1 /* 2 * Copyright (C) 2018-2022, STMicroelectronics - All Rights Reserved 3 * 4 * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause 5 */ 6 7 #include <errno.h> 8 #include <stddef.h> 9 10 #include <arch.h> 11 #include <arch_helpers.h> 12 #include <common/debug.h> 13 #include <drivers/clk.h> 14 #include <drivers/delay_timer.h> 15 #include <drivers/st/stm32mp1_ddr.h> 16 #include <drivers/st/stm32mp1_ddr_regs.h> 17 #include <drivers/st/stm32mp1_pwr.h> 18 #include <drivers/st/stm32mp1_ram.h> 19 #include <drivers/st/stm32mp_pmic.h> 20 #include <lib/mmio.h> 21 #include <plat/common/platform.h> 22 23 #include <platform_def.h> 24 25 struct reg_desc { 26 const char *name; 27 uint16_t offset; /* Offset for base address */ 28 uint8_t par_offset; /* Offset for parameter array */ 29 }; 30 31 #define INVALID_OFFSET 0xFFU 32 33 #define TIMEOUT_US_1S 1000000U 34 35 #define DDRCTL_REG(x, y) \ 36 { \ 37 .name = #x, \ 38 .offset = offsetof(struct stm32mp1_ddrctl, x), \ 39 .par_offset = offsetof(struct y, x) \ 40 } 41 42 #define DDRPHY_REG(x, y) \ 43 { \ 44 .name = #x, \ 45 .offset = offsetof(struct stm32mp1_ddrphy, x), \ 46 .par_offset = offsetof(struct y, x) \ 47 } 48 49 #define DDRCTL_REG_REG(x) DDRCTL_REG(x, stm32mp1_ddrctrl_reg) 50 static const struct reg_desc ddr_reg[] = { 51 DDRCTL_REG_REG(mstr), 52 DDRCTL_REG_REG(mrctrl0), 53 DDRCTL_REG_REG(mrctrl1), 54 DDRCTL_REG_REG(derateen), 55 DDRCTL_REG_REG(derateint), 56 DDRCTL_REG_REG(pwrctl), 57 DDRCTL_REG_REG(pwrtmg), 58 DDRCTL_REG_REG(hwlpctl), 59 DDRCTL_REG_REG(rfshctl0), 60 DDRCTL_REG_REG(rfshctl3), 61 DDRCTL_REG_REG(crcparctl0), 62 DDRCTL_REG_REG(zqctl0), 63 DDRCTL_REG_REG(dfitmg0), 64 DDRCTL_REG_REG(dfitmg1), 65 DDRCTL_REG_REG(dfilpcfg0), 66 DDRCTL_REG_REG(dfiupd0), 67 DDRCTL_REG_REG(dfiupd1), 68 DDRCTL_REG_REG(dfiupd2), 69 DDRCTL_REG_REG(dfiphymstr), 70 DDRCTL_REG_REG(odtmap), 71 DDRCTL_REG_REG(dbg0), 72 DDRCTL_REG_REG(dbg1), 73 DDRCTL_REG_REG(dbgcmd), 74 DDRCTL_REG_REG(poisoncfg), 75 DDRCTL_REG_REG(pccfg), 76 }; 77 78 #define DDRCTL_REG_TIMING(x) DDRCTL_REG(x, stm32mp1_ddrctrl_timing) 79 static const struct reg_desc ddr_timing[] = { 80 DDRCTL_REG_TIMING(rfshtmg), 81 DDRCTL_REG_TIMING(dramtmg0), 82 DDRCTL_REG_TIMING(dramtmg1), 83 DDRCTL_REG_TIMING(dramtmg2), 84 DDRCTL_REG_TIMING(dramtmg3), 85 DDRCTL_REG_TIMING(dramtmg4), 86 DDRCTL_REG_TIMING(dramtmg5), 87 DDRCTL_REG_TIMING(dramtmg6), 88 DDRCTL_REG_TIMING(dramtmg7), 89 DDRCTL_REG_TIMING(dramtmg8), 90 DDRCTL_REG_TIMING(dramtmg14), 91 DDRCTL_REG_TIMING(odtcfg), 92 }; 93 94 #define DDRCTL_REG_MAP(x) DDRCTL_REG(x, stm32mp1_ddrctrl_map) 95 static const struct reg_desc ddr_map[] = { 96 DDRCTL_REG_MAP(addrmap1), 97 DDRCTL_REG_MAP(addrmap2), 98 DDRCTL_REG_MAP(addrmap3), 99 DDRCTL_REG_MAP(addrmap4), 100 DDRCTL_REG_MAP(addrmap5), 101 DDRCTL_REG_MAP(addrmap6), 102 DDRCTL_REG_MAP(addrmap9), 103 DDRCTL_REG_MAP(addrmap10), 104 DDRCTL_REG_MAP(addrmap11), 105 }; 106 107 #define DDRCTL_REG_PERF(x) DDRCTL_REG(x, stm32mp1_ddrctrl_perf) 108 static const struct reg_desc ddr_perf[] = { 109 DDRCTL_REG_PERF(sched), 110 DDRCTL_REG_PERF(sched1), 111 DDRCTL_REG_PERF(perfhpr1), 112 DDRCTL_REG_PERF(perflpr1), 113 DDRCTL_REG_PERF(perfwr1), 114 DDRCTL_REG_PERF(pcfgr_0), 115 DDRCTL_REG_PERF(pcfgw_0), 116 DDRCTL_REG_PERF(pcfgqos0_0), 117 DDRCTL_REG_PERF(pcfgqos1_0), 118 DDRCTL_REG_PERF(pcfgwqos0_0), 119 DDRCTL_REG_PERF(pcfgwqos1_0), 120 DDRCTL_REG_PERF(pcfgr_1), 121 DDRCTL_REG_PERF(pcfgw_1), 122 DDRCTL_REG_PERF(pcfgqos0_1), 123 DDRCTL_REG_PERF(pcfgqos1_1), 124 DDRCTL_REG_PERF(pcfgwqos0_1), 125 DDRCTL_REG_PERF(pcfgwqos1_1), 126 }; 127 128 #define DDRPHY_REG_REG(x) DDRPHY_REG(x, stm32mp1_ddrphy_reg) 129 static const struct reg_desc ddrphy_reg[] = { 130 DDRPHY_REG_REG(pgcr), 131 DDRPHY_REG_REG(aciocr), 132 DDRPHY_REG_REG(dxccr), 133 DDRPHY_REG_REG(dsgcr), 134 DDRPHY_REG_REG(dcr), 135 DDRPHY_REG_REG(odtcr), 136 DDRPHY_REG_REG(zq0cr1), 137 DDRPHY_REG_REG(dx0gcr), 138 DDRPHY_REG_REG(dx1gcr), 139 DDRPHY_REG_REG(dx2gcr), 140 DDRPHY_REG_REG(dx3gcr), 141 }; 142 143 #define DDRPHY_REG_TIMING(x) DDRPHY_REG(x, stm32mp1_ddrphy_timing) 144 static const struct reg_desc ddrphy_timing[] = { 145 DDRPHY_REG_TIMING(ptr0), 146 DDRPHY_REG_TIMING(ptr1), 147 DDRPHY_REG_TIMING(ptr2), 148 DDRPHY_REG_TIMING(dtpr0), 149 DDRPHY_REG_TIMING(dtpr1), 150 DDRPHY_REG_TIMING(dtpr2), 151 DDRPHY_REG_TIMING(mr0), 152 DDRPHY_REG_TIMING(mr1), 153 DDRPHY_REG_TIMING(mr2), 154 DDRPHY_REG_TIMING(mr3), 155 }; 156 157 #define DDRPHY_REG_CAL(x) DDRPHY_REG(x, stm32mp1_ddrphy_cal) 158 static const struct reg_desc ddrphy_cal[] = { 159 DDRPHY_REG_CAL(dx0dllcr), 160 DDRPHY_REG_CAL(dx0dqtr), 161 DDRPHY_REG_CAL(dx0dqstr), 162 DDRPHY_REG_CAL(dx1dllcr), 163 DDRPHY_REG_CAL(dx1dqtr), 164 DDRPHY_REG_CAL(dx1dqstr), 165 DDRPHY_REG_CAL(dx2dllcr), 166 DDRPHY_REG_CAL(dx2dqtr), 167 DDRPHY_REG_CAL(dx2dqstr), 168 DDRPHY_REG_CAL(dx3dllcr), 169 DDRPHY_REG_CAL(dx3dqtr), 170 DDRPHY_REG_CAL(dx3dqstr), 171 }; 172 173 #define DDR_REG_DYN(x) \ 174 { \ 175 .name = #x, \ 176 .offset = offsetof(struct stm32mp1_ddrctl, x), \ 177 .par_offset = INVALID_OFFSET \ 178 } 179 180 static const struct reg_desc ddr_dyn[] = { 181 DDR_REG_DYN(stat), 182 DDR_REG_DYN(init0), 183 DDR_REG_DYN(dfimisc), 184 DDR_REG_DYN(dfistat), 185 DDR_REG_DYN(swctl), 186 DDR_REG_DYN(swstat), 187 DDR_REG_DYN(pctrl_0), 188 DDR_REG_DYN(pctrl_1), 189 }; 190 191 #define DDRPHY_REG_DYN(x) \ 192 { \ 193 .name = #x, \ 194 .offset = offsetof(struct stm32mp1_ddrphy, x), \ 195 .par_offset = INVALID_OFFSET \ 196 } 197 198 static const struct reg_desc ddrphy_dyn[] = { 199 DDRPHY_REG_DYN(pir), 200 DDRPHY_REG_DYN(pgsr), 201 }; 202 203 enum reg_type { 204 REG_REG, 205 REG_TIMING, 206 REG_PERF, 207 REG_MAP, 208 REGPHY_REG, 209 REGPHY_TIMING, 210 REGPHY_CAL, 211 /* 212 * Dynamic registers => managed in driver or not changed, 213 * can be dumped in interactive mode. 214 */ 215 REG_DYN, 216 REGPHY_DYN, 217 REG_TYPE_NB 218 }; 219 220 enum base_type { 221 DDR_BASE, 222 DDRPHY_BASE, 223 NONE_BASE 224 }; 225 226 struct ddr_reg_info { 227 const char *name; 228 const struct reg_desc *desc; 229 uint8_t size; 230 enum base_type base; 231 }; 232 233 static const struct ddr_reg_info ddr_registers[REG_TYPE_NB] = { 234 [REG_REG] = { 235 .name = "static", 236 .desc = ddr_reg, 237 .size = ARRAY_SIZE(ddr_reg), 238 .base = DDR_BASE 239 }, 240 [REG_TIMING] = { 241 .name = "timing", 242 .desc = ddr_timing, 243 .size = ARRAY_SIZE(ddr_timing), 244 .base = DDR_BASE 245 }, 246 [REG_PERF] = { 247 .name = "perf", 248 .desc = ddr_perf, 249 .size = ARRAY_SIZE(ddr_perf), 250 .base = DDR_BASE 251 }, 252 [REG_MAP] = { 253 .name = "map", 254 .desc = ddr_map, 255 .size = ARRAY_SIZE(ddr_map), 256 .base = DDR_BASE 257 }, 258 [REGPHY_REG] = { 259 .name = "static", 260 .desc = ddrphy_reg, 261 .size = ARRAY_SIZE(ddrphy_reg), 262 .base = DDRPHY_BASE 263 }, 264 [REGPHY_TIMING] = { 265 .name = "timing", 266 .desc = ddrphy_timing, 267 .size = ARRAY_SIZE(ddrphy_timing), 268 .base = DDRPHY_BASE 269 }, 270 [REGPHY_CAL] = { 271 .name = "cal", 272 .desc = ddrphy_cal, 273 .size = ARRAY_SIZE(ddrphy_cal), 274 .base = DDRPHY_BASE 275 }, 276 [REG_DYN] = { 277 .name = "dyn", 278 .desc = ddr_dyn, 279 .size = ARRAY_SIZE(ddr_dyn), 280 .base = DDR_BASE 281 }, 282 [REGPHY_DYN] = { 283 .name = "dyn", 284 .desc = ddrphy_dyn, 285 .size = ARRAY_SIZE(ddrphy_dyn), 286 .base = DDRPHY_BASE 287 }, 288 }; 289 290 static uintptr_t get_base_addr(const struct ddr_info *priv, enum base_type base) 291 { 292 if (base == DDRPHY_BASE) { 293 return (uintptr_t)priv->phy; 294 } else { 295 return (uintptr_t)priv->ctl; 296 } 297 } 298 299 static void set_reg(const struct ddr_info *priv, 300 enum reg_type type, 301 const void *param) 302 { 303 unsigned int i; 304 unsigned int value; 305 enum base_type base = ddr_registers[type].base; 306 uintptr_t base_addr = get_base_addr(priv, base); 307 const struct reg_desc *desc = ddr_registers[type].desc; 308 309 VERBOSE("init %s\n", ddr_registers[type].name); 310 for (i = 0; i < ddr_registers[type].size; i++) { 311 uintptr_t ptr = base_addr + desc[i].offset; 312 313 if (desc[i].par_offset == INVALID_OFFSET) { 314 ERROR("invalid parameter offset for %s", desc[i].name); 315 panic(); 316 } else { 317 value = *((uint32_t *)((uintptr_t)param + 318 desc[i].par_offset)); 319 mmio_write_32(ptr, value); 320 } 321 } 322 } 323 324 static void stm32mp1_ddrphy_idone_wait(struct stm32mp1_ddrphy *phy) 325 { 326 uint32_t pgsr; 327 int error = 0; 328 uint64_t timeout = timeout_init_us(TIMEOUT_US_1S); 329 330 do { 331 pgsr = mmio_read_32((uintptr_t)&phy->pgsr); 332 333 VERBOSE(" > [0x%lx] pgsr = 0x%x &\n", 334 (uintptr_t)&phy->pgsr, pgsr); 335 336 if (timeout_elapsed(timeout)) { 337 panic(); 338 } 339 340 if ((pgsr & DDRPHYC_PGSR_DTERR) != 0U) { 341 VERBOSE("DQS Gate Trainig Error\n"); 342 error++; 343 } 344 345 if ((pgsr & DDRPHYC_PGSR_DTIERR) != 0U) { 346 VERBOSE("DQS Gate Trainig Intermittent Error\n"); 347 error++; 348 } 349 350 if ((pgsr & DDRPHYC_PGSR_DFTERR) != 0U) { 351 VERBOSE("DQS Drift Error\n"); 352 error++; 353 } 354 355 if ((pgsr & DDRPHYC_PGSR_RVERR) != 0U) { 356 VERBOSE("Read Valid Training Error\n"); 357 error++; 358 } 359 360 if ((pgsr & DDRPHYC_PGSR_RVEIRR) != 0U) { 361 VERBOSE("Read Valid Training Intermittent Error\n"); 362 error++; 363 } 364 } while (((pgsr & DDRPHYC_PGSR_IDONE) == 0U) && (error == 0)); 365 VERBOSE("\n[0x%lx] pgsr = 0x%x\n", 366 (uintptr_t)&phy->pgsr, pgsr); 367 } 368 369 static void stm32mp1_ddrphy_init(struct stm32mp1_ddrphy *phy, uint32_t pir) 370 { 371 uint32_t pir_init = pir | DDRPHYC_PIR_INIT; 372 373 mmio_write_32((uintptr_t)&phy->pir, pir_init); 374 VERBOSE("[0x%lx] pir = 0x%x -> 0x%x\n", 375 (uintptr_t)&phy->pir, pir_init, 376 mmio_read_32((uintptr_t)&phy->pir)); 377 378 /* Need to wait 10 configuration clock before start polling */ 379 udelay(10); 380 381 /* Wait DRAM initialization and Gate Training Evaluation complete */ 382 stm32mp1_ddrphy_idone_wait(phy); 383 } 384 385 /* Start quasi dynamic register update */ 386 static void stm32mp1_start_sw_done(struct stm32mp1_ddrctl *ctl) 387 { 388 mmio_clrbits_32((uintptr_t)&ctl->swctl, DDRCTRL_SWCTL_SW_DONE); 389 VERBOSE("[0x%lx] swctl = 0x%x\n", 390 (uintptr_t)&ctl->swctl, mmio_read_32((uintptr_t)&ctl->swctl)); 391 } 392 393 /* Wait quasi dynamic register update */ 394 static void stm32mp1_wait_sw_done_ack(struct stm32mp1_ddrctl *ctl) 395 { 396 uint64_t timeout; 397 uint32_t swstat; 398 399 mmio_setbits_32((uintptr_t)&ctl->swctl, DDRCTRL_SWCTL_SW_DONE); 400 VERBOSE("[0x%lx] swctl = 0x%x\n", 401 (uintptr_t)&ctl->swctl, mmio_read_32((uintptr_t)&ctl->swctl)); 402 403 timeout = timeout_init_us(TIMEOUT_US_1S); 404 do { 405 swstat = mmio_read_32((uintptr_t)&ctl->swstat); 406 VERBOSE("[0x%lx] swstat = 0x%x ", 407 (uintptr_t)&ctl->swstat, swstat); 408 if (timeout_elapsed(timeout)) { 409 panic(); 410 } 411 } while ((swstat & DDRCTRL_SWSTAT_SW_DONE_ACK) == 0U); 412 413 VERBOSE("[0x%lx] swstat = 0x%x\n", 414 (uintptr_t)&ctl->swstat, swstat); 415 } 416 417 /* Wait quasi dynamic register update */ 418 static void stm32mp1_wait_operating_mode(struct ddr_info *priv, uint32_t mode) 419 { 420 uint64_t timeout; 421 uint32_t stat; 422 int break_loop = 0; 423 424 timeout = timeout_init_us(TIMEOUT_US_1S); 425 for ( ; ; ) { 426 uint32_t operating_mode; 427 uint32_t selref_type; 428 429 stat = mmio_read_32((uintptr_t)&priv->ctl->stat); 430 operating_mode = stat & DDRCTRL_STAT_OPERATING_MODE_MASK; 431 selref_type = stat & DDRCTRL_STAT_SELFREF_TYPE_MASK; 432 VERBOSE("[0x%lx] stat = 0x%x\n", 433 (uintptr_t)&priv->ctl->stat, stat); 434 if (timeout_elapsed(timeout)) { 435 panic(); 436 } 437 438 if (mode == DDRCTRL_STAT_OPERATING_MODE_SR) { 439 /* 440 * Self-refresh due to software 441 * => checking also STAT.selfref_type. 442 */ 443 if ((operating_mode == 444 DDRCTRL_STAT_OPERATING_MODE_SR) && 445 (selref_type == DDRCTRL_STAT_SELFREF_TYPE_SR)) { 446 break_loop = 1; 447 } 448 } else if (operating_mode == mode) { 449 break_loop = 1; 450 } else if ((mode == DDRCTRL_STAT_OPERATING_MODE_NORMAL) && 451 (operating_mode == DDRCTRL_STAT_OPERATING_MODE_SR) && 452 (selref_type == DDRCTRL_STAT_SELFREF_TYPE_ASR)) { 453 /* Normal mode: handle also automatic self refresh */ 454 break_loop = 1; 455 } 456 457 if (break_loop == 1) { 458 break; 459 } 460 } 461 462 VERBOSE("[0x%lx] stat = 0x%x\n", 463 (uintptr_t)&priv->ctl->stat, stat); 464 } 465 466 /* Mode Register Writes (MRW or MRS) */ 467 static void stm32mp1_mode_register_write(struct ddr_info *priv, uint8_t addr, 468 uint32_t data) 469 { 470 uint32_t mrctrl0; 471 472 VERBOSE("MRS: %d = %x\n", addr, data); 473 474 /* 475 * 1. Poll MRSTAT.mr_wr_busy until it is '0'. 476 * This checks that there is no outstanding MR transaction. 477 * No write should be performed to MRCTRL0 and MRCTRL1 478 * if MRSTAT.mr_wr_busy = 1. 479 */ 480 while ((mmio_read_32((uintptr_t)&priv->ctl->mrstat) & 481 DDRCTRL_MRSTAT_MR_WR_BUSY) != 0U) { 482 ; 483 } 484 485 /* 486 * 2. Write the MRCTRL0.mr_type, MRCTRL0.mr_addr, MRCTRL0.mr_rank 487 * and (for MRWs) MRCTRL1.mr_data to define the MR transaction. 488 */ 489 mrctrl0 = DDRCTRL_MRCTRL0_MR_TYPE_WRITE | 490 DDRCTRL_MRCTRL0_MR_RANK_ALL | 491 (((uint32_t)addr << DDRCTRL_MRCTRL0_MR_ADDR_SHIFT) & 492 DDRCTRL_MRCTRL0_MR_ADDR_MASK); 493 mmio_write_32((uintptr_t)&priv->ctl->mrctrl0, mrctrl0); 494 VERBOSE("[0x%lx] mrctrl0 = 0x%x (0x%x)\n", 495 (uintptr_t)&priv->ctl->mrctrl0, 496 mmio_read_32((uintptr_t)&priv->ctl->mrctrl0), mrctrl0); 497 mmio_write_32((uintptr_t)&priv->ctl->mrctrl1, data); 498 VERBOSE("[0x%lx] mrctrl1 = 0x%x\n", 499 (uintptr_t)&priv->ctl->mrctrl1, 500 mmio_read_32((uintptr_t)&priv->ctl->mrctrl1)); 501 502 /* 503 * 3. In a separate APB transaction, write the MRCTRL0.mr_wr to 1. This 504 * bit is self-clearing, and triggers the MR transaction. 505 * The uMCTL2 then asserts the MRSTAT.mr_wr_busy while it performs 506 * the MR transaction to SDRAM, and no further access can be 507 * initiated until it is deasserted. 508 */ 509 mrctrl0 |= DDRCTRL_MRCTRL0_MR_WR; 510 mmio_write_32((uintptr_t)&priv->ctl->mrctrl0, mrctrl0); 511 512 while ((mmio_read_32((uintptr_t)&priv->ctl->mrstat) & 513 DDRCTRL_MRSTAT_MR_WR_BUSY) != 0U) { 514 ; 515 } 516 517 VERBOSE("[0x%lx] mrctrl0 = 0x%x\n", 518 (uintptr_t)&priv->ctl->mrctrl0, mrctrl0); 519 } 520 521 /* Switch DDR3 from DLL-on to DLL-off */ 522 static void stm32mp1_ddr3_dll_off(struct ddr_info *priv) 523 { 524 uint32_t mr1 = mmio_read_32((uintptr_t)&priv->phy->mr1); 525 uint32_t mr2 = mmio_read_32((uintptr_t)&priv->phy->mr2); 526 uint32_t dbgcam; 527 528 VERBOSE("mr1: 0x%x\n", mr1); 529 VERBOSE("mr2: 0x%x\n", mr2); 530 531 /* 532 * 1. Set the DBG1.dis_hif = 1. 533 * This prevents further reads/writes being received on the HIF. 534 */ 535 mmio_setbits_32((uintptr_t)&priv->ctl->dbg1, DDRCTRL_DBG1_DIS_HIF); 536 VERBOSE("[0x%lx] dbg1 = 0x%x\n", 537 (uintptr_t)&priv->ctl->dbg1, 538 mmio_read_32((uintptr_t)&priv->ctl->dbg1)); 539 540 /* 541 * 2. Ensure all commands have been flushed from the uMCTL2 by polling 542 * DBGCAM.wr_data_pipeline_empty = 1, 543 * DBGCAM.rd_data_pipeline_empty = 1, 544 * DBGCAM.dbg_wr_q_depth = 0 , 545 * DBGCAM.dbg_lpr_q_depth = 0, and 546 * DBGCAM.dbg_hpr_q_depth = 0. 547 */ 548 do { 549 dbgcam = mmio_read_32((uintptr_t)&priv->ctl->dbgcam); 550 VERBOSE("[0x%lx] dbgcam = 0x%x\n", 551 (uintptr_t)&priv->ctl->dbgcam, dbgcam); 552 } while ((((dbgcam & DDRCTRL_DBGCAM_DATA_PIPELINE_EMPTY) == 553 DDRCTRL_DBGCAM_DATA_PIPELINE_EMPTY)) && 554 ((dbgcam & DDRCTRL_DBGCAM_DBG_Q_DEPTH) == 0U)); 555 556 /* 557 * 3. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers) 558 * to disable RTT_NOM: 559 * a. DDR3: Write to MR1[9], MR1[6] and MR1[2] 560 * b. DDR4: Write to MR1[10:8] 561 */ 562 mr1 &= ~(BIT(9) | BIT(6) | BIT(2)); 563 stm32mp1_mode_register_write(priv, 1, mr1); 564 565 /* 566 * 4. For DDR4 only: Perform an MRS command 567 * (using MRCTRL0 and MRCTRL1 registers) to write to MR5[8:6] 568 * to disable RTT_PARK 569 */ 570 571 /* 572 * 5. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers) 573 * to write to MR2[10:9], to disable RTT_WR 574 * (and therefore disable dynamic ODT). 575 * This applies for both DDR3 and DDR4. 576 */ 577 mr2 &= ~GENMASK(10, 9); 578 stm32mp1_mode_register_write(priv, 2, mr2); 579 580 /* 581 * 6. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers) 582 * to disable the DLL. The timing of this MRS is automatically 583 * handled by the uMCTL2. 584 * a. DDR3: Write to MR1[0] 585 * b. DDR4: Write to MR1[0] 586 */ 587 mr1 |= BIT(0); 588 stm32mp1_mode_register_write(priv, 1, mr1); 589 590 /* 591 * 7. Put the SDRAM into self-refresh mode by setting 592 * PWRCTL.selfref_sw = 1, and polling STAT.operating_mode to ensure 593 * the DDRC has entered self-refresh. 594 */ 595 mmio_setbits_32((uintptr_t)&priv->ctl->pwrctl, 596 DDRCTRL_PWRCTL_SELFREF_SW); 597 VERBOSE("[0x%lx] pwrctl = 0x%x\n", 598 (uintptr_t)&priv->ctl->pwrctl, 599 mmio_read_32((uintptr_t)&priv->ctl->pwrctl)); 600 601 /* 602 * 8. Wait until STAT.operating_mode[1:0]==11 indicating that the 603 * DWC_ddr_umctl2 core is in self-refresh mode. 604 * Ensure transition to self-refresh was due to software 605 * by checking that STAT.selfref_type[1:0]=2. 606 */ 607 stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_SR); 608 609 /* 610 * 9. Set the MSTR.dll_off_mode = 1. 611 * warning: MSTR.dll_off_mode is a quasi-dynamic type 2 field 612 */ 613 stm32mp1_start_sw_done(priv->ctl); 614 615 mmio_setbits_32((uintptr_t)&priv->ctl->mstr, DDRCTRL_MSTR_DLL_OFF_MODE); 616 VERBOSE("[0x%lx] mstr = 0x%x\n", 617 (uintptr_t)&priv->ctl->mstr, 618 mmio_read_32((uintptr_t)&priv->ctl->mstr)); 619 620 stm32mp1_wait_sw_done_ack(priv->ctl); 621 622 /* 10. Change the clock frequency to the desired value. */ 623 624 /* 625 * 11. Update any registers which may be required to change for the new 626 * frequency. This includes static and dynamic registers. 627 * This includes both uMCTL2 registers and PHY registers. 628 */ 629 630 /* Change Bypass Mode Frequency Range */ 631 if (clk_get_rate(DDRPHYC) < 100000000U) { 632 mmio_clrbits_32((uintptr_t)&priv->phy->dllgcr, 633 DDRPHYC_DLLGCR_BPS200); 634 } else { 635 mmio_setbits_32((uintptr_t)&priv->phy->dllgcr, 636 DDRPHYC_DLLGCR_BPS200); 637 } 638 639 mmio_setbits_32((uintptr_t)&priv->phy->acdllcr, DDRPHYC_ACDLLCR_DLLDIS); 640 641 mmio_setbits_32((uintptr_t)&priv->phy->dx0dllcr, 642 DDRPHYC_DXNDLLCR_DLLDIS); 643 mmio_setbits_32((uintptr_t)&priv->phy->dx1dllcr, 644 DDRPHYC_DXNDLLCR_DLLDIS); 645 mmio_setbits_32((uintptr_t)&priv->phy->dx2dllcr, 646 DDRPHYC_DXNDLLCR_DLLDIS); 647 mmio_setbits_32((uintptr_t)&priv->phy->dx3dllcr, 648 DDRPHYC_DXNDLLCR_DLLDIS); 649 650 /* 12. Exit the self-refresh state by setting PWRCTL.selfref_sw = 0. */ 651 mmio_clrbits_32((uintptr_t)&priv->ctl->pwrctl, 652 DDRCTRL_PWRCTL_SELFREF_SW); 653 stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_NORMAL); 654 655 /* 656 * 13. If ZQCTL0.dis_srx_zqcl = 0, the uMCTL2 performs a ZQCL command 657 * at this point. 658 */ 659 660 /* 661 * 14. Perform MRS commands as required to re-program timing registers 662 * in the SDRAM for the new frequency 663 * (in particular, CL, CWL and WR may need to be changed). 664 */ 665 666 /* 15. Write DBG1.dis_hif = 0 to re-enable reads and writes. */ 667 mmio_clrbits_32((uintptr_t)&priv->ctl->dbg1, DDRCTRL_DBG1_DIS_HIF); 668 VERBOSE("[0x%lx] dbg1 = 0x%x\n", 669 (uintptr_t)&priv->ctl->dbg1, 670 mmio_read_32((uintptr_t)&priv->ctl->dbg1)); 671 } 672 673 static void stm32mp1_refresh_disable(struct stm32mp1_ddrctl *ctl) 674 { 675 stm32mp1_start_sw_done(ctl); 676 /* Quasi-dynamic register update*/ 677 mmio_setbits_32((uintptr_t)&ctl->rfshctl3, 678 DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH); 679 mmio_clrbits_32((uintptr_t)&ctl->pwrctl, DDRCTRL_PWRCTL_POWERDOWN_EN); 680 mmio_clrbits_32((uintptr_t)&ctl->dfimisc, 681 DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN); 682 stm32mp1_wait_sw_done_ack(ctl); 683 } 684 685 static void stm32mp1_refresh_restore(struct stm32mp1_ddrctl *ctl, 686 uint32_t rfshctl3, uint32_t pwrctl) 687 { 688 stm32mp1_start_sw_done(ctl); 689 if ((rfshctl3 & DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH) == 0U) { 690 mmio_clrbits_32((uintptr_t)&ctl->rfshctl3, 691 DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH); 692 } 693 if ((pwrctl & DDRCTRL_PWRCTL_POWERDOWN_EN) != 0U) { 694 mmio_setbits_32((uintptr_t)&ctl->pwrctl, 695 DDRCTRL_PWRCTL_POWERDOWN_EN); 696 } 697 mmio_setbits_32((uintptr_t)&ctl->dfimisc, 698 DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN); 699 stm32mp1_wait_sw_done_ack(ctl); 700 } 701 702 static int board_ddr_power_init(enum ddr_type ddr_type) 703 { 704 if (dt_pmic_status() > 0) { 705 return pmic_ddr_power_init(ddr_type); 706 } 707 708 return 0; 709 } 710 711 void stm32mp1_ddr_init(struct ddr_info *priv, 712 struct stm32mp1_ddr_config *config) 713 { 714 uint32_t pir; 715 int ret = -EINVAL; 716 717 if ((config->c_reg.mstr & DDRCTRL_MSTR_DDR3) != 0U) { 718 ret = board_ddr_power_init(STM32MP_DDR3); 719 } else if ((config->c_reg.mstr & DDRCTRL_MSTR_LPDDR2) != 0U) { 720 ret = board_ddr_power_init(STM32MP_LPDDR2); 721 } else if ((config->c_reg.mstr & DDRCTRL_MSTR_LPDDR3) != 0U) { 722 ret = board_ddr_power_init(STM32MP_LPDDR3); 723 } else { 724 ERROR("DDR type not supported\n"); 725 } 726 727 if (ret != 0) { 728 panic(); 729 } 730 731 VERBOSE("name = %s\n", config->info.name); 732 VERBOSE("speed = %u kHz\n", config->info.speed); 733 VERBOSE("size = 0x%x\n", config->info.size); 734 735 /* DDR INIT SEQUENCE */ 736 737 /* 738 * 1. Program the DWC_ddr_umctl2 registers 739 * nota: check DFIMISC.dfi_init_complete = 0 740 */ 741 742 /* 1.1 RESETS: presetn, core_ddrc_rstn, aresetn */ 743 mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAPBRST); 744 mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAXIRST); 745 mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCORERST); 746 mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYAPBRST); 747 mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYRST); 748 mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYCTLRST); 749 750 /* 1.2. start CLOCK */ 751 if (stm32mp1_ddr_clk_enable(priv, config->info.speed) != 0) { 752 panic(); 753 } 754 755 /* 1.3. deassert reset */ 756 /* De-assert PHY rstn and ctl_rstn via DPHYRST and DPHYCTLRST. */ 757 mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYRST); 758 mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYCTLRST); 759 /* 760 * De-assert presetn once the clocks are active 761 * and stable via DDRCAPBRST bit. 762 */ 763 mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAPBRST); 764 765 /* 1.4. wait 128 cycles to permit initialization of end logic */ 766 udelay(2); 767 /* For PCLK = 133MHz => 1 us is enough, 2 to allow lower frequency */ 768 769 /* 1.5. initialize registers ddr_umctl2 */ 770 /* Stop uMCTL2 before PHY is ready */ 771 mmio_clrbits_32((uintptr_t)&priv->ctl->dfimisc, 772 DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN); 773 VERBOSE("[0x%lx] dfimisc = 0x%x\n", 774 (uintptr_t)&priv->ctl->dfimisc, 775 mmio_read_32((uintptr_t)&priv->ctl->dfimisc)); 776 777 set_reg(priv, REG_REG, &config->c_reg); 778 779 /* DDR3 = don't set DLLOFF for init mode */ 780 if ((config->c_reg.mstr & 781 (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) 782 == (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) { 783 VERBOSE("deactivate DLL OFF in mstr\n"); 784 mmio_clrbits_32((uintptr_t)&priv->ctl->mstr, 785 DDRCTRL_MSTR_DLL_OFF_MODE); 786 VERBOSE("[0x%lx] mstr = 0x%x\n", 787 (uintptr_t)&priv->ctl->mstr, 788 mmio_read_32((uintptr_t)&priv->ctl->mstr)); 789 } 790 791 set_reg(priv, REG_TIMING, &config->c_timing); 792 set_reg(priv, REG_MAP, &config->c_map); 793 794 /* Skip CTRL init, SDRAM init is done by PHY PUBL */ 795 mmio_clrsetbits_32((uintptr_t)&priv->ctl->init0, 796 DDRCTRL_INIT0_SKIP_DRAM_INIT_MASK, 797 DDRCTRL_INIT0_SKIP_DRAM_INIT_NORMAL); 798 VERBOSE("[0x%lx] init0 = 0x%x\n", 799 (uintptr_t)&priv->ctl->init0, 800 mmio_read_32((uintptr_t)&priv->ctl->init0)); 801 802 set_reg(priv, REG_PERF, &config->c_perf); 803 804 /* 2. deassert reset signal core_ddrc_rstn, aresetn and presetn */ 805 mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCORERST); 806 mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAXIRST); 807 mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYAPBRST); 808 809 /* 810 * 3. start PHY init by accessing relevant PUBL registers 811 * (DXGCR, DCR, PTR*, MR*, DTPR*) 812 */ 813 set_reg(priv, REGPHY_REG, &config->p_reg); 814 set_reg(priv, REGPHY_TIMING, &config->p_timing); 815 set_reg(priv, REGPHY_CAL, &config->p_cal); 816 817 /* DDR3 = don't set DLLOFF for init mode */ 818 if ((config->c_reg.mstr & 819 (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) 820 == (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) { 821 VERBOSE("deactivate DLL OFF in mr1\n"); 822 mmio_clrbits_32((uintptr_t)&priv->phy->mr1, BIT(0)); 823 VERBOSE("[0x%lx] mr1 = 0x%x\n", 824 (uintptr_t)&priv->phy->mr1, 825 mmio_read_32((uintptr_t)&priv->phy->mr1)); 826 } 827 828 /* 829 * 4. Monitor PHY init status by polling PUBL register PGSR.IDONE 830 * Perform DDR PHY DRAM initialization and Gate Training Evaluation 831 */ 832 stm32mp1_ddrphy_idone_wait(priv->phy); 833 834 /* 835 * 5. Indicate to PUBL that controller performs SDRAM initialization 836 * by setting PIR.INIT and PIR CTLDINIT and pool PGSR.IDONE 837 * DRAM init is done by PHY, init0.skip_dram.init = 1 838 */ 839 840 pir = DDRPHYC_PIR_DLLSRST | DDRPHYC_PIR_DLLLOCK | DDRPHYC_PIR_ZCAL | 841 DDRPHYC_PIR_ITMSRST | DDRPHYC_PIR_DRAMINIT | DDRPHYC_PIR_ICPC; 842 843 if ((config->c_reg.mstr & DDRCTRL_MSTR_DDR3) != 0U) { 844 pir |= DDRPHYC_PIR_DRAMRST; /* Only for DDR3 */ 845 } 846 847 stm32mp1_ddrphy_init(priv->phy, pir); 848 849 /* 850 * 6. SET DFIMISC.dfi_init_complete_en to 1 851 * Enable quasi-dynamic register programming. 852 */ 853 stm32mp1_start_sw_done(priv->ctl); 854 855 mmio_setbits_32((uintptr_t)&priv->ctl->dfimisc, 856 DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN); 857 VERBOSE("[0x%lx] dfimisc = 0x%x\n", 858 (uintptr_t)&priv->ctl->dfimisc, 859 mmio_read_32((uintptr_t)&priv->ctl->dfimisc)); 860 861 stm32mp1_wait_sw_done_ack(priv->ctl); 862 863 /* 864 * 7. Wait for DWC_ddr_umctl2 to move to normal operation mode 865 * by monitoring STAT.operating_mode signal 866 */ 867 868 /* Wait uMCTL2 ready */ 869 stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_NORMAL); 870 871 /* Switch to DLL OFF mode */ 872 if ((config->c_reg.mstr & DDRCTRL_MSTR_DLL_OFF_MODE) != 0U) { 873 stm32mp1_ddr3_dll_off(priv); 874 } 875 876 VERBOSE("DDR DQS training : "); 877 878 /* 879 * 8. Disable Auto refresh and power down by setting 880 * - RFSHCTL3.dis_au_refresh = 1 881 * - PWRCTL.powerdown_en = 0 882 * - DFIMISC.dfiinit_complete_en = 0 883 */ 884 stm32mp1_refresh_disable(priv->ctl); 885 886 /* 887 * 9. Program PUBL PGCR to enable refresh during training 888 * and rank to train 889 * not done => keep the programed value in PGCR 890 */ 891 892 /* 893 * 10. configure PUBL PIR register to specify which training step 894 * to run 895 * Warning : RVTRN is not supported by this PUBL 896 */ 897 stm32mp1_ddrphy_init(priv->phy, DDRPHYC_PIR_QSTRN); 898 899 /* 11. monitor PUB PGSR.IDONE to poll cpmpletion of training sequence */ 900 stm32mp1_ddrphy_idone_wait(priv->phy); 901 902 /* 903 * 12. set back registers in step 8 to the orginal values if desidered 904 */ 905 stm32mp1_refresh_restore(priv->ctl, config->c_reg.rfshctl3, 906 config->c_reg.pwrctl); 907 908 /* Enable uMCTL2 AXI port 0 */ 909 mmio_setbits_32((uintptr_t)&priv->ctl->pctrl_0, 910 DDRCTRL_PCTRL_N_PORT_EN); 911 VERBOSE("[0x%lx] pctrl_0 = 0x%x\n", 912 (uintptr_t)&priv->ctl->pctrl_0, 913 mmio_read_32((uintptr_t)&priv->ctl->pctrl_0)); 914 915 /* Enable uMCTL2 AXI port 1 */ 916 mmio_setbits_32((uintptr_t)&priv->ctl->pctrl_1, 917 DDRCTRL_PCTRL_N_PORT_EN); 918 VERBOSE("[0x%lx] pctrl_1 = 0x%x\n", 919 (uintptr_t)&priv->ctl->pctrl_1, 920 mmio_read_32((uintptr_t)&priv->ctl->pctrl_1)); 921 } 922