1 /* 2 * Copyright (C) 2018, STMicroelectronics - All Rights Reserved 3 * 4 * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause 5 */ 6 7 #include <stddef.h> 8 9 #include <platform_def.h> 10 11 #include <arch.h> 12 #include <arch_helpers.h> 13 #include <common/debug.h> 14 #include <drivers/delay_timer.h> 15 #include <drivers/st/stm32mp1_clk.h> 16 #include <drivers/st/stm32mp1_ddr.h> 17 #include <drivers/st/stm32mp1_ddr_regs.h> 18 #include <drivers/st/stm32mp1_pmic.h> 19 #include <drivers/st/stm32mp1_pwr.h> 20 #include <drivers/st/stm32mp1_ram.h> 21 #include <drivers/st/stm32mp1_rcc.h> 22 #include <dt-bindings/clock/stm32mp1-clks.h> 23 #include <lib/mmio.h> 24 #include <plat/common/platform.h> 25 26 struct reg_desc { 27 const char *name; 28 uint16_t offset; /* Offset for base address */ 29 uint8_t par_offset; /* Offset for parameter array */ 30 }; 31 32 #define INVALID_OFFSET 0xFFU 33 34 #define TIMESLOT_1US (plat_get_syscnt_freq2() / 1000000U) 35 36 #define DDRCTL_REG(x, y) \ 37 { \ 38 .name = #x, \ 39 .offset = offsetof(struct stm32mp1_ddrctl, x), \ 40 .par_offset = offsetof(struct y, x) \ 41 } 42 43 #define DDRPHY_REG(x, y) \ 44 { \ 45 .name = #x, \ 46 .offset = offsetof(struct stm32mp1_ddrphy, x), \ 47 .par_offset = offsetof(struct y, x) \ 48 } 49 50 #define DDRCTL_REG_REG(x) DDRCTL_REG(x, stm32mp1_ddrctrl_reg) 51 static const struct reg_desc ddr_reg[] = { 52 DDRCTL_REG_REG(mstr), 53 DDRCTL_REG_REG(mrctrl0), 54 DDRCTL_REG_REG(mrctrl1), 55 DDRCTL_REG_REG(derateen), 56 DDRCTL_REG_REG(derateint), 57 DDRCTL_REG_REG(pwrctl), 58 DDRCTL_REG_REG(pwrtmg), 59 DDRCTL_REG_REG(hwlpctl), 60 DDRCTL_REG_REG(rfshctl0), 61 DDRCTL_REG_REG(rfshctl3), 62 DDRCTL_REG_REG(crcparctl0), 63 DDRCTL_REG_REG(zqctl0), 64 DDRCTL_REG_REG(dfitmg0), 65 DDRCTL_REG_REG(dfitmg1), 66 DDRCTL_REG_REG(dfilpcfg0), 67 DDRCTL_REG_REG(dfiupd0), 68 DDRCTL_REG_REG(dfiupd1), 69 DDRCTL_REG_REG(dfiupd2), 70 DDRCTL_REG_REG(dfiphymstr), 71 DDRCTL_REG_REG(odtmap), 72 DDRCTL_REG_REG(dbg0), 73 DDRCTL_REG_REG(dbg1), 74 DDRCTL_REG_REG(dbgcmd), 75 DDRCTL_REG_REG(poisoncfg), 76 DDRCTL_REG_REG(pccfg), 77 }; 78 79 #define DDRCTL_REG_TIMING(x) DDRCTL_REG(x, stm32mp1_ddrctrl_timing) 80 static const struct reg_desc ddr_timing[] = { 81 DDRCTL_REG_TIMING(rfshtmg), 82 DDRCTL_REG_TIMING(dramtmg0), 83 DDRCTL_REG_TIMING(dramtmg1), 84 DDRCTL_REG_TIMING(dramtmg2), 85 DDRCTL_REG_TIMING(dramtmg3), 86 DDRCTL_REG_TIMING(dramtmg4), 87 DDRCTL_REG_TIMING(dramtmg5), 88 DDRCTL_REG_TIMING(dramtmg6), 89 DDRCTL_REG_TIMING(dramtmg7), 90 DDRCTL_REG_TIMING(dramtmg8), 91 DDRCTL_REG_TIMING(dramtmg14), 92 DDRCTL_REG_TIMING(odtcfg), 93 }; 94 95 #define DDRCTL_REG_MAP(x) DDRCTL_REG(x, stm32mp1_ddrctrl_map) 96 static const struct reg_desc ddr_map[] = { 97 DDRCTL_REG_MAP(addrmap1), 98 DDRCTL_REG_MAP(addrmap2), 99 DDRCTL_REG_MAP(addrmap3), 100 DDRCTL_REG_MAP(addrmap4), 101 DDRCTL_REG_MAP(addrmap5), 102 DDRCTL_REG_MAP(addrmap6), 103 DDRCTL_REG_MAP(addrmap9), 104 DDRCTL_REG_MAP(addrmap10), 105 DDRCTL_REG_MAP(addrmap11), 106 }; 107 108 #define DDRCTL_REG_PERF(x) DDRCTL_REG(x, stm32mp1_ddrctrl_perf) 109 static const struct reg_desc ddr_perf[] = { 110 DDRCTL_REG_PERF(sched), 111 DDRCTL_REG_PERF(sched1), 112 DDRCTL_REG_PERF(perfhpr1), 113 DDRCTL_REG_PERF(perflpr1), 114 DDRCTL_REG_PERF(perfwr1), 115 DDRCTL_REG_PERF(pcfgr_0), 116 DDRCTL_REG_PERF(pcfgw_0), 117 DDRCTL_REG_PERF(pcfgqos0_0), 118 DDRCTL_REG_PERF(pcfgqos1_0), 119 DDRCTL_REG_PERF(pcfgwqos0_0), 120 DDRCTL_REG_PERF(pcfgwqos1_0), 121 DDRCTL_REG_PERF(pcfgr_1), 122 DDRCTL_REG_PERF(pcfgw_1), 123 DDRCTL_REG_PERF(pcfgqos0_1), 124 DDRCTL_REG_PERF(pcfgqos1_1), 125 DDRCTL_REG_PERF(pcfgwqos0_1), 126 DDRCTL_REG_PERF(pcfgwqos1_1), 127 }; 128 129 #define DDRPHY_REG_REG(x) DDRPHY_REG(x, stm32mp1_ddrphy_reg) 130 static const struct reg_desc ddrphy_reg[] = { 131 DDRPHY_REG_REG(pgcr), 132 DDRPHY_REG_REG(aciocr), 133 DDRPHY_REG_REG(dxccr), 134 DDRPHY_REG_REG(dsgcr), 135 DDRPHY_REG_REG(dcr), 136 DDRPHY_REG_REG(odtcr), 137 DDRPHY_REG_REG(zq0cr1), 138 DDRPHY_REG_REG(dx0gcr), 139 DDRPHY_REG_REG(dx1gcr), 140 DDRPHY_REG_REG(dx2gcr), 141 DDRPHY_REG_REG(dx3gcr), 142 }; 143 144 #define DDRPHY_REG_TIMING(x) DDRPHY_REG(x, stm32mp1_ddrphy_timing) 145 static const struct reg_desc ddrphy_timing[] = { 146 DDRPHY_REG_TIMING(ptr0), 147 DDRPHY_REG_TIMING(ptr1), 148 DDRPHY_REG_TIMING(ptr2), 149 DDRPHY_REG_TIMING(dtpr0), 150 DDRPHY_REG_TIMING(dtpr1), 151 DDRPHY_REG_TIMING(dtpr2), 152 DDRPHY_REG_TIMING(mr0), 153 DDRPHY_REG_TIMING(mr1), 154 DDRPHY_REG_TIMING(mr2), 155 DDRPHY_REG_TIMING(mr3), 156 }; 157 158 #define DDRPHY_REG_CAL(x) DDRPHY_REG(x, stm32mp1_ddrphy_cal) 159 static const struct reg_desc ddrphy_cal[] = { 160 DDRPHY_REG_CAL(dx0dllcr), 161 DDRPHY_REG_CAL(dx0dqtr), 162 DDRPHY_REG_CAL(dx0dqstr), 163 DDRPHY_REG_CAL(dx1dllcr), 164 DDRPHY_REG_CAL(dx1dqtr), 165 DDRPHY_REG_CAL(dx1dqstr), 166 DDRPHY_REG_CAL(dx2dllcr), 167 DDRPHY_REG_CAL(dx2dqtr), 168 DDRPHY_REG_CAL(dx2dqstr), 169 DDRPHY_REG_CAL(dx3dllcr), 170 DDRPHY_REG_CAL(dx3dqtr), 171 DDRPHY_REG_CAL(dx3dqstr), 172 }; 173 174 #define DDR_REG_DYN(x) \ 175 { \ 176 .name = #x, \ 177 .offset = offsetof(struct stm32mp1_ddrctl, x), \ 178 .par_offset = INVALID_OFFSET \ 179 } 180 181 static const struct reg_desc ddr_dyn[] = { 182 DDR_REG_DYN(stat), 183 DDR_REG_DYN(init0), 184 DDR_REG_DYN(dfimisc), 185 DDR_REG_DYN(dfistat), 186 DDR_REG_DYN(swctl), 187 DDR_REG_DYN(swstat), 188 DDR_REG_DYN(pctrl_0), 189 DDR_REG_DYN(pctrl_1), 190 }; 191 192 #define DDRPHY_REG_DYN(x) \ 193 { \ 194 .name = #x, \ 195 .offset = offsetof(struct stm32mp1_ddrphy, x), \ 196 .par_offset = INVALID_OFFSET \ 197 } 198 199 static const struct reg_desc ddrphy_dyn[] = { 200 DDRPHY_REG_DYN(pir), 201 DDRPHY_REG_DYN(pgsr), 202 }; 203 204 enum reg_type { 205 REG_REG, 206 REG_TIMING, 207 REG_PERF, 208 REG_MAP, 209 REGPHY_REG, 210 REGPHY_TIMING, 211 REGPHY_CAL, 212 /* 213 * Dynamic registers => managed in driver or not changed, 214 * can be dumped in interactive mode. 215 */ 216 REG_DYN, 217 REGPHY_DYN, 218 REG_TYPE_NB 219 }; 220 221 enum base_type { 222 DDR_BASE, 223 DDRPHY_BASE, 224 NONE_BASE 225 }; 226 227 struct ddr_reg_info { 228 const char *name; 229 const struct reg_desc *desc; 230 uint8_t size; 231 enum base_type base; 232 }; 233 234 static const struct ddr_reg_info ddr_registers[REG_TYPE_NB] = { 235 [REG_REG] = { 236 "static", ddr_reg, ARRAY_SIZE(ddr_reg), DDR_BASE 237 }, 238 [REG_TIMING] = { 239 "timing", ddr_timing, ARRAY_SIZE(ddr_timing), DDR_BASE 240 }, 241 [REG_PERF] = { 242 "perf", ddr_perf, ARRAY_SIZE(ddr_perf), DDR_BASE 243 }, 244 [REG_MAP] = { 245 "map", ddr_map, ARRAY_SIZE(ddr_map), DDR_BASE 246 }, 247 [REGPHY_REG] = { 248 "static", ddrphy_reg, ARRAY_SIZE(ddrphy_reg), DDRPHY_BASE 249 }, 250 [REGPHY_TIMING] = { 251 "timing", ddrphy_timing, ARRAY_SIZE(ddrphy_timing), DDRPHY_BASE 252 }, 253 [REGPHY_CAL] = { 254 "cal", ddrphy_cal, ARRAY_SIZE(ddrphy_cal), DDRPHY_BASE 255 }, 256 [REG_DYN] = { 257 "dyn", ddr_dyn, ARRAY_SIZE(ddr_dyn), DDR_BASE 258 }, 259 [REGPHY_DYN] = { 260 "dyn", ddrphy_dyn, ARRAY_SIZE(ddrphy_dyn), DDRPHY_BASE 261 }, 262 }; 263 264 static uint32_t get_base_addr(const struct ddr_info *priv, enum base_type base) 265 { 266 if (base == DDRPHY_BASE) { 267 return (uint32_t)priv->phy; 268 } else { 269 return (uint32_t)priv->ctl; 270 } 271 } 272 273 static void set_reg(const struct ddr_info *priv, 274 enum reg_type type, 275 const void *param) 276 { 277 unsigned int i; 278 unsigned int *ptr, value; 279 enum base_type base = ddr_registers[type].base; 280 uint32_t base_addr = get_base_addr(priv, base); 281 const struct reg_desc *desc = ddr_registers[type].desc; 282 283 VERBOSE("init %s\n", ddr_registers[type].name); 284 for (i = 0; i < ddr_registers[type].size; i++) { 285 ptr = (unsigned int *)(base_addr + desc[i].offset); 286 if (desc[i].par_offset == INVALID_OFFSET) { 287 ERROR("invalid parameter offset for %s", desc[i].name); 288 panic(); 289 } else { 290 value = *((uint32_t *)((uint32_t)param + 291 desc[i].par_offset)); 292 mmio_write_32((uint32_t)ptr, value); 293 } 294 } 295 } 296 297 static void stm32mp1_ddrphy_idone_wait(struct stm32mp1_ddrphy *phy) 298 { 299 uint32_t pgsr; 300 int error = 0; 301 unsigned long start; 302 unsigned long time0, time; 303 304 start = get_timer(0); 305 time0 = start; 306 307 do { 308 pgsr = mmio_read_32((uint32_t)&phy->pgsr); 309 time = get_timer(start); 310 if (time != time0) { 311 VERBOSE(" > [0x%x] pgsr = 0x%x &\n", 312 (uint32_t)&phy->pgsr, pgsr); 313 VERBOSE(" [0x%x] pir = 0x%x (time=%x)\n", 314 (uint32_t)&phy->pir, 315 mmio_read_32((uint32_t)&phy->pir), 316 (uint32_t)time); 317 } 318 319 time0 = time; 320 if (time > plat_get_syscnt_freq2()) { 321 panic(); 322 } 323 if ((pgsr & DDRPHYC_PGSR_DTERR) != 0U) { 324 VERBOSE("DQS Gate Trainig Error\n"); 325 error++; 326 } 327 if ((pgsr & DDRPHYC_PGSR_DTIERR) != 0U) { 328 VERBOSE("DQS Gate Trainig Intermittent Error\n"); 329 error++; 330 } 331 if ((pgsr & DDRPHYC_PGSR_DFTERR) != 0U) { 332 VERBOSE("DQS Drift Error\n"); 333 error++; 334 } 335 if ((pgsr & DDRPHYC_PGSR_RVERR) != 0U) { 336 VERBOSE("Read Valid Training Error\n"); 337 error++; 338 } 339 if ((pgsr & DDRPHYC_PGSR_RVEIRR) != 0U) { 340 VERBOSE("Read Valid Training Intermittent Error\n"); 341 error++; 342 } 343 } while ((pgsr & DDRPHYC_PGSR_IDONE) == 0U && error == 0); 344 VERBOSE("\n[0x%x] pgsr = 0x%x\n", 345 (uint32_t)&phy->pgsr, pgsr); 346 } 347 348 static void stm32mp1_ddrphy_init(struct stm32mp1_ddrphy *phy, uint32_t pir) 349 { 350 uint32_t pir_init = pir | DDRPHYC_PIR_INIT; 351 352 mmio_write_32((uint32_t)&phy->pir, pir_init); 353 VERBOSE("[0x%x] pir = 0x%x -> 0x%x\n", 354 (uint32_t)&phy->pir, pir_init, 355 mmio_read_32((uint32_t)&phy->pir)); 356 357 /* Need to wait 10 configuration clock before start polling */ 358 udelay(10); 359 360 /* Wait DRAM initialization and Gate Training Evaluation complete */ 361 stm32mp1_ddrphy_idone_wait(phy); 362 } 363 364 /* Start quasi dynamic register update */ 365 static void stm32mp1_start_sw_done(struct stm32mp1_ddrctl *ctl) 366 { 367 mmio_clrbits_32((uint32_t)&ctl->swctl, DDRCTRL_SWCTL_SW_DONE); 368 VERBOSE("[0x%x] swctl = 0x%x\n", 369 (uint32_t)&ctl->swctl, mmio_read_32((uint32_t)&ctl->swctl)); 370 } 371 372 /* Wait quasi dynamic register update */ 373 static void stm32mp1_wait_sw_done_ack(struct stm32mp1_ddrctl *ctl) 374 { 375 unsigned long start; 376 uint32_t swstat; 377 378 mmio_setbits_32((uint32_t)&ctl->swctl, DDRCTRL_SWCTL_SW_DONE); 379 VERBOSE("[0x%x] swctl = 0x%x\n", 380 (uint32_t)&ctl->swctl, mmio_read_32((uint32_t)&ctl->swctl)); 381 382 start = get_timer(0); 383 do { 384 swstat = mmio_read_32((uint32_t)&ctl->swstat); 385 VERBOSE("[0x%x] swstat = 0x%x ", 386 (uint32_t)&ctl->swstat, swstat); 387 VERBOSE("timer in ms 0x%x = start 0x%lx\r", 388 get_timer(0), start); 389 if (get_timer(start) > plat_get_syscnt_freq2()) { 390 panic(); 391 } 392 } while ((swstat & DDRCTRL_SWSTAT_SW_DONE_ACK) == 0U); 393 394 VERBOSE("[0x%x] swstat = 0x%x\n", 395 (uint32_t)&ctl->swstat, swstat); 396 } 397 398 /* Wait quasi dynamic register update */ 399 static void stm32mp1_wait_operating_mode(struct ddr_info *priv, uint32_t mode) 400 { 401 unsigned long start; 402 uint32_t stat; 403 uint32_t operating_mode; 404 uint32_t selref_type; 405 int break_loop = 0; 406 407 start = get_timer(0); 408 for ( ; ; ) { 409 stat = mmio_read_32((uint32_t)&priv->ctl->stat); 410 operating_mode = stat & DDRCTRL_STAT_OPERATING_MODE_MASK; 411 selref_type = stat & DDRCTRL_STAT_SELFREF_TYPE_MASK; 412 VERBOSE("[0x%x] stat = 0x%x\n", 413 (uint32_t)&priv->ctl->stat, stat); 414 VERBOSE("timer in ms 0x%x = start 0x%lx\r", 415 get_timer(0), start); 416 if (get_timer(start) > plat_get_syscnt_freq2()) { 417 panic(); 418 } 419 420 if (mode == DDRCTRL_STAT_OPERATING_MODE_SR) { 421 /* 422 * Self-refresh due to software 423 * => checking also STAT.selfref_type. 424 */ 425 if ((operating_mode == 426 DDRCTRL_STAT_OPERATING_MODE_SR) && 427 (selref_type == DDRCTRL_STAT_SELFREF_TYPE_SR)) { 428 break_loop = 1; 429 } 430 } else if (operating_mode == mode) { 431 break_loop = 1; 432 } else if ((mode == DDRCTRL_STAT_OPERATING_MODE_NORMAL) && 433 (operating_mode == DDRCTRL_STAT_OPERATING_MODE_SR) && 434 (selref_type == DDRCTRL_STAT_SELFREF_TYPE_ASR)) { 435 /* Normal mode: handle also automatic self refresh */ 436 break_loop = 1; 437 } 438 439 if (break_loop == 1) { 440 break; 441 } 442 } 443 444 VERBOSE("[0x%x] stat = 0x%x\n", 445 (uint32_t)&priv->ctl->stat, stat); 446 } 447 448 /* Mode Register Writes (MRW or MRS) */ 449 static void stm32mp1_mode_register_write(struct ddr_info *priv, uint8_t addr, 450 uint32_t data) 451 { 452 uint32_t mrctrl0; 453 454 VERBOSE("MRS: %d = %x\n", addr, data); 455 456 /* 457 * 1. Poll MRSTAT.mr_wr_busy until it is '0'. 458 * This checks that there is no outstanding MR transaction. 459 * No write should be performed to MRCTRL0 and MRCTRL1 460 * if MRSTAT.mr_wr_busy = 1. 461 */ 462 while ((mmio_read_32((uint32_t)&priv->ctl->mrstat) & 463 DDRCTRL_MRSTAT_MR_WR_BUSY) != 0U) { 464 ; 465 } 466 467 /* 468 * 2. Write the MRCTRL0.mr_type, MRCTRL0.mr_addr, MRCTRL0.mr_rank 469 * and (for MRWs) MRCTRL1.mr_data to define the MR transaction. 470 */ 471 mrctrl0 = DDRCTRL_MRCTRL0_MR_TYPE_WRITE | 472 DDRCTRL_MRCTRL0_MR_RANK_ALL | 473 (((uint32_t)addr << DDRCTRL_MRCTRL0_MR_ADDR_SHIFT) & 474 DDRCTRL_MRCTRL0_MR_ADDR_MASK); 475 mmio_write_32((uint32_t)&priv->ctl->mrctrl0, mrctrl0); 476 VERBOSE("[0x%x] mrctrl0 = 0x%x (0x%x)\n", 477 (uint32_t)&priv->ctl->mrctrl0, 478 mmio_read_32((uint32_t)&priv->ctl->mrctrl0), mrctrl0); 479 mmio_write_32((uint32_t)&priv->ctl->mrctrl1, data); 480 VERBOSE("[0x%x] mrctrl1 = 0x%x\n", 481 (uint32_t)&priv->ctl->mrctrl1, 482 mmio_read_32((uint32_t)&priv->ctl->mrctrl1)); 483 484 /* 485 * 3. In a separate APB transaction, write the MRCTRL0.mr_wr to 1. This 486 * bit is self-clearing, and triggers the MR transaction. 487 * The uMCTL2 then asserts the MRSTAT.mr_wr_busy while it performs 488 * the MR transaction to SDRAM, and no further access can be 489 * initiated until it is deasserted. 490 */ 491 mrctrl0 |= DDRCTRL_MRCTRL0_MR_WR; 492 mmio_write_32((uint32_t)&priv->ctl->mrctrl0, mrctrl0); 493 494 while ((mmio_read_32((uint32_t)&priv->ctl->mrstat) & 495 DDRCTRL_MRSTAT_MR_WR_BUSY) != 0U) { 496 ; 497 } 498 499 VERBOSE("[0x%x] mrctrl0 = 0x%x\n", 500 (uint32_t)&priv->ctl->mrctrl0, mrctrl0); 501 } 502 503 /* Switch DDR3 from DLL-on to DLL-off */ 504 static void stm32mp1_ddr3_dll_off(struct ddr_info *priv) 505 { 506 uint32_t mr1 = mmio_read_32((uint32_t)&priv->phy->mr1); 507 uint32_t mr2 = mmio_read_32((uint32_t)&priv->phy->mr2); 508 uint32_t dbgcam; 509 510 VERBOSE("mr1: 0x%x\n", mr1); 511 VERBOSE("mr2: 0x%x\n", mr2); 512 513 /* 514 * 1. Set the DBG1.dis_hif = 1. 515 * This prevents further reads/writes being received on the HIF. 516 */ 517 mmio_setbits_32((uint32_t)&priv->ctl->dbg1, DDRCTRL_DBG1_DIS_HIF); 518 VERBOSE("[0x%x] dbg1 = 0x%x\n", 519 (uint32_t)&priv->ctl->dbg1, 520 mmio_read_32((uint32_t)&priv->ctl->dbg1)); 521 522 /* 523 * 2. Ensure all commands have been flushed from the uMCTL2 by polling 524 * DBGCAM.wr_data_pipeline_empty = 1, 525 * DBGCAM.rd_data_pipeline_empty = 1, 526 * DBGCAM.dbg_wr_q_depth = 0 , 527 * DBGCAM.dbg_lpr_q_depth = 0, and 528 * DBGCAM.dbg_hpr_q_depth = 0. 529 */ 530 do { 531 dbgcam = mmio_read_32((uint32_t)&priv->ctl->dbgcam); 532 VERBOSE("[0x%x] dbgcam = 0x%x\n", 533 (uint32_t)&priv->ctl->dbgcam, dbgcam); 534 } while ((((dbgcam & DDRCTRL_DBGCAM_DATA_PIPELINE_EMPTY) == 535 DDRCTRL_DBGCAM_DATA_PIPELINE_EMPTY)) && 536 ((dbgcam & DDRCTRL_DBGCAM_DBG_Q_DEPTH) == 0U)); 537 538 /* 539 * 3. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers) 540 * to disable RTT_NOM: 541 * a. DDR3: Write to MR1[9], MR1[6] and MR1[2] 542 * b. DDR4: Write to MR1[10:8] 543 */ 544 mr1 &= ~(BIT(9) | BIT(6) | BIT(2)); 545 stm32mp1_mode_register_write(priv, 1, mr1); 546 547 /* 548 * 4. For DDR4 only: Perform an MRS command 549 * (using MRCTRL0 and MRCTRL1 registers) to write to MR5[8:6] 550 * to disable RTT_PARK 551 */ 552 553 /* 554 * 5. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers) 555 * to write to MR2[10:9], to disable RTT_WR 556 * (and therefore disable dynamic ODT). 557 * This applies for both DDR3 and DDR4. 558 */ 559 mr2 &= ~GENMASK(10, 9); 560 stm32mp1_mode_register_write(priv, 2, mr2); 561 562 /* 563 * 6. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers) 564 * to disable the DLL. The timing of this MRS is automatically 565 * handled by the uMCTL2. 566 * a. DDR3: Write to MR1[0] 567 * b. DDR4: Write to MR1[0] 568 */ 569 mr1 |= BIT(0); 570 stm32mp1_mode_register_write(priv, 1, mr1); 571 572 /* 573 * 7. Put the SDRAM into self-refresh mode by setting 574 * PWRCTL.selfref_sw = 1, and polling STAT.operating_mode to ensure 575 * the DDRC has entered self-refresh. 576 */ 577 mmio_setbits_32((uint32_t)&priv->ctl->pwrctl, 578 DDRCTRL_PWRCTL_SELFREF_SW); 579 VERBOSE("[0x%x] pwrctl = 0x%x\n", 580 (uint32_t)&priv->ctl->pwrctl, 581 mmio_read_32((uint32_t)&priv->ctl->pwrctl)); 582 583 /* 584 * 8. Wait until STAT.operating_mode[1:0]==11 indicating that the 585 * DWC_ddr_umctl2 core is in self-refresh mode. 586 * Ensure transition to self-refresh was due to software 587 * by checking that STAT.selfref_type[1:0]=2. 588 */ 589 stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_SR); 590 591 /* 592 * 9. Set the MSTR.dll_off_mode = 1. 593 * warning: MSTR.dll_off_mode is a quasi-dynamic type 2 field 594 */ 595 stm32mp1_start_sw_done(priv->ctl); 596 597 mmio_setbits_32((uint32_t)&priv->ctl->mstr, DDRCTRL_MSTR_DLL_OFF_MODE); 598 VERBOSE("[0x%x] mstr = 0x%x\n", 599 (uint32_t)&priv->ctl->mstr, 600 mmio_read_32((uint32_t)&priv->ctl->mstr)); 601 602 stm32mp1_wait_sw_done_ack(priv->ctl); 603 604 /* 10. Change the clock frequency to the desired value. */ 605 606 /* 607 * 11. Update any registers which may be required to change for the new 608 * frequency. This includes static and dynamic registers. 609 * This includes both uMCTL2 registers and PHY registers. 610 */ 611 612 /* Change Bypass Mode Frequency Range */ 613 if (stm32mp1_clk_get_rate(DDRPHYC) < 100000000U) { 614 mmio_clrbits_32((uint32_t)&priv->phy->dllgcr, 615 DDRPHYC_DLLGCR_BPS200); 616 } else { 617 mmio_setbits_32((uint32_t)&priv->phy->dllgcr, 618 DDRPHYC_DLLGCR_BPS200); 619 } 620 621 mmio_setbits_32((uint32_t)&priv->phy->acdllcr, DDRPHYC_ACDLLCR_DLLDIS); 622 623 mmio_setbits_32((uint32_t)&priv->phy->dx0dllcr, 624 DDRPHYC_DXNDLLCR_DLLDIS); 625 mmio_setbits_32((uint32_t)&priv->phy->dx1dllcr, 626 DDRPHYC_DXNDLLCR_DLLDIS); 627 mmio_setbits_32((uint32_t)&priv->phy->dx2dllcr, 628 DDRPHYC_DXNDLLCR_DLLDIS); 629 mmio_setbits_32((uint32_t)&priv->phy->dx3dllcr, 630 DDRPHYC_DXNDLLCR_DLLDIS); 631 632 /* 12. Exit the self-refresh state by setting PWRCTL.selfref_sw = 0. */ 633 mmio_clrbits_32((uint32_t)&priv->ctl->pwrctl, 634 DDRCTRL_PWRCTL_SELFREF_SW); 635 stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_NORMAL); 636 637 /* 638 * 13. If ZQCTL0.dis_srx_zqcl = 0, the uMCTL2 performs a ZQCL command 639 * at this point. 640 */ 641 642 /* 643 * 14. Perform MRS commands as required to re-program timing registers 644 * in the SDRAM for the new frequency 645 * (in particular, CL, CWL and WR may need to be changed). 646 */ 647 648 /* 15. Write DBG1.dis_hif = 0 to re-enable reads and writes. */ 649 mmio_clrbits_32((uint32_t)&priv->ctl->dbg1, DDRCTRL_DBG1_DIS_HIF); 650 VERBOSE("[0x%x] dbg1 = 0x%x\n", 651 (uint32_t)&priv->ctl->dbg1, 652 mmio_read_32((uint32_t)&priv->ctl->dbg1)); 653 } 654 655 static void stm32mp1_refresh_disable(struct stm32mp1_ddrctl *ctl) 656 { 657 stm32mp1_start_sw_done(ctl); 658 /* Quasi-dynamic register update*/ 659 mmio_setbits_32((uint32_t)&ctl->rfshctl3, 660 DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH); 661 mmio_clrbits_32((uint32_t)&ctl->pwrctl, DDRCTRL_PWRCTL_POWERDOWN_EN); 662 mmio_clrbits_32((uint32_t)&ctl->dfimisc, 663 DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN); 664 stm32mp1_wait_sw_done_ack(ctl); 665 } 666 667 static void stm32mp1_refresh_restore(struct stm32mp1_ddrctl *ctl, 668 uint32_t rfshctl3, uint32_t pwrctl) 669 { 670 stm32mp1_start_sw_done(ctl); 671 if ((rfshctl3 & DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH) == 0U) { 672 mmio_clrbits_32((uint32_t)&ctl->rfshctl3, 673 DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH); 674 } 675 if ((pwrctl & DDRCTRL_PWRCTL_POWERDOWN_EN) != 0U) { 676 mmio_setbits_32((uint32_t)&ctl->pwrctl, 677 DDRCTRL_PWRCTL_POWERDOWN_EN); 678 } 679 mmio_setbits_32((uint32_t)&ctl->dfimisc, 680 DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN); 681 stm32mp1_wait_sw_done_ack(ctl); 682 } 683 684 static int board_ddr_power_init(enum ddr_type ddr_type) 685 { 686 if (dt_check_pmic()) { 687 return pmic_ddr_power_init(ddr_type); 688 } 689 690 return 0; 691 } 692 693 void stm32mp1_ddr_init(struct ddr_info *priv, 694 struct stm32mp1_ddr_config *config) 695 { 696 uint32_t pir; 697 int ret; 698 699 if ((config->c_reg.mstr & DDRCTRL_MSTR_DDR3) != 0U) { 700 ret = board_ddr_power_init(STM32MP_DDR3); 701 } else { 702 ret = board_ddr_power_init(STM32MP_LPDDR2); 703 } 704 705 if (ret != 0) { 706 panic(); 707 } 708 709 VERBOSE("name = %s\n", config->info.name); 710 VERBOSE("speed = %d MHz\n", config->info.speed); 711 VERBOSE("size = 0x%x\n", config->info.size); 712 713 /* DDR INIT SEQUENCE */ 714 715 /* 716 * 1. Program the DWC_ddr_umctl2 registers 717 * nota: check DFIMISC.dfi_init_complete = 0 718 */ 719 720 /* 1.1 RESETS: presetn, core_ddrc_rstn, aresetn */ 721 mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAPBRST); 722 mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAXIRST); 723 mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCORERST); 724 mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYAPBRST); 725 mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYRST); 726 mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYCTLRST); 727 728 /* 1.2. start CLOCK */ 729 if (stm32mp1_ddr_clk_enable(priv, config->info.speed) != 0) { 730 panic(); 731 } 732 733 /* 1.3. deassert reset */ 734 /* De-assert PHY rstn and ctl_rstn via DPHYRST and DPHYCTLRST. */ 735 mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYRST); 736 mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYCTLRST); 737 /* 738 * De-assert presetn once the clocks are active 739 * and stable via DDRCAPBRST bit. 740 */ 741 mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAPBRST); 742 743 /* 1.4. wait 128 cycles to permit initialization of end logic */ 744 udelay(2); 745 /* For PCLK = 133MHz => 1 us is enough, 2 to allow lower frequency */ 746 747 /* 1.5. initialize registers ddr_umctl2 */ 748 /* Stop uMCTL2 before PHY is ready */ 749 mmio_clrbits_32((uint32_t)&priv->ctl->dfimisc, 750 DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN); 751 VERBOSE("[0x%x] dfimisc = 0x%x\n", 752 (uint32_t)&priv->ctl->dfimisc, 753 mmio_read_32((uint32_t)&priv->ctl->dfimisc)); 754 755 set_reg(priv, REG_REG, &config->c_reg); 756 757 /* DDR3 = don't set DLLOFF for init mode */ 758 if ((config->c_reg.mstr & 759 (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) 760 == (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) { 761 VERBOSE("deactivate DLL OFF in mstr\n"); 762 mmio_clrbits_32((uint32_t)&priv->ctl->mstr, 763 DDRCTRL_MSTR_DLL_OFF_MODE); 764 VERBOSE("[0x%x] mstr = 0x%x\n", 765 (uint32_t)&priv->ctl->mstr, 766 mmio_read_32((uint32_t)&priv->ctl->mstr)); 767 } 768 769 set_reg(priv, REG_TIMING, &config->c_timing); 770 set_reg(priv, REG_MAP, &config->c_map); 771 772 /* Skip CTRL init, SDRAM init is done by PHY PUBL */ 773 mmio_clrsetbits_32((uint32_t)&priv->ctl->init0, 774 DDRCTRL_INIT0_SKIP_DRAM_INIT_MASK, 775 DDRCTRL_INIT0_SKIP_DRAM_INIT_NORMAL); 776 VERBOSE("[0x%x] init0 = 0x%x\n", 777 (uint32_t)&priv->ctl->init0, 778 mmio_read_32((uint32_t)&priv->ctl->init0)); 779 780 set_reg(priv, REG_PERF, &config->c_perf); 781 782 /* 2. deassert reset signal core_ddrc_rstn, aresetn and presetn */ 783 mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCORERST); 784 mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAXIRST); 785 mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYAPBRST); 786 787 /* 788 * 3. start PHY init by accessing relevant PUBL registers 789 * (DXGCR, DCR, PTR*, MR*, DTPR*) 790 */ 791 set_reg(priv, REGPHY_REG, &config->p_reg); 792 set_reg(priv, REGPHY_TIMING, &config->p_timing); 793 set_reg(priv, REGPHY_CAL, &config->p_cal); 794 795 /* DDR3 = don't set DLLOFF for init mode */ 796 if ((config->c_reg.mstr & 797 (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) 798 == (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) { 799 VERBOSE("deactivate DLL OFF in mr1\n"); 800 mmio_clrbits_32((uint32_t)&priv->phy->mr1, BIT(0)); 801 VERBOSE("[0x%x] mr1 = 0x%x\n", 802 (uint32_t)&priv->phy->mr1, 803 mmio_read_32((uint32_t)&priv->phy->mr1)); 804 } 805 806 /* 807 * 4. Monitor PHY init status by polling PUBL register PGSR.IDONE 808 * Perform DDR PHY DRAM initialization and Gate Training Evaluation 809 */ 810 stm32mp1_ddrphy_idone_wait(priv->phy); 811 812 /* 813 * 5. Indicate to PUBL that controller performs SDRAM initialization 814 * by setting PIR.INIT and PIR CTLDINIT and pool PGSR.IDONE 815 * DRAM init is done by PHY, init0.skip_dram.init = 1 816 */ 817 818 pir = DDRPHYC_PIR_DLLSRST | DDRPHYC_PIR_DLLLOCK | DDRPHYC_PIR_ZCAL | 819 DDRPHYC_PIR_ITMSRST | DDRPHYC_PIR_DRAMINIT | DDRPHYC_PIR_ICPC; 820 821 if ((config->c_reg.mstr & DDRCTRL_MSTR_DDR3) != 0U) { 822 pir |= DDRPHYC_PIR_DRAMRST; /* Only for DDR3 */ 823 } 824 825 stm32mp1_ddrphy_init(priv->phy, pir); 826 827 /* 828 * 6. SET DFIMISC.dfi_init_complete_en to 1 829 * Enable quasi-dynamic register programming. 830 */ 831 stm32mp1_start_sw_done(priv->ctl); 832 833 mmio_setbits_32((uint32_t)&priv->ctl->dfimisc, 834 DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN); 835 VERBOSE("[0x%x] dfimisc = 0x%x\n", 836 (uint32_t)&priv->ctl->dfimisc, 837 mmio_read_32((uint32_t)&priv->ctl->dfimisc)); 838 839 stm32mp1_wait_sw_done_ack(priv->ctl); 840 841 /* 842 * 7. Wait for DWC_ddr_umctl2 to move to normal operation mode 843 * by monitoring STAT.operating_mode signal 844 */ 845 846 /* Wait uMCTL2 ready */ 847 stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_NORMAL); 848 849 /* Switch to DLL OFF mode */ 850 if ((config->c_reg.mstr & DDRCTRL_MSTR_DLL_OFF_MODE) != 0U) { 851 stm32mp1_ddr3_dll_off(priv); 852 } 853 854 VERBOSE("DDR DQS training : "); 855 856 /* 857 * 8. Disable Auto refresh and power down by setting 858 * - RFSHCTL3.dis_au_refresh = 1 859 * - PWRCTL.powerdown_en = 0 860 * - DFIMISC.dfiinit_complete_en = 0 861 */ 862 stm32mp1_refresh_disable(priv->ctl); 863 864 /* 865 * 9. Program PUBL PGCR to enable refresh during training 866 * and rank to train 867 * not done => keep the programed value in PGCR 868 */ 869 870 /* 871 * 10. configure PUBL PIR register to specify which training step 872 * to run 873 * Warning : RVTRN is not supported by this PUBL 874 */ 875 stm32mp1_ddrphy_init(priv->phy, DDRPHYC_PIR_QSTRN); 876 877 /* 11. monitor PUB PGSR.IDONE to poll cpmpletion of training sequence */ 878 stm32mp1_ddrphy_idone_wait(priv->phy); 879 880 /* 881 * 12. set back registers in step 8 to the orginal values if desidered 882 */ 883 stm32mp1_refresh_restore(priv->ctl, config->c_reg.rfshctl3, 884 config->c_reg.pwrctl); 885 886 /* Enable uMCTL2 AXI port 0 */ 887 mmio_setbits_32((uint32_t)&priv->ctl->pctrl_0, DDRCTRL_PCTRL_N_PORT_EN); 888 VERBOSE("[0x%x] pctrl_0 = 0x%x\n", 889 (uint32_t)&priv->ctl->pctrl_0, 890 mmio_read_32((uint32_t)&priv->ctl->pctrl_0)); 891 892 /* Enable uMCTL2 AXI port 1 */ 893 mmio_setbits_32((uint32_t)&priv->ctl->pctrl_1, DDRCTRL_PCTRL_N_PORT_EN); 894 VERBOSE("[0x%x] pctrl_1 = 0x%x\n", 895 (uint32_t)&priv->ctl->pctrl_1, 896 mmio_read_32((uint32_t)&priv->ctl->pctrl_1)); 897 } 898