
106 #define DDRCTL_REG_PERF(x)	DDRCTL_REG(x, stm32mp1_ddrctrl_perf)
107 static const struct reg_desc ddr_perf[] = {
108 	DDRCTL_REG_PERF(sched),
109 	DDRCTL_REG_PERF(sched1),
110 	DDRCTL_REG_PERF(perfhpr1),
111 	DDRCTL_REG_PERF(perflpr1),
112 	DDRCTL_REG_PERF(perfwr1),
113 	DDRCTL_REG_PERF(pcfgr_0),
114 	DDRCTL_REG_PERF(pcfgw_0),
115 	DDRCTL_REG_PERF(pcfgqos0_0),
116 	DDRCTL_REG_PERF(pcfgqos1_0),
117 	DDRCTL_REG_PERF(pcfgwqos0_0),
118 	DDRCTL_REG_PERF(pcfgwqos1_0),
119 	DDRCTL_REG_PERF(pcfgr_1),
120 	DDRCTL_REG_PERF(pcfgw_1),
121 	DDRCTL_REG_PERF(pcfgqos0_1),
122 	DDRCTL_REG_PERF(pcfgqos1_1),
123 	DDRCTL_REG_PERF(pcfgwqos0_1),
124 	DDRCTL_REG_PERF(pcfgwqos1_1),
125 };
126 
127 #define DDRPHY_REG_REG(x)	DDRPHY_REG(x, stm32mp1_ddrphy_reg)
128 static const struct reg_desc ddrphy_reg[] = {
129 	DDRPHY_REG_REG(pgcr),
130 	DDRPHY_REG_REG(aciocr),
131 	DDRPHY_REG_REG(dxccr),
132 	DDRPHY_REG_REG(dsgcr),
133 	DDRPHY_REG_REG(dcr),
134 	DDRPHY_REG_REG(odtcr),
135 	DDRPHY_REG_REG(zq0cr1),
136 	DDRPHY_REG_REG(dx0gcr),
137 	DDRPHY_REG_REG(dx1gcr),
138 	DDRPHY_REG_REG(dx2gcr),
139 	DDRPHY_REG_REG(dx3gcr),
140 };
141 
142 #define DDRPHY_REG_TIMING(x)	DDRPHY_REG(x, stm32mp1_ddrphy_timing)
143 static const struct reg_desc ddrphy_timing[] = {
144 	DDRPHY_REG_TIMING(ptr0),
145 	DDRPHY_REG_TIMING(ptr1),
146 	DDRPHY_REG_TIMING(ptr2),
147 	DDRPHY_REG_TIMING(dtpr0),
148 	DDRPHY_REG_TIMING(dtpr1),
149 	DDRPHY_REG_TIMING(dtpr2),
150 	DDRPHY_REG_TIMING(mr0),
151 	DDRPHY_REG_TIMING(mr1),
152 	DDRPHY_REG_TIMING(mr2),
153 	DDRPHY_REG_TIMING(mr3),
154 };
155 
156 #define DDRPHY_REG_CAL(x)	DDRPHY_REG(x, stm32mp1_ddrphy_cal)
157 static const struct reg_desc ddrphy_cal[] = {
158 	DDRPHY_REG_CAL(dx0dllcr),
159 	DDRPHY_REG_CAL(dx0dqtr),
160 	DDRPHY_REG_CAL(dx0dqstr),
161 	DDRPHY_REG_CAL(dx1dllcr),
162 	DDRPHY_REG_CAL(dx1dqtr),
163 	DDRPHY_REG_CAL(dx1dqstr),
164 	DDRPHY_REG_CAL(dx2dllcr),
165 	DDRPHY_REG_CAL(dx2dqtr),
166 	DDRPHY_REG_CAL(dx2dqstr),
167 	DDRPHY_REG_CAL(dx3dllcr),
168 	DDRPHY_REG_CAL(dx3dqtr),
169 	DDRPHY_REG_CAL(dx3dqstr),
170 };
171 
172 #define DDR_REG_DYN(x)						\
173 	{							\
174 		.name = #x,					\
175 		.offset = offsetof(struct stm32mp1_ddrctl, x),	\
176 		.par_offset = INVALID_OFFSET \
177 	}
178 
179 static const struct reg_desc ddr_dyn[] = {
180 	DDR_REG_DYN(stat),
181 	DDR_REG_DYN(init0),
182 	DDR_REG_DYN(dfimisc),
183 	DDR_REG_DYN(dfistat),
184 	DDR_REG_DYN(swctl),
185 	DDR_REG_DYN(swstat),
186 	DDR_REG_DYN(pctrl_0),
187 	DDR_REG_DYN(pctrl_1),
188 };
189 
190 #define DDRPHY_REG_DYN(x)					\
191 	{							\
192 		.name = #x,					\
193 		.offset = offsetof(struct stm32mp1_ddrphy, x),	\
194 		.par_offset = INVALID_OFFSET			\
195 	}
196 
197 static const struct reg_desc ddrphy_dyn[] = {
198 	DDRPHY_REG_DYN(pir),
199 	DDRPHY_REG_DYN(pgsr),
200 };
201 
202 enum reg_type {
203 	REG_REG,
204 	REG_TIMING,
205 	REG_PERF,
206 	REG_MAP,
207 	REGPHY_REG,
208 	REGPHY_TIMING,
209 	REGPHY_CAL,
210 /*
211  * Dynamic registers => managed in driver or not changed,
212  * can be dumped in interactive mode.
213  */
214 	REG_DYN,
215 	REGPHY_DYN,
216 	REG_TYPE_NB
217 };
218 
219 enum base_type {
220 	DDR_BASE,
221 	DDRPHY_BASE,
222 	NONE_BASE
223 };
224 
225 struct ddr_reg_info {
226 	const char *name;
227 	const struct reg_desc *desc;
228 	uint8_t size;
229 	enum base_type base;
230 };
231 
232 static const struct ddr_reg_info ddr_registers[REG_TYPE_NB] = {
233 	[REG_REG] = {
234 		"static", ddr_reg, ARRAY_SIZE(ddr_reg), DDR_BASE
235 	},
236 	[REG_TIMING] = {
237 		"timing", ddr_timing, ARRAY_SIZE(ddr_timing), DDR_BASE
238 	},
239 	[REG_PERF] = {
240 		"perf", ddr_perf, ARRAY_SIZE(ddr_perf), DDR_BASE
241 	},
242 	[REG_MAP] = {
243 		"map", ddr_map, ARRAY_SIZE(ddr_map), DDR_BASE
244 	},
245 	[REGPHY_REG] = {
246 		"static", ddrphy_reg, ARRAY_SIZE(ddrphy_reg), DDRPHY_BASE
247 	},
248 	[REGPHY_TIMING] = {
249 		"timing", ddrphy_timing, ARRAY_SIZE(ddrphy_timing), DDRPHY_BASE
250 	},
251 	[REGPHY_CAL] = {
252 		"cal", ddrphy_cal, ARRAY_SIZE(ddrphy_cal), DDRPHY_BASE
253 	},
254 	[REG_DYN] = {
255 		"dyn", ddr_dyn, ARRAY_SIZE(ddr_dyn), DDR_BASE
256 	},
257 	[REGPHY_DYN] = {
258 		"dyn", ddrphy_dyn, ARRAY_SIZE(ddrphy_dyn), DDRPHY_BASE
259 	},
260 };
261 
262 static uint32_t get_base_addr(const struct ddr_info *priv, enum base_type base)
263 {
264 	if (base == DDRPHY_BASE) {
265 		return (uint32_t)priv->phy;
266 	} else {
267 		return (uint32_t)priv->ctl;
268 	}
269 }
270 
271 static void set_reg(const struct ddr_info *priv,
272 		    enum reg_type type,
273 		    const void *param)
274 {
275 	unsigned int i;
276 	unsigned int *ptr, value;
277 	enum base_type base = ddr_registers[type].base;
278 	uint32_t base_addr = get_base_addr(priv, base);
279 	const struct reg_desc *desc = ddr_registers[type].desc;
280 
281 	VERBOSE("init %s\n", ddr_registers[type].name);
282 	for (i = 0; i < ddr_registers[type].size; i++) {
283 		ptr = (unsigned int *)(base_addr + desc[i].offset);
284 		if (desc[i].par_offset == INVALID_OFFSET) {
285 			ERROR("invalid parameter offset for %s", desc[i].name);
286 			panic();
287 		} else {
288 			value = *((uint32_t *)((uint32_t)param +
289 					       desc[i].par_offset));
290 			mmio_write_32((uint32_t)ptr, value);
291 		}
292 	}
293 }
294 
295 static void stm32mp1_ddrphy_idone_wait(struct stm32mp1_ddrphy *phy)
296 {
297 	uint32_t pgsr;
298 	int error = 0;
299 	unsigned long start;
300 	unsigned long time0, time;
301 
302 	start = get_timer(0);
303 	time0 = start;
304 
305 	do {
306 		pgsr = mmio_read_32((uint32_t)&phy->pgsr);
307 		time = get_timer(start);
308 		if (time != time0) {
309 			VERBOSE("  > [0x%x] pgsr = 0x%x &\n",
310 				(uint32_t)&phy->pgsr, pgsr);
311 			VERBOSE("    [0x%x] pir = 0x%x (time=%x)\n",
312 				(uint32_t)&phy->pir,
313 				mmio_read_32((uint32_t)&phy->pir),
314 				(uint32_t)time);
315 		}
316 
317 		time0 = time;
318 		if (time > plat_get_syscnt_freq2()) {
319 			panic();
320 		}
321 		if ((pgsr & DDRPHYC_PGSR_DTERR) != 0U) {
322 			VERBOSE("DQS Gate Trainig Error\n");
323 			error++;
324 		}
325 		if ((pgsr & DDRPHYC_PGSR_DTIERR) != 0U) {
326 			VERBOSE("DQS Gate Trainig Intermittent Error\n");
327 			error++;
328 		}
329 		if ((pgsr & DDRPHYC_PGSR_DFTERR) != 0U) {
330 			VERBOSE("DQS Drift Error\n");
331 			error++;
332 		}
333 		if ((pgsr & DDRPHYC_PGSR_RVERR) != 0U) {
334 			VERBOSE("Read Valid Training Error\n");
335 			error++;
336 		}
337 		if ((pgsr & DDRPHYC_PGSR_RVEIRR) != 0U) {
338 			VERBOSE("Read Valid Training Intermittent Error\n");
339 			error++;
340 		}
341 	} while ((pgsr & DDRPHYC_PGSR_IDONE) == 0U && error == 0);
342 	VERBOSE("\n[0x%x] pgsr = 0x%x\n",
343 		(uint32_t)&phy->pgsr, pgsr);
344 }
345 
346 static void stm32mp1_ddrphy_init(struct stm32mp1_ddrphy *phy, uint32_t pir)
347 {
348 	uint32_t pir_init = pir | DDRPHYC_PIR_INIT;
349 
350 	mmio_write_32((uint32_t)&phy->pir, pir_init);
351 	VERBOSE("[0x%x] pir = 0x%x -> 0x%x\n",
352 		(uint32_t)&phy->pir, pir_init,
353 		mmio_read_32((uint32_t)&phy->pir));
354 
355 	/* Need to wait 10 configuration clock before start polling */
356 	udelay(10);
357 
358 	/* Wait DRAM initialization and Gate Training Evaluation complete */
359 	stm32mp1_ddrphy_idone_wait(phy);
360 }
361 
362 /* Start quasi dynamic register update */
363 static void stm32mp1_start_sw_done(struct stm32mp1_ddrctl *ctl)
364 {
365 	mmio_clrbits_32((uint32_t)&ctl->swctl, DDRCTRL_SWCTL_SW_DONE);
366 	VERBOSE("[0x%x] swctl = 0x%x\n",
367 		(uint32_t)&ctl->swctl,  mmio_read_32((uint32_t)&ctl->swctl));
368 }
369 
370 /* Wait quasi dynamic register update */
371 static void stm32mp1_wait_sw_done_ack(struct stm32mp1_ddrctl *ctl)
372 {
373 	unsigned long start;
374 	uint32_t swstat;
375 
376 	mmio_setbits_32((uint32_t)&ctl->swctl, DDRCTRL_SWCTL_SW_DONE);
377 	VERBOSE("[0x%x] swctl = 0x%x\n",
378 		(uint32_t)&ctl->swctl, mmio_read_32((uint32_t)&ctl->swctl));
379 
380 	start = get_timer(0);
381 	do {
382 		swstat = mmio_read_32((uint32_t)&ctl->swstat);
383 		VERBOSE("[0x%x] swstat = 0x%x ",
384 			(uint32_t)&ctl->swstat, swstat);
385 		VERBOSE("timer in ms 0x%x = start 0x%lx\r",
386 			get_timer(0), start);
387 		if (get_timer(start) > plat_get_syscnt_freq2()) {
388 			panic();
389 		}
390 	} while ((swstat & DDRCTRL_SWSTAT_SW_DONE_ACK) == 0U);
391 
392 	VERBOSE("[0x%x] swstat = 0x%x\n",
393 		(uint32_t)&ctl->swstat, swstat);
394 }
395 
396 /* Wait quasi dynamic register update */
397 static void stm32mp1_wait_operating_mode(struct ddr_info *priv, uint32_t mode)
398 {
399 	unsigned long start;
400 	uint32_t stat;
401 	uint32_t operating_mode;
402 	uint32_t selref_type;
403 	int break_loop = 0;
404 
405 	start = get_timer(0);
406 	for ( ; ; ) {
407 		stat = mmio_read_32((uint32_t)&priv->ctl->stat);
408 		operating_mode = stat & DDRCTRL_STAT_OPERATING_MODE_MASK;
409 		selref_type = stat & DDRCTRL_STAT_SELFREF_TYPE_MASK;
410 		VERBOSE("[0x%x] stat = 0x%x\n",
411 			(uint32_t)&priv->ctl->stat, stat);
412 		VERBOSE("timer in ms 0x%x = start 0x%lx\r",
413 			get_timer(0), start);
414 		if (get_timer(start) > plat_get_syscnt_freq2()) {
415 			panic();
416 		}
417 
418 		if (mode == DDRCTRL_STAT_OPERATING_MODE_SR) {
419 			/*
420 			 * Self-refresh due to software
421 			 * => checking also STAT.selfref_type.
422 			 */
423 			if ((operating_mode ==
424 			     DDRCTRL_STAT_OPERATING_MODE_SR) &&
425 			    (selref_type == DDRCTRL_STAT_SELFREF_TYPE_SR)) {
426 				break_loop = 1;
427 			}
428 		} else if (operating_mode == mode) {
429 			break_loop = 1;
430 		} else if ((mode == DDRCTRL_STAT_OPERATING_MODE_NORMAL) &&
431 			   (operating_mode == DDRCTRL_STAT_OPERATING_MODE_SR) &&
432 			   (selref_type == DDRCTRL_STAT_SELFREF_TYPE_ASR)) {
433 			/* Normal mode: handle also automatic self refresh */
434 			break_loop = 1;
435 		}
436 
437 		if (break_loop == 1) {
438 			break;
439 		}
440 	}
441 
442 	VERBOSE("[0x%x] stat = 0x%x\n",
443 		(uint32_t)&priv->ctl->stat, stat);
444 }
445 
446 /* Mode Register Writes (MRW or MRS) */
447 static void stm32mp1_mode_register_write(struct ddr_info *priv, uint8_t addr,
448 					 uint32_t data)
449 {
450 	uint32_t mrctrl0;
451 
452 	VERBOSE("MRS: %d = %x\n", addr, data);
453 
454 	/*
455 	 * 1. Poll MRSTAT.mr_wr_busy until it is '0'.
456 	 *    This checks that there is no outstanding MR transaction.
457 	 *    No write should be performed to MRCTRL0 and MRCTRL1
458 	 *    if MRSTAT.mr_wr_busy = 1.
459 	 */
460 	while ((mmio_read_32((uint32_t)&priv->ctl->mrstat) &
461 		DDRCTRL_MRSTAT_MR_WR_BUSY) != 0U) {
462 		;
463 	}
464 
465 	/*
466 	 * 2. Write the MRCTRL0.mr_type, MRCTRL0.mr_addr, MRCTRL0.mr_rank
467 	 *    and (for MRWs) MRCTRL1.mr_data to define the MR transaction.
468 	 */
469 	mrctrl0 = DDRCTRL_MRCTRL0_MR_TYPE_WRITE |
470 		  DDRCTRL_MRCTRL0_MR_RANK_ALL |
471 		  (((uint32_t)addr << DDRCTRL_MRCTRL0_MR_ADDR_SHIFT) &
472 		   DDRCTRL_MRCTRL0_MR_ADDR_MASK);
473 	mmio_write_32((uint32_t)&priv->ctl->mrctrl0, mrctrl0);
474 	VERBOSE("[0x%x] mrctrl0 = 0x%x (0x%x)\n",
475 		(uint32_t)&priv->ctl->mrctrl0,
476 		mmio_read_32((uint32_t)&priv->ctl->mrctrl0), mrctrl0);
477 	mmio_write_32((uint32_t)&priv->ctl->mrctrl1, data);
478 	VERBOSE("[0x%x] mrctrl1 = 0x%x\n",
479 		(uint32_t)&priv->ctl->mrctrl1,
480 		mmio_read_32((uint32_t)&priv->ctl->mrctrl1));
481 
482 	/*
483 	 * 3. In a separate APB transaction, write the MRCTRL0.mr_wr to 1. This
484 	 *    bit is self-clearing, and triggers the MR transaction.
485 	 *    The uMCTL2 then asserts the MRSTAT.mr_wr_busy while it performs
486 	 *    the MR transaction to SDRAM, and no further access can be
487 	 *    initiated until it is deasserted.
488 	 */
489 	mrctrl0 |= DDRCTRL_MRCTRL0_MR_WR;
490 	mmio_write_32((uint32_t)&priv->ctl->mrctrl0, mrctrl0);
491 
492 	while ((mmio_read_32((uint32_t)&priv->ctl->mrstat) &
493 	       DDRCTRL_MRSTAT_MR_WR_BUSY) != 0U) {
494 		;
495 	}
496 
497 	VERBOSE("[0x%x] mrctrl0 = 0x%x\n",
498 		(uint32_t)&priv->ctl->mrctrl0, mrctrl0);
499 }
500 
501 /* Switch DDR3 from DLL-on to DLL-off */
502 static void stm32mp1_ddr3_dll_off(struct ddr_info *priv)
503 {
504 	uint32_t mr1 = mmio_read_32((uint32_t)&priv->phy->mr1);
505 	uint32_t mr2 = mmio_read_32((uint32_t)&priv->phy->mr2);
506 	uint32_t dbgcam;
507 
508 	VERBOSE("mr1: 0x%x\n", mr1);
509 	VERBOSE("mr2: 0x%x\n", mr2);
510 
511 	/*
512 	 * 1. Set the DBG1.dis_hif = 1.
513 	 *    This prevents further reads/writes being received on the HIF.
514 	 */
515 	mmio_setbits_32((uint32_t)&priv->ctl->dbg1, DDRCTRL_DBG1_DIS_HIF);
516 	VERBOSE("[0x%x] dbg1 = 0x%x\n",
517 		(uint32_t)&priv->ctl->dbg1,
518 		mmio_read_32((uint32_t)&priv->ctl->dbg1));
519 
520 	/*
521 	 * 2. Ensure all commands have been flushed from the uMCTL2 by polling
522 	 *    DBGCAM.wr_data_pipeline_empty = 1,
523 	 *    DBGCAM.rd_data_pipeline_empty = 1,
524 	 *    DBGCAM.dbg_wr_q_depth = 0 ,
525 	 *    DBGCAM.dbg_lpr_q_depth = 0, and
526 	 *    DBGCAM.dbg_hpr_q_depth = 0.
527 	 */
528 	do {
529 		dbgcam = mmio_read_32((uint32_t)&priv->ctl->dbgcam);
530 		VERBOSE("[0x%x] dbgcam = 0x%x\n",
531 			(uint32_t)&priv->ctl->dbgcam, dbgcam);
532 	} while ((((dbgcam & DDRCTRL_DBGCAM_DATA_PIPELINE_EMPTY) ==
533 		   DDRCTRL_DBGCAM_DATA_PIPELINE_EMPTY)) &&
534 		 ((dbgcam & DDRCTRL_DBGCAM_DBG_Q_DEPTH) == 0U));
535 
536 	/*
537 	 * 3. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers)
538 	 *    to disable RTT_NOM:
539 	 *    a. DDR3: Write to MR1[9], MR1[6] and MR1[2]
540 	 *    b. DDR4: Write to MR1[10:8]
541 	 */
542 	mr1 &= ~(BIT(9) | BIT(6) | BIT(2));
543 	stm32mp1_mode_register_write(priv, 1, mr1);
544 
545 	/*
546 	 * 4. For DDR4 only: Perform an MRS command
547 	 *    (using MRCTRL0 and MRCTRL1 registers) to write to MR5[8:6]
548 	 *    to disable RTT_PARK
549 	 */
550 
551 	/*
552 	 * 5. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers)
553 	 *    to write to MR2[10:9], to disable RTT_WR
554 	 *    (and therefore disable dynamic ODT).
555 	 *    This applies for both DDR3 and DDR4.
556 	 */
557 	mr2 &= ~GENMASK(10, 9);
558 	stm32mp1_mode_register_write(priv, 2, mr2);
559 
560 	/*
561 	 * 6. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers)
562 	 *    to disable the DLL. The timing of this MRS is automatically
563 	 *    handled by the uMCTL2.
564 	 *    a. DDR3: Write to MR1[0]
565 	 *    b. DDR4: Write to MR1[0]
566 	 */
567 	mr1 |= BIT(0);
568 	stm32mp1_mode_register_write(priv, 1, mr1);
569 
570 	/*
571 	 * 7. Put the SDRAM into self-refresh mode by setting
572 	 *    PWRCTL.selfref_sw = 1, and polling STAT.operating_mode to ensure
573 	 *    the DDRC has entered self-refresh.
574 	 */
575 	mmio_setbits_32((uint32_t)&priv->ctl->pwrctl,
576 			DDRCTRL_PWRCTL_SELFREF_SW);
577 	VERBOSE("[0x%x] pwrctl = 0x%x\n",
578 		(uint32_t)&priv->ctl->pwrctl,
579 		mmio_read_32((uint32_t)&priv->ctl->pwrctl));
580 
581 	/*
582 	 * 8. Wait until STAT.operating_mode[1:0]==11 indicating that the
583 	 *    DWC_ddr_umctl2 core is in self-refresh mode.
584 	 *    Ensure transition to self-refresh was due to software
585 	 *    by checking that STAT.selfref_type[1:0]=2.
586 	 */
587 	stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_SR);
588 
589 	/*
590 	 * 9. Set the MSTR.dll_off_mode = 1.
591 	 *    warning: MSTR.dll_off_mode is a quasi-dynamic type 2 field
592 	 */
593 	stm32mp1_start_sw_done(priv->ctl);
594 
595 	mmio_setbits_32((uint32_t)&priv->ctl->mstr, DDRCTRL_MSTR_DLL_OFF_MODE);
596 	VERBOSE("[0x%x] mstr = 0x%x\n",
597 		(uint32_t)&priv->ctl->mstr,
598 		mmio_read_32((uint32_t)&priv->ctl->mstr));
599 
600 	stm32mp1_wait_sw_done_ack(priv->ctl);
601 
602 	/* 10. Change the clock frequency to the desired value. */
603 
604 	/*
605 	 * 11. Update any registers which may be required to change for the new
606 	 *     frequency. This includes static and dynamic registers.
607 	 *     This includes both uMCTL2 registers and PHY registers.
608 	 */
609 
610 	/* Change Bypass Mode Frequency Range */
611 	if (stm32mp1_clk_get_rate(DDRPHYC) < 100000000U) {
612 		mmio_clrbits_32((uint32_t)&priv->phy->dllgcr,
613 				DDRPHYC_DLLGCR_BPS200);
614 	} else {
615 		mmio_setbits_32((uint32_t)&priv->phy->dllgcr,
616 				DDRPHYC_DLLGCR_BPS200);
617 	}
618 
619 	mmio_setbits_32((uint32_t)&priv->phy->acdllcr, DDRPHYC_ACDLLCR_DLLDIS);
620 
621 	mmio_setbits_32((uint32_t)&priv->phy->dx0dllcr,
622 			DDRPHYC_DXNDLLCR_DLLDIS);
623 	mmio_setbits_32((uint32_t)&priv->phy->dx1dllcr,
624 			DDRPHYC_DXNDLLCR_DLLDIS);
625 	mmio_setbits_32((uint32_t)&priv->phy->dx2dllcr,
626 			DDRPHYC_DXNDLLCR_DLLDIS);
627 	mmio_setbits_32((uint32_t)&priv->phy->dx3dllcr,
628 			DDRPHYC_DXNDLLCR_DLLDIS);
629 
630 	/* 12. Exit the self-refresh state by setting PWRCTL.selfref_sw = 0. */
631 	mmio_clrbits_32((uint32_t)&priv->ctl->pwrctl,
632 			DDRCTRL_PWRCTL_SELFREF_SW);
633 	stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_NORMAL);
634 
635 	/*
636 	 * 13. If ZQCTL0.dis_srx_zqcl = 0, the uMCTL2 performs a ZQCL command
637 	 *     at this point.
638 	 */
639 
640 	/*
641 	 * 14. Perform MRS commands as required to re-program timing registers
642 	 *     in the SDRAM for the new frequency
643 	 *     (in particular, CL, CWL and WR may need to be changed).
644 	 */
645 
646 	/* 15. Write DBG1.dis_hif = 0 to re-enable reads and writes. */
647 	mmio_clrbits_32((uint32_t)&priv->ctl->dbg1, DDRCTRL_DBG1_DIS_HIF);
648 	VERBOSE("[0x%x] dbg1 = 0x%x\n",
649 		(uint32_t)&priv->ctl->dbg1,
650 		mmio_read_32((uint32_t)&priv->ctl->dbg1));
651 }
652 
653 static void stm32mp1_refresh_disable(struct stm32mp1_ddrctl *ctl)
654 {
655 	stm32mp1_start_sw_done(ctl);
656 	/* Quasi-dynamic register update*/
657 	mmio_setbits_32((uint32_t)&ctl->rfshctl3,
658 			DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH);
659 	mmio_clrbits_32((uint32_t)&ctl->pwrctl, DDRCTRL_PWRCTL_POWERDOWN_EN);
660 	mmio_clrbits_32((uint32_t)&ctl->dfimisc,
661 			DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
662 	stm32mp1_wait_sw_done_ack(ctl);
663 }
664 
665 static void stm32mp1_refresh_restore(struct stm32mp1_ddrctl *ctl,
666 				     uint32_t rfshctl3, uint32_t pwrctl)
667 {
668 	stm32mp1_start_sw_done(ctl);
669 	if ((rfshctl3 & DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH) == 0U) {
670 		mmio_clrbits_32((uint32_t)&ctl->rfshctl3,
671 				DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH);
672 	}
673 	if ((pwrctl & DDRCTRL_PWRCTL_POWERDOWN_EN) != 0U) {
674 		mmio_setbits_32((uint32_t)&ctl->pwrctl,
675 				DDRCTRL_PWRCTL_POWERDOWN_EN);
676 	}
677 	mmio_setbits_32((uint32_t)&ctl->dfimisc,
678 			DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
679 	stm32mp1_wait_sw_done_ack(ctl);
680 }
681 
682 static int board_ddr_power_init(enum ddr_type ddr_type)
683 {
684 	if (dt_check_pmic()) {
685 		return pmic_ddr_power_init(ddr_type);
686 	}
687 
688 	return 0;
689 }
690 
691 void stm32mp1_ddr_init(struct ddr_info *priv,
692 		       struct stm32mp1_ddr_config *config)
693 {
694 	uint32_t pir;
695 	int ret;
696 
697 	if ((config->c_reg.mstr & DDRCTRL_MSTR_DDR3) != 0U) {
698 		ret = board_ddr_power_init(STM32MP_DDR3);
699 	} else {
700 		ret = board_ddr_power_init(STM32MP_LPDDR2);
701 	}
702 
703 	if (ret != 0) {
704 		panic();
705 	}
706 
707 	VERBOSE("name = %s\n", config->info.name);
708 	VERBOSE("speed = %d MHz\n", config->info.speed);
709 	VERBOSE("size  = 0x%x\n", config->info.size);
710 
711 	/* DDR INIT SEQUENCE */
712 
713 	/*
714 	 * 1. Program the DWC_ddr_umctl2 registers
715 	 *     nota: check DFIMISC.dfi_init_complete = 0
716 	 */
717 
718 	/* 1.1 RESETS: presetn, core_ddrc_rstn, aresetn */
719 	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAPBRST);
720 	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAXIRST);
721 	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCORERST);
722 	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYAPBRST);
723 	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYRST);
724 	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYCTLRST);
725 
726 	/* 1.2. start CLOCK */
727 	if (stm32mp1_ddr_clk_enable(priv, config->info.speed) != 0) {
728 		panic();
729 	}
730 
731 	/* 1.3. deassert reset */
732 	/* De-assert PHY rstn and ctl_rstn via DPHYRST and DPHYCTLRST. */
733 	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYRST);
734 	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYCTLRST);
735 	/*
736 	 * De-assert presetn once the clocks are active
737 	 * and stable via DDRCAPBRST bit.
738 	 */
739 	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAPBRST);
740 
741 	/* 1.4. wait 128 cycles to permit initialization of end logic */
742 	udelay(2);
743 	/* For PCLK = 133MHz => 1 us is enough, 2 to allow lower frequency */
744 
745 	/* 1.5. initialize registers ddr_umctl2 */
746 	/* Stop uMCTL2 before PHY is ready */
747 	mmio_clrbits_32((uint32_t)&priv->ctl->dfimisc,
748 			DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
749 	VERBOSE("[0x%x] dfimisc = 0x%x\n",
750 		(uint32_t)&priv->ctl->dfimisc,
751 		mmio_read_32((uint32_t)&priv->ctl->dfimisc));
752 
753 	set_reg(priv, REG_REG, &config->c_reg);
754 
755 	/* DDR3 = don't set DLLOFF for init mode */
756 	if ((config->c_reg.mstr &
757 	     (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE))
758 	    == (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) {
759 		VERBOSE("deactivate DLL OFF in mstr\n");
760 		mmio_clrbits_32((uint32_t)&priv->ctl->mstr,
761 				DDRCTRL_MSTR_DLL_OFF_MODE);
762 		VERBOSE("[0x%x] mstr = 0x%x\n",
763 			(uint32_t)&priv->ctl->mstr,
764 			mmio_read_32((uint32_t)&priv->ctl->mstr));
765 	}
766 
767 	set_reg(priv, REG_TIMING, &config->c_timing);
768 	set_reg(priv, REG_MAP, &config->c_map);
769 
770 	/* Skip CTRL init, SDRAM init is done by PHY PUBL */
771 	mmio_clrsetbits_32((uint32_t)&priv->ctl->init0,
772 			   DDRCTRL_INIT0_SKIP_DRAM_INIT_MASK,
773 			   DDRCTRL_INIT0_SKIP_DRAM_INIT_NORMAL);
774 	VERBOSE("[0x%x] init0 = 0x%x\n",
775 		(uint32_t)&priv->ctl->init0,
776 		mmio_read_32((uint32_t)&priv->ctl->init0));
777 
778 	set_reg(priv, REG_PERF, &config->c_perf);
779 
780 	/*  2. deassert reset signal core_ddrc_rstn, aresetn and presetn */
781 	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCORERST);
782 	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAXIRST);
783 	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYAPBRST);
784 
785 	/*
786 	 * 3. start PHY init by accessing relevant PUBL registers
787 	 *    (DXGCR, DCR, PTR*, MR*, DTPR*)
788 	 */
789 	set_reg(priv, REGPHY_REG, &config->p_reg);
790 	set_reg(priv, REGPHY_TIMING, &config->p_timing);
791 	set_reg(priv, REGPHY_CAL, &config->p_cal);
792 
793 	/* DDR3 = don't set DLLOFF for init mode */
794 	if ((config->c_reg.mstr &
795 	     (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE))
796 	    == (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) {
797 		VERBOSE("deactivate DLL OFF in mr1\n");
798 		mmio_clrbits_32((uint32_t)&priv->phy->mr1, BIT(0));
799 		VERBOSE("[0x%x] mr1 = 0x%x\n",
800 			(uint32_t)&priv->phy->mr1,
801 			mmio_read_32((uint32_t)&priv->phy->mr1));
802 	}
803 
804 	/*
805 	 *  4. Monitor PHY init status by polling PUBL register PGSR.IDONE
806 	 *     Perform DDR PHY DRAM initialization and Gate Training Evaluation
807 	 */
808 	stm32mp1_ddrphy_idone_wait(priv->phy);
809 
810 	/*
811 	 *  5. Indicate to PUBL that controller performs SDRAM initialization
812 	 *     by setting PIR.INIT and PIR CTLDINIT and pool PGSR.IDONE
813 	 *     DRAM init is done by PHY, init0.skip_dram.init = 1
814 	 */
815 
816 	pir = DDRPHYC_PIR_DLLSRST | DDRPHYC_PIR_DLLLOCK | DDRPHYC_PIR_ZCAL |
817 	      DDRPHYC_PIR_ITMSRST | DDRPHYC_PIR_DRAMINIT | DDRPHYC_PIR_ICPC;
818 
819 	if ((config->c_reg.mstr & DDRCTRL_MSTR_DDR3) != 0U) {
820 		pir |= DDRPHYC_PIR_DRAMRST; /* Only for DDR3 */
821 	}
822 
823 	stm32mp1_ddrphy_init(priv->phy, pir);
824 
825 	/*
826 	 *  6. SET DFIMISC.dfi_init_complete_en to 1
827 	 *  Enable quasi-dynamic register programming.
828 	 */
829 	stm32mp1_start_sw_done(priv->ctl);
830 
831 	mmio_setbits_32((uint32_t)&priv->ctl->dfimisc,
832 			DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
833 	VERBOSE("[0x%x] dfimisc = 0x%x\n",
834 		(uint32_t)&priv->ctl->dfimisc,
835 		mmio_read_32((uint32_t)&priv->ctl->dfimisc));
836 
837 	stm32mp1_wait_sw_done_ack(priv->ctl);
838 
839 	/*
840 	 *  7. Wait for DWC_ddr_umctl2 to move to normal operation mode
841 	 *     by monitoring STAT.operating_mode signal
842 	 */
843 
844 	/* Wait uMCTL2 ready */
845 	stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_NORMAL);
846 
847 	/* Switch to DLL OFF mode */
848 	if ((config->c_reg.mstr & DDRCTRL_MSTR_DLL_OFF_MODE) != 0U) {
849 		stm32mp1_ddr3_dll_off(priv);
850 	}
851 
852 	VERBOSE("DDR DQS training : ");
853 
854 	/*
855 	 *  8. Disable Auto refresh and power down by setting
856 	 *    - RFSHCTL3.dis_au_refresh = 1
857 	 *    - PWRCTL.powerdown_en = 0
858 	 *    - DFIMISC.dfiinit_complete_en = 0
859 	 */
860 	stm32mp1_refresh_disable(priv->ctl);
861 
862 	/*
863 	 *  9. Program PUBL PGCR to enable refresh during training
864 	 *     and rank to train
865 	 *     not done => keep the programed value in PGCR
866 	 */
867 
868 	/*
869 	 * 10. configure PUBL PIR register to specify which training step
870 	 * to run
871 	 * Warning : RVTRN  is not supported by this PUBL
872 	 */
873 	stm32mp1_ddrphy_init(priv->phy, DDRPHYC_PIR_QSTRN);
874 
875 	/* 11. monitor PUB PGSR.IDONE to poll cpmpletion of training sequence */
876 	stm32mp1_ddrphy_idone_wait(priv->phy);
877 
878 	/*
879 	 * 12. set back registers in step 8 to the orginal values if desidered
880 	 */
881 	stm32mp1_refresh_restore(priv->ctl, config->c_reg.rfshctl3,
882 				 config->c_reg.pwrctl);
883 
884 	/* Enable uMCTL2 AXI port 0 */
885 	mmio_setbits_32((uint32_t)&priv->ctl->pctrl_0, DDRCTRL_PCTRL_N_PORT_EN);
886 	VERBOSE("[0x%x] pctrl_0 = 0x%x\n",
887 		(uint32_t)&priv->ctl->pctrl_0,
888 		mmio_read_32((uint32_t)&priv->ctl->pctrl_0));
889 
890 	/* Enable uMCTL2 AXI port 1 */
891 	mmio_setbits_32((uint32_t)&priv->ctl->pctrl_1, DDRCTRL_PCTRL_N_PORT_EN);
892 	VERBOSE("[0x%x] pctrl_1 = 0x%x\n",
893 		(uint32_t)&priv->ctl->pctrl_1,
894 		mmio_read_32((uint32_t)&priv->ctl->pctrl_1));
895 }
896