xref: /rk3399_ARM-atf/drivers/st/ddr/stm32mp1_ddr.c (revision 09d40e0e08283a249e7dce0e106c07c5141f9b7e)
1 /*
2  * Copyright (C) 2018, STMicroelectronics - All Rights Reserved
3  *
4  * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
5  */
6 
7 #include <stddef.h>
8 
9 #include <arch.h>
10 #include <arch_helpers.h>
11 #include <common/debug.h>
12 #include <drivers/delay_timer.h>
13 #include <drivers/st/stm32mp1_clk.h>
14 #include <drivers/st/stm32mp1_ddr.h>
15 #include <drivers/st/stm32mp1_ddr_regs.h>
16 #include <drivers/st/stm32mp1_pmic.h>
17 #include <drivers/st/stm32mp1_pwr.h>
18 #include <drivers/st/stm32mp1_ram.h>
19 #include <drivers/st/stm32mp1_rcc.h>
20 #include <dt-bindings/clock/stm32mp1-clks.h>
21 #include <lib/mmio.h>
22 #include <plat/common/platform.h>
23 
24 #include <stm32mp1_def.h>
25 #include <stm32mp1_dt.h>
26 
27 struct reg_desc {
28 	const char *name;
29 	uint16_t offset;	/* Offset for base address */
30 	uint8_t par_offset;	/* Offset for parameter array */
31 };
32 
33 #define INVALID_OFFSET	0xFFU
34 
35 #define TIMESLOT_1US	(plat_get_syscnt_freq2() / 1000000U)
36 
37 #define DDRCTL_REG(x, y)					\
38 	{							\
39 		.name = #x,					\
40 		.offset = offsetof(struct stm32mp1_ddrctl, x),	\
41 		.par_offset = offsetof(struct y, x)		\
42 	}
43 
44 #define DDRPHY_REG(x, y)					\
45 	{							\
46 		.name = #x,					\
47 		.offset = offsetof(struct stm32mp1_ddrphy, x),	\
48 		.par_offset = offsetof(struct y, x)		\
49 	}
50 
51 #define DDRCTL_REG_REG(x)	DDRCTL_REG(x, stm32mp1_ddrctrl_reg)
52 static const struct reg_desc ddr_reg[] = {
53 	DDRCTL_REG_REG(mstr),
54 	DDRCTL_REG_REG(mrctrl0),
55 	DDRCTL_REG_REG(mrctrl1),
56 	DDRCTL_REG_REG(derateen),
57 	DDRCTL_REG_REG(derateint),
58 	DDRCTL_REG_REG(pwrctl),
59 	DDRCTL_REG_REG(pwrtmg),
60 	DDRCTL_REG_REG(hwlpctl),
61 	DDRCTL_REG_REG(rfshctl0),
62 	DDRCTL_REG_REG(rfshctl3),
63 	DDRCTL_REG_REG(crcparctl0),
64 	DDRCTL_REG_REG(zqctl0),
65 	DDRCTL_REG_REG(dfitmg0),
66 	DDRCTL_REG_REG(dfitmg1),
67 	DDRCTL_REG_REG(dfilpcfg0),
68 	DDRCTL_REG_REG(dfiupd0),
69 	DDRCTL_REG_REG(dfiupd1),
70 	DDRCTL_REG_REG(dfiupd2),
71 	DDRCTL_REG_REG(dfiphymstr),
72 	DDRCTL_REG_REG(odtmap),
73 	DDRCTL_REG_REG(dbg0),
74 	DDRCTL_REG_REG(dbg1),
75 	DDRCTL_REG_REG(dbgcmd),
76 	DDRCTL_REG_REG(poisoncfg),
77 	DDRCTL_REG_REG(pccfg),
78 };
79 
80 #define DDRCTL_REG_TIMING(x)	DDRCTL_REG(x, stm32mp1_ddrctrl_timing)
81 static const struct reg_desc ddr_timing[] = {
82 	DDRCTL_REG_TIMING(rfshtmg),
83 	DDRCTL_REG_TIMING(dramtmg0),
84 	DDRCTL_REG_TIMING(dramtmg1),
85 	DDRCTL_REG_TIMING(dramtmg2),
86 	DDRCTL_REG_TIMING(dramtmg3),
87 	DDRCTL_REG_TIMING(dramtmg4),
88 	DDRCTL_REG_TIMING(dramtmg5),
89 	DDRCTL_REG_TIMING(dramtmg6),
90 	DDRCTL_REG_TIMING(dramtmg7),
91 	DDRCTL_REG_TIMING(dramtmg8),
92 	DDRCTL_REG_TIMING(dramtmg14),
93 	DDRCTL_REG_TIMING(odtcfg),
94 };
95 
96 #define DDRCTL_REG_MAP(x)	DDRCTL_REG(x, stm32mp1_ddrctrl_map)
97 static const struct reg_desc ddr_map[] = {
98 	DDRCTL_REG_MAP(addrmap1),
99 	DDRCTL_REG_MAP(addrmap2),
100 	DDRCTL_REG_MAP(addrmap3),
101 	DDRCTL_REG_MAP(addrmap4),
102 	DDRCTL_REG_MAP(addrmap5),
103 	DDRCTL_REG_MAP(addrmap6),
104 	DDRCTL_REG_MAP(addrmap9),
105 	DDRCTL_REG_MAP(addrmap10),
106 	DDRCTL_REG_MAP(addrmap11),
107 };
108 
109 #define DDRCTL_REG_PERF(x)	DDRCTL_REG(x, stm32mp1_ddrctrl_perf)
110 static const struct reg_desc ddr_perf[] = {
111 	DDRCTL_REG_PERF(sched),
112 	DDRCTL_REG_PERF(sched1),
113 	DDRCTL_REG_PERF(perfhpr1),
114 	DDRCTL_REG_PERF(perflpr1),
115 	DDRCTL_REG_PERF(perfwr1),
116 	DDRCTL_REG_PERF(pcfgr_0),
117 	DDRCTL_REG_PERF(pcfgw_0),
118 	DDRCTL_REG_PERF(pcfgqos0_0),
119 	DDRCTL_REG_PERF(pcfgqos1_0),
120 	DDRCTL_REG_PERF(pcfgwqos0_0),
121 	DDRCTL_REG_PERF(pcfgwqos1_0),
122 	DDRCTL_REG_PERF(pcfgr_1),
123 	DDRCTL_REG_PERF(pcfgw_1),
124 	DDRCTL_REG_PERF(pcfgqos0_1),
125 	DDRCTL_REG_PERF(pcfgqos1_1),
126 	DDRCTL_REG_PERF(pcfgwqos0_1),
127 	DDRCTL_REG_PERF(pcfgwqos1_1),
128 };
129 
130 #define DDRPHY_REG_REG(x)	DDRPHY_REG(x, stm32mp1_ddrphy_reg)
131 static const struct reg_desc ddrphy_reg[] = {
132 	DDRPHY_REG_REG(pgcr),
133 	DDRPHY_REG_REG(aciocr),
134 	DDRPHY_REG_REG(dxccr),
135 	DDRPHY_REG_REG(dsgcr),
136 	DDRPHY_REG_REG(dcr),
137 	DDRPHY_REG_REG(odtcr),
138 	DDRPHY_REG_REG(zq0cr1),
139 	DDRPHY_REG_REG(dx0gcr),
140 	DDRPHY_REG_REG(dx1gcr),
141 	DDRPHY_REG_REG(dx2gcr),
142 	DDRPHY_REG_REG(dx3gcr),
143 };
144 
145 #define DDRPHY_REG_TIMING(x)	DDRPHY_REG(x, stm32mp1_ddrphy_timing)
146 static const struct reg_desc ddrphy_timing[] = {
147 	DDRPHY_REG_TIMING(ptr0),
148 	DDRPHY_REG_TIMING(ptr1),
149 	DDRPHY_REG_TIMING(ptr2),
150 	DDRPHY_REG_TIMING(dtpr0),
151 	DDRPHY_REG_TIMING(dtpr1),
152 	DDRPHY_REG_TIMING(dtpr2),
153 	DDRPHY_REG_TIMING(mr0),
154 	DDRPHY_REG_TIMING(mr1),
155 	DDRPHY_REG_TIMING(mr2),
156 	DDRPHY_REG_TIMING(mr3),
157 };
158 
159 #define DDRPHY_REG_CAL(x)	DDRPHY_REG(x, stm32mp1_ddrphy_cal)
160 static const struct reg_desc ddrphy_cal[] = {
161 	DDRPHY_REG_CAL(dx0dllcr),
162 	DDRPHY_REG_CAL(dx0dqtr),
163 	DDRPHY_REG_CAL(dx0dqstr),
164 	DDRPHY_REG_CAL(dx1dllcr),
165 	DDRPHY_REG_CAL(dx1dqtr),
166 	DDRPHY_REG_CAL(dx1dqstr),
167 	DDRPHY_REG_CAL(dx2dllcr),
168 	DDRPHY_REG_CAL(dx2dqtr),
169 	DDRPHY_REG_CAL(dx2dqstr),
170 	DDRPHY_REG_CAL(dx3dllcr),
171 	DDRPHY_REG_CAL(dx3dqtr),
172 	DDRPHY_REG_CAL(dx3dqstr),
173 };
174 
175 #define DDR_REG_DYN(x)						\
176 	{							\
177 		.name = #x,					\
178 		.offset = offsetof(struct stm32mp1_ddrctl, x),	\
179 		.par_offset = INVALID_OFFSET \
180 	}
181 
182 static const struct reg_desc ddr_dyn[] = {
183 	DDR_REG_DYN(stat),
184 	DDR_REG_DYN(init0),
185 	DDR_REG_DYN(dfimisc),
186 	DDR_REG_DYN(dfistat),
187 	DDR_REG_DYN(swctl),
188 	DDR_REG_DYN(swstat),
189 	DDR_REG_DYN(pctrl_0),
190 	DDR_REG_DYN(pctrl_1),
191 };
192 
193 #define DDRPHY_REG_DYN(x)					\
194 	{							\
195 		.name = #x,					\
196 		.offset = offsetof(struct stm32mp1_ddrphy, x),	\
197 		.par_offset = INVALID_OFFSET			\
198 	}
199 
200 static const struct reg_desc ddrphy_dyn[] = {
201 	DDRPHY_REG_DYN(pir),
202 	DDRPHY_REG_DYN(pgsr),
203 };
204 
205 enum reg_type {
206 	REG_REG,
207 	REG_TIMING,
208 	REG_PERF,
209 	REG_MAP,
210 	REGPHY_REG,
211 	REGPHY_TIMING,
212 	REGPHY_CAL,
213 /*
214  * Dynamic registers => managed in driver or not changed,
215  * can be dumped in interactive mode.
216  */
217 	REG_DYN,
218 	REGPHY_DYN,
219 	REG_TYPE_NB
220 };
221 
222 enum base_type {
223 	DDR_BASE,
224 	DDRPHY_BASE,
225 	NONE_BASE
226 };
227 
228 struct ddr_reg_info {
229 	const char *name;
230 	const struct reg_desc *desc;
231 	uint8_t size;
232 	enum base_type base;
233 };
234 
235 static const struct ddr_reg_info ddr_registers[REG_TYPE_NB] = {
236 	[REG_REG] = {
237 		"static", ddr_reg, ARRAY_SIZE(ddr_reg), DDR_BASE
238 	},
239 	[REG_TIMING] = {
240 		"timing", ddr_timing, ARRAY_SIZE(ddr_timing), DDR_BASE
241 	},
242 	[REG_PERF] = {
243 		"perf", ddr_perf, ARRAY_SIZE(ddr_perf), DDR_BASE
244 	},
245 	[REG_MAP] = {
246 		"map", ddr_map, ARRAY_SIZE(ddr_map), DDR_BASE
247 	},
248 	[REGPHY_REG] = {
249 		"static", ddrphy_reg, ARRAY_SIZE(ddrphy_reg), DDRPHY_BASE
250 	},
251 	[REGPHY_TIMING] = {
252 		"timing", ddrphy_timing, ARRAY_SIZE(ddrphy_timing), DDRPHY_BASE
253 	},
254 	[REGPHY_CAL] = {
255 		"cal", ddrphy_cal, ARRAY_SIZE(ddrphy_cal), DDRPHY_BASE
256 	},
257 	[REG_DYN] = {
258 		"dyn", ddr_dyn, ARRAY_SIZE(ddr_dyn), DDR_BASE
259 	},
260 	[REGPHY_DYN] = {
261 		"dyn", ddrphy_dyn, ARRAY_SIZE(ddrphy_dyn), DDRPHY_BASE
262 	},
263 };
264 
265 static uint32_t get_base_addr(const struct ddr_info *priv, enum base_type base)
266 {
267 	if (base == DDRPHY_BASE) {
268 		return (uint32_t)priv->phy;
269 	} else {
270 		return (uint32_t)priv->ctl;
271 	}
272 }
273 
274 static void set_reg(const struct ddr_info *priv,
275 		    enum reg_type type,
276 		    const void *param)
277 {
278 	unsigned int i;
279 	unsigned int *ptr, value;
280 	enum base_type base = ddr_registers[type].base;
281 	uint32_t base_addr = get_base_addr(priv, base);
282 	const struct reg_desc *desc = ddr_registers[type].desc;
283 
284 	VERBOSE("init %s\n", ddr_registers[type].name);
285 	for (i = 0; i < ddr_registers[type].size; i++) {
286 		ptr = (unsigned int *)(base_addr + desc[i].offset);
287 		if (desc[i].par_offset == INVALID_OFFSET) {
288 			ERROR("invalid parameter offset for %s", desc[i].name);
289 			panic();
290 		} else {
291 			value = *((uint32_t *)((uint32_t)param +
292 					       desc[i].par_offset));
293 			mmio_write_32((uint32_t)ptr, value);
294 		}
295 	}
296 }
297 
298 static void stm32mp1_ddrphy_idone_wait(struct stm32mp1_ddrphy *phy)
299 {
300 	uint32_t pgsr;
301 	int error = 0;
302 	unsigned long start;
303 	unsigned long time0, time;
304 
305 	start = get_timer(0);
306 	time0 = start;
307 
308 	do {
309 		pgsr = mmio_read_32((uint32_t)&phy->pgsr);
310 		time = get_timer(start);
311 		if (time != time0) {
312 			VERBOSE("  > [0x%x] pgsr = 0x%x &\n",
313 				(uint32_t)&phy->pgsr, pgsr);
314 			VERBOSE("    [0x%x] pir = 0x%x (time=%x)\n",
315 				(uint32_t)&phy->pir,
316 				mmio_read_32((uint32_t)&phy->pir),
317 				(uint32_t)time);
318 		}
319 
320 		time0 = time;
321 		if (time > plat_get_syscnt_freq2()) {
322 			panic();
323 		}
324 		if ((pgsr & DDRPHYC_PGSR_DTERR) != 0U) {
325 			VERBOSE("DQS Gate Trainig Error\n");
326 			error++;
327 		}
328 		if ((pgsr & DDRPHYC_PGSR_DTIERR) != 0U) {
329 			VERBOSE("DQS Gate Trainig Intermittent Error\n");
330 			error++;
331 		}
332 		if ((pgsr & DDRPHYC_PGSR_DFTERR) != 0U) {
333 			VERBOSE("DQS Drift Error\n");
334 			error++;
335 		}
336 		if ((pgsr & DDRPHYC_PGSR_RVERR) != 0U) {
337 			VERBOSE("Read Valid Training Error\n");
338 			error++;
339 		}
340 		if ((pgsr & DDRPHYC_PGSR_RVEIRR) != 0U) {
341 			VERBOSE("Read Valid Training Intermittent Error\n");
342 			error++;
343 		}
344 	} while ((pgsr & DDRPHYC_PGSR_IDONE) == 0U && error == 0);
345 	VERBOSE("\n[0x%x] pgsr = 0x%x\n",
346 		(uint32_t)&phy->pgsr, pgsr);
347 }
348 
349 static void stm32mp1_ddrphy_init(struct stm32mp1_ddrphy *phy, uint32_t pir)
350 {
351 	uint32_t pir_init = pir | DDRPHYC_PIR_INIT;
352 
353 	mmio_write_32((uint32_t)&phy->pir, pir_init);
354 	VERBOSE("[0x%x] pir = 0x%x -> 0x%x\n",
355 		(uint32_t)&phy->pir, pir_init,
356 		mmio_read_32((uint32_t)&phy->pir));
357 
358 	/* Need to wait 10 configuration clock before start polling */
359 	udelay(10);
360 
361 	/* Wait DRAM initialization and Gate Training Evaluation complete */
362 	stm32mp1_ddrphy_idone_wait(phy);
363 }
364 
365 /* Start quasi dynamic register update */
366 static void stm32mp1_start_sw_done(struct stm32mp1_ddrctl *ctl)
367 {
368 	mmio_clrbits_32((uint32_t)&ctl->swctl, DDRCTRL_SWCTL_SW_DONE);
369 	VERBOSE("[0x%x] swctl = 0x%x\n",
370 		(uint32_t)&ctl->swctl,  mmio_read_32((uint32_t)&ctl->swctl));
371 }
372 
373 /* Wait quasi dynamic register update */
374 static void stm32mp1_wait_sw_done_ack(struct stm32mp1_ddrctl *ctl)
375 {
376 	unsigned long start;
377 	uint32_t swstat;
378 
379 	mmio_setbits_32((uint32_t)&ctl->swctl, DDRCTRL_SWCTL_SW_DONE);
380 	VERBOSE("[0x%x] swctl = 0x%x\n",
381 		(uint32_t)&ctl->swctl, mmio_read_32((uint32_t)&ctl->swctl));
382 
383 	start = get_timer(0);
384 	do {
385 		swstat = mmio_read_32((uint32_t)&ctl->swstat);
386 		VERBOSE("[0x%x] swstat = 0x%x ",
387 			(uint32_t)&ctl->swstat, swstat);
388 		VERBOSE("timer in ms 0x%x = start 0x%lx\r",
389 			get_timer(0), start);
390 		if (get_timer(start) > plat_get_syscnt_freq2()) {
391 			panic();
392 		}
393 	} while ((swstat & DDRCTRL_SWSTAT_SW_DONE_ACK) == 0U);
394 
395 	VERBOSE("[0x%x] swstat = 0x%x\n",
396 		(uint32_t)&ctl->swstat, swstat);
397 }
398 
399 /* Wait quasi dynamic register update */
400 static void stm32mp1_wait_operating_mode(struct ddr_info *priv, uint32_t mode)
401 {
402 	unsigned long start;
403 	uint32_t stat;
404 	uint32_t operating_mode;
405 	uint32_t selref_type;
406 	int break_loop = 0;
407 
408 	start = get_timer(0);
409 	for ( ; ; ) {
410 		stat = mmio_read_32((uint32_t)&priv->ctl->stat);
411 		operating_mode = stat & DDRCTRL_STAT_OPERATING_MODE_MASK;
412 		selref_type = stat & DDRCTRL_STAT_SELFREF_TYPE_MASK;
413 		VERBOSE("[0x%x] stat = 0x%x\n",
414 			(uint32_t)&priv->ctl->stat, stat);
415 		VERBOSE("timer in ms 0x%x = start 0x%lx\r",
416 			get_timer(0), start);
417 		if (get_timer(start) > plat_get_syscnt_freq2()) {
418 			panic();
419 		}
420 
421 		if (mode == DDRCTRL_STAT_OPERATING_MODE_SR) {
422 			/*
423 			 * Self-refresh due to software
424 			 * => checking also STAT.selfref_type.
425 			 */
426 			if ((operating_mode ==
427 			     DDRCTRL_STAT_OPERATING_MODE_SR) &&
428 			    (selref_type == DDRCTRL_STAT_SELFREF_TYPE_SR)) {
429 				break_loop = 1;
430 			}
431 		} else if (operating_mode == mode) {
432 			break_loop = 1;
433 		} else if ((mode == DDRCTRL_STAT_OPERATING_MODE_NORMAL) &&
434 			   (operating_mode == DDRCTRL_STAT_OPERATING_MODE_SR) &&
435 			   (selref_type == DDRCTRL_STAT_SELFREF_TYPE_ASR)) {
436 			/* Normal mode: handle also automatic self refresh */
437 			break_loop = 1;
438 		}
439 
440 		if (break_loop == 1) {
441 			break;
442 		}
443 	}
444 
445 	VERBOSE("[0x%x] stat = 0x%x\n",
446 		(uint32_t)&priv->ctl->stat, stat);
447 }
448 
449 /* Mode Register Writes (MRW or MRS) */
450 static void stm32mp1_mode_register_write(struct ddr_info *priv, uint8_t addr,
451 					 uint32_t data)
452 {
453 	uint32_t mrctrl0;
454 
455 	VERBOSE("MRS: %d = %x\n", addr, data);
456 
457 	/*
458 	 * 1. Poll MRSTAT.mr_wr_busy until it is '0'.
459 	 *    This checks that there is no outstanding MR transaction.
460 	 *    No write should be performed to MRCTRL0 and MRCTRL1
461 	 *    if MRSTAT.mr_wr_busy = 1.
462 	 */
463 	while ((mmio_read_32((uint32_t)&priv->ctl->mrstat) &
464 		DDRCTRL_MRSTAT_MR_WR_BUSY) != 0U) {
465 		;
466 	}
467 
468 	/*
469 	 * 2. Write the MRCTRL0.mr_type, MRCTRL0.mr_addr, MRCTRL0.mr_rank
470 	 *    and (for MRWs) MRCTRL1.mr_data to define the MR transaction.
471 	 */
472 	mrctrl0 = DDRCTRL_MRCTRL0_MR_TYPE_WRITE |
473 		  DDRCTRL_MRCTRL0_MR_RANK_ALL |
474 		  (((uint32_t)addr << DDRCTRL_MRCTRL0_MR_ADDR_SHIFT) &
475 		   DDRCTRL_MRCTRL0_MR_ADDR_MASK);
476 	mmio_write_32((uint32_t)&priv->ctl->mrctrl0, mrctrl0);
477 	VERBOSE("[0x%x] mrctrl0 = 0x%x (0x%x)\n",
478 		(uint32_t)&priv->ctl->mrctrl0,
479 		mmio_read_32((uint32_t)&priv->ctl->mrctrl0), mrctrl0);
480 	mmio_write_32((uint32_t)&priv->ctl->mrctrl1, data);
481 	VERBOSE("[0x%x] mrctrl1 = 0x%x\n",
482 		(uint32_t)&priv->ctl->mrctrl1,
483 		mmio_read_32((uint32_t)&priv->ctl->mrctrl1));
484 
485 	/*
486 	 * 3. In a separate APB transaction, write the MRCTRL0.mr_wr to 1. This
487 	 *    bit is self-clearing, and triggers the MR transaction.
488 	 *    The uMCTL2 then asserts the MRSTAT.mr_wr_busy while it performs
489 	 *    the MR transaction to SDRAM, and no further access can be
490 	 *    initiated until it is deasserted.
491 	 */
492 	mrctrl0 |= DDRCTRL_MRCTRL0_MR_WR;
493 	mmio_write_32((uint32_t)&priv->ctl->mrctrl0, mrctrl0);
494 
495 	while ((mmio_read_32((uint32_t)&priv->ctl->mrstat) &
496 	       DDRCTRL_MRSTAT_MR_WR_BUSY) != 0U) {
497 		;
498 	}
499 
500 	VERBOSE("[0x%x] mrctrl0 = 0x%x\n",
501 		(uint32_t)&priv->ctl->mrctrl0, mrctrl0);
502 }
503 
504 /* Switch DDR3 from DLL-on to DLL-off */
505 static void stm32mp1_ddr3_dll_off(struct ddr_info *priv)
506 {
507 	uint32_t mr1 = mmio_read_32((uint32_t)&priv->phy->mr1);
508 	uint32_t mr2 = mmio_read_32((uint32_t)&priv->phy->mr2);
509 	uint32_t dbgcam;
510 
511 	VERBOSE("mr1: 0x%x\n", mr1);
512 	VERBOSE("mr2: 0x%x\n", mr2);
513 
514 	/*
515 	 * 1. Set the DBG1.dis_hif = 1.
516 	 *    This prevents further reads/writes being received on the HIF.
517 	 */
518 	mmio_setbits_32((uint32_t)&priv->ctl->dbg1, DDRCTRL_DBG1_DIS_HIF);
519 	VERBOSE("[0x%x] dbg1 = 0x%x\n",
520 		(uint32_t)&priv->ctl->dbg1,
521 		mmio_read_32((uint32_t)&priv->ctl->dbg1));
522 
523 	/*
524 	 * 2. Ensure all commands have been flushed from the uMCTL2 by polling
525 	 *    DBGCAM.wr_data_pipeline_empty = 1,
526 	 *    DBGCAM.rd_data_pipeline_empty = 1,
527 	 *    DBGCAM.dbg_wr_q_depth = 0 ,
528 	 *    DBGCAM.dbg_lpr_q_depth = 0, and
529 	 *    DBGCAM.dbg_hpr_q_depth = 0.
530 	 */
531 	do {
532 		dbgcam = mmio_read_32((uint32_t)&priv->ctl->dbgcam);
533 		VERBOSE("[0x%x] dbgcam = 0x%x\n",
534 			(uint32_t)&priv->ctl->dbgcam, dbgcam);
535 	} while ((((dbgcam & DDRCTRL_DBGCAM_DATA_PIPELINE_EMPTY) ==
536 		   DDRCTRL_DBGCAM_DATA_PIPELINE_EMPTY)) &&
537 		 ((dbgcam & DDRCTRL_DBGCAM_DBG_Q_DEPTH) == 0U));
538 
539 	/*
540 	 * 3. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers)
541 	 *    to disable RTT_NOM:
542 	 *    a. DDR3: Write to MR1[9], MR1[6] and MR1[2]
543 	 *    b. DDR4: Write to MR1[10:8]
544 	 */
545 	mr1 &= ~(BIT(9) | BIT(6) | BIT(2));
546 	stm32mp1_mode_register_write(priv, 1, mr1);
547 
548 	/*
549 	 * 4. For DDR4 only: Perform an MRS command
550 	 *    (using MRCTRL0 and MRCTRL1 registers) to write to MR5[8:6]
551 	 *    to disable RTT_PARK
552 	 */
553 
554 	/*
555 	 * 5. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers)
556 	 *    to write to MR2[10:9], to disable RTT_WR
557 	 *    (and therefore disable dynamic ODT).
558 	 *    This applies for both DDR3 and DDR4.
559 	 */
560 	mr2 &= ~GENMASK(10, 9);
561 	stm32mp1_mode_register_write(priv, 2, mr2);
562 
563 	/*
564 	 * 6. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers)
565 	 *    to disable the DLL. The timing of this MRS is automatically
566 	 *    handled by the uMCTL2.
567 	 *    a. DDR3: Write to MR1[0]
568 	 *    b. DDR4: Write to MR1[0]
569 	 */
570 	mr1 |= BIT(0);
571 	stm32mp1_mode_register_write(priv, 1, mr1);
572 
573 	/*
574 	 * 7. Put the SDRAM into self-refresh mode by setting
575 	 *    PWRCTL.selfref_sw = 1, and polling STAT.operating_mode to ensure
576 	 *    the DDRC has entered self-refresh.
577 	 */
578 	mmio_setbits_32((uint32_t)&priv->ctl->pwrctl,
579 			DDRCTRL_PWRCTL_SELFREF_SW);
580 	VERBOSE("[0x%x] pwrctl = 0x%x\n",
581 		(uint32_t)&priv->ctl->pwrctl,
582 		mmio_read_32((uint32_t)&priv->ctl->pwrctl));
583 
584 	/*
585 	 * 8. Wait until STAT.operating_mode[1:0]==11 indicating that the
586 	 *    DWC_ddr_umctl2 core is in self-refresh mode.
587 	 *    Ensure transition to self-refresh was due to software
588 	 *    by checking that STAT.selfref_type[1:0]=2.
589 	 */
590 	stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_SR);
591 
592 	/*
593 	 * 9. Set the MSTR.dll_off_mode = 1.
594 	 *    warning: MSTR.dll_off_mode is a quasi-dynamic type 2 field
595 	 */
596 	stm32mp1_start_sw_done(priv->ctl);
597 
598 	mmio_setbits_32((uint32_t)&priv->ctl->mstr, DDRCTRL_MSTR_DLL_OFF_MODE);
599 	VERBOSE("[0x%x] mstr = 0x%x\n",
600 		(uint32_t)&priv->ctl->mstr,
601 		mmio_read_32((uint32_t)&priv->ctl->mstr));
602 
603 	stm32mp1_wait_sw_done_ack(priv->ctl);
604 
605 	/* 10. Change the clock frequency to the desired value. */
606 
607 	/*
608 	 * 11. Update any registers which may be required to change for the new
609 	 *     frequency. This includes static and dynamic registers.
610 	 *     This includes both uMCTL2 registers and PHY registers.
611 	 */
612 
613 	/* Change Bypass Mode Frequency Range */
614 	if (stm32mp1_clk_get_rate(DDRPHYC) < 100000000U) {
615 		mmio_clrbits_32((uint32_t)&priv->phy->dllgcr,
616 				DDRPHYC_DLLGCR_BPS200);
617 	} else {
618 		mmio_setbits_32((uint32_t)&priv->phy->dllgcr,
619 				DDRPHYC_DLLGCR_BPS200);
620 	}
621 
622 	mmio_setbits_32((uint32_t)&priv->phy->acdllcr, DDRPHYC_ACDLLCR_DLLDIS);
623 
624 	mmio_setbits_32((uint32_t)&priv->phy->dx0dllcr,
625 			DDRPHYC_DXNDLLCR_DLLDIS);
626 	mmio_setbits_32((uint32_t)&priv->phy->dx1dllcr,
627 			DDRPHYC_DXNDLLCR_DLLDIS);
628 	mmio_setbits_32((uint32_t)&priv->phy->dx2dllcr,
629 			DDRPHYC_DXNDLLCR_DLLDIS);
630 	mmio_setbits_32((uint32_t)&priv->phy->dx3dllcr,
631 			DDRPHYC_DXNDLLCR_DLLDIS);
632 
633 	/* 12. Exit the self-refresh state by setting PWRCTL.selfref_sw = 0. */
634 	mmio_clrbits_32((uint32_t)&priv->ctl->pwrctl,
635 			DDRCTRL_PWRCTL_SELFREF_SW);
636 	stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_NORMAL);
637 
638 	/*
639 	 * 13. If ZQCTL0.dis_srx_zqcl = 0, the uMCTL2 performs a ZQCL command
640 	 *     at this point.
641 	 */
642 
643 	/*
644 	 * 14. Perform MRS commands as required to re-program timing registers
645 	 *     in the SDRAM for the new frequency
646 	 *     (in particular, CL, CWL and WR may need to be changed).
647 	 */
648 
649 	/* 15. Write DBG1.dis_hif = 0 to re-enable reads and writes. */
650 	mmio_clrbits_32((uint32_t)&priv->ctl->dbg1, DDRCTRL_DBG1_DIS_HIF);
651 	VERBOSE("[0x%x] dbg1 = 0x%x\n",
652 		(uint32_t)&priv->ctl->dbg1,
653 		mmio_read_32((uint32_t)&priv->ctl->dbg1));
654 }
655 
656 static void stm32mp1_refresh_disable(struct stm32mp1_ddrctl *ctl)
657 {
658 	stm32mp1_start_sw_done(ctl);
659 	/* Quasi-dynamic register update*/
660 	mmio_setbits_32((uint32_t)&ctl->rfshctl3,
661 			DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH);
662 	mmio_clrbits_32((uint32_t)&ctl->pwrctl, DDRCTRL_PWRCTL_POWERDOWN_EN);
663 	mmio_clrbits_32((uint32_t)&ctl->dfimisc,
664 			DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
665 	stm32mp1_wait_sw_done_ack(ctl);
666 }
667 
668 static void stm32mp1_refresh_restore(struct stm32mp1_ddrctl *ctl,
669 				     uint32_t rfshctl3, uint32_t pwrctl)
670 {
671 	stm32mp1_start_sw_done(ctl);
672 	if ((rfshctl3 & DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH) == 0U) {
673 		mmio_clrbits_32((uint32_t)&ctl->rfshctl3,
674 				DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH);
675 	}
676 	if ((pwrctl & DDRCTRL_PWRCTL_POWERDOWN_EN) != 0U) {
677 		mmio_setbits_32((uint32_t)&ctl->pwrctl,
678 				DDRCTRL_PWRCTL_POWERDOWN_EN);
679 	}
680 	mmio_setbits_32((uint32_t)&ctl->dfimisc,
681 			DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
682 	stm32mp1_wait_sw_done_ack(ctl);
683 }
684 
685 static int board_ddr_power_init(enum ddr_type ddr_type)
686 {
687 	if (dt_check_pmic()) {
688 		return pmic_ddr_power_init(ddr_type);
689 	}
690 
691 	return 0;
692 }
693 
694 void stm32mp1_ddr_init(struct ddr_info *priv,
695 		       struct stm32mp1_ddr_config *config)
696 {
697 	uint32_t pir;
698 	int ret;
699 
700 	if ((config->c_reg.mstr & DDRCTRL_MSTR_DDR3) != 0U) {
701 		ret = board_ddr_power_init(STM32MP_DDR3);
702 	} else {
703 		ret = board_ddr_power_init(STM32MP_LPDDR2);
704 	}
705 
706 	if (ret != 0) {
707 		panic();
708 	}
709 
710 	VERBOSE("name = %s\n", config->info.name);
711 	VERBOSE("speed = %d MHz\n", config->info.speed);
712 	VERBOSE("size  = 0x%x\n", config->info.size);
713 
714 	/* DDR INIT SEQUENCE */
715 
716 	/*
717 	 * 1. Program the DWC_ddr_umctl2 registers
718 	 *     nota: check DFIMISC.dfi_init_complete = 0
719 	 */
720 
721 	/* 1.1 RESETS: presetn, core_ddrc_rstn, aresetn */
722 	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAPBRST);
723 	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAXIRST);
724 	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCORERST);
725 	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYAPBRST);
726 	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYRST);
727 	mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYCTLRST);
728 
729 	/* 1.2. start CLOCK */
730 	if (stm32mp1_ddr_clk_enable(priv, config->info.speed) != 0) {
731 		panic();
732 	}
733 
734 	/* 1.3. deassert reset */
735 	/* De-assert PHY rstn and ctl_rstn via DPHYRST and DPHYCTLRST. */
736 	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYRST);
737 	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYCTLRST);
738 	/*
739 	 * De-assert presetn once the clocks are active
740 	 * and stable via DDRCAPBRST bit.
741 	 */
742 	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAPBRST);
743 
744 	/* 1.4. wait 128 cycles to permit initialization of end logic */
745 	udelay(2);
746 	/* For PCLK = 133MHz => 1 us is enough, 2 to allow lower frequency */
747 
748 	/* 1.5. initialize registers ddr_umctl2 */
749 	/* Stop uMCTL2 before PHY is ready */
750 	mmio_clrbits_32((uint32_t)&priv->ctl->dfimisc,
751 			DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
752 	VERBOSE("[0x%x] dfimisc = 0x%x\n",
753 		(uint32_t)&priv->ctl->dfimisc,
754 		mmio_read_32((uint32_t)&priv->ctl->dfimisc));
755 
756 	set_reg(priv, REG_REG, &config->c_reg);
757 
758 	/* DDR3 = don't set DLLOFF for init mode */
759 	if ((config->c_reg.mstr &
760 	     (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE))
761 	    == (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) {
762 		VERBOSE("deactivate DLL OFF in mstr\n");
763 		mmio_clrbits_32((uint32_t)&priv->ctl->mstr,
764 				DDRCTRL_MSTR_DLL_OFF_MODE);
765 		VERBOSE("[0x%x] mstr = 0x%x\n",
766 			(uint32_t)&priv->ctl->mstr,
767 			mmio_read_32((uint32_t)&priv->ctl->mstr));
768 	}
769 
770 	set_reg(priv, REG_TIMING, &config->c_timing);
771 	set_reg(priv, REG_MAP, &config->c_map);
772 
773 	/* Skip CTRL init, SDRAM init is done by PHY PUBL */
774 	mmio_clrsetbits_32((uint32_t)&priv->ctl->init0,
775 			   DDRCTRL_INIT0_SKIP_DRAM_INIT_MASK,
776 			   DDRCTRL_INIT0_SKIP_DRAM_INIT_NORMAL);
777 	VERBOSE("[0x%x] init0 = 0x%x\n",
778 		(uint32_t)&priv->ctl->init0,
779 		mmio_read_32((uint32_t)&priv->ctl->init0));
780 
781 	set_reg(priv, REG_PERF, &config->c_perf);
782 
783 	/*  2. deassert reset signal core_ddrc_rstn, aresetn and presetn */
784 	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCORERST);
785 	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAXIRST);
786 	mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYAPBRST);
787 
788 	/*
789 	 * 3. start PHY init by accessing relevant PUBL registers
790 	 *    (DXGCR, DCR, PTR*, MR*, DTPR*)
791 	 */
792 	set_reg(priv, REGPHY_REG, &config->p_reg);
793 	set_reg(priv, REGPHY_TIMING, &config->p_timing);
794 	set_reg(priv, REGPHY_CAL, &config->p_cal);
795 
796 	/* DDR3 = don't set DLLOFF for init mode */
797 	if ((config->c_reg.mstr &
798 	     (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE))
799 	    == (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) {
800 		VERBOSE("deactivate DLL OFF in mr1\n");
801 		mmio_clrbits_32((uint32_t)&priv->phy->mr1, BIT(0));
802 		VERBOSE("[0x%x] mr1 = 0x%x\n",
803 			(uint32_t)&priv->phy->mr1,
804 			mmio_read_32((uint32_t)&priv->phy->mr1));
805 	}
806 
807 	/*
808 	 *  4. Monitor PHY init status by polling PUBL register PGSR.IDONE
809 	 *     Perform DDR PHY DRAM initialization and Gate Training Evaluation
810 	 */
811 	stm32mp1_ddrphy_idone_wait(priv->phy);
812 
813 	/*
814 	 *  5. Indicate to PUBL that controller performs SDRAM initialization
815 	 *     by setting PIR.INIT and PIR CTLDINIT and pool PGSR.IDONE
816 	 *     DRAM init is done by PHY, init0.skip_dram.init = 1
817 	 */
818 
819 	pir = DDRPHYC_PIR_DLLSRST | DDRPHYC_PIR_DLLLOCK | DDRPHYC_PIR_ZCAL |
820 	      DDRPHYC_PIR_ITMSRST | DDRPHYC_PIR_DRAMINIT | DDRPHYC_PIR_ICPC;
821 
822 	if ((config->c_reg.mstr & DDRCTRL_MSTR_DDR3) != 0U) {
823 		pir |= DDRPHYC_PIR_DRAMRST; /* Only for DDR3 */
824 	}
825 
826 	stm32mp1_ddrphy_init(priv->phy, pir);
827 
828 	/*
829 	 *  6. SET DFIMISC.dfi_init_complete_en to 1
830 	 *  Enable quasi-dynamic register programming.
831 	 */
832 	stm32mp1_start_sw_done(priv->ctl);
833 
834 	mmio_setbits_32((uint32_t)&priv->ctl->dfimisc,
835 			DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
836 	VERBOSE("[0x%x] dfimisc = 0x%x\n",
837 		(uint32_t)&priv->ctl->dfimisc,
838 		mmio_read_32((uint32_t)&priv->ctl->dfimisc));
839 
840 	stm32mp1_wait_sw_done_ack(priv->ctl);
841 
842 	/*
843 	 *  7. Wait for DWC_ddr_umctl2 to move to normal operation mode
844 	 *     by monitoring STAT.operating_mode signal
845 	 */
846 
847 	/* Wait uMCTL2 ready */
848 	stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_NORMAL);
849 
850 	/* Switch to DLL OFF mode */
851 	if ((config->c_reg.mstr & DDRCTRL_MSTR_DLL_OFF_MODE) != 0U) {
852 		stm32mp1_ddr3_dll_off(priv);
853 	}
854 
855 	VERBOSE("DDR DQS training : ");
856 
857 	/*
858 	 *  8. Disable Auto refresh and power down by setting
859 	 *    - RFSHCTL3.dis_au_refresh = 1
860 	 *    - PWRCTL.powerdown_en = 0
861 	 *    - DFIMISC.dfiinit_complete_en = 0
862 	 */
863 	stm32mp1_refresh_disable(priv->ctl);
864 
865 	/*
866 	 *  9. Program PUBL PGCR to enable refresh during training
867 	 *     and rank to train
868 	 *     not done => keep the programed value in PGCR
869 	 */
870 
871 	/*
872 	 * 10. configure PUBL PIR register to specify which training step
873 	 * to run
874 	 * Warning : RVTRN  is not supported by this PUBL
875 	 */
876 	stm32mp1_ddrphy_init(priv->phy, DDRPHYC_PIR_QSTRN);
877 
878 	/* 11. monitor PUB PGSR.IDONE to poll cpmpletion of training sequence */
879 	stm32mp1_ddrphy_idone_wait(priv->phy);
880 
881 	/*
882 	 * 12. set back registers in step 8 to the orginal values if desidered
883 	 */
884 	stm32mp1_refresh_restore(priv->ctl, config->c_reg.rfshctl3,
885 				 config->c_reg.pwrctl);
886 
887 	/* Enable uMCTL2 AXI port 0 */
888 	mmio_setbits_32((uint32_t)&priv->ctl->pctrl_0, DDRCTRL_PCTRL_N_PORT_EN);
889 	VERBOSE("[0x%x] pctrl_0 = 0x%x\n",
890 		(uint32_t)&priv->ctl->pctrl_0,
891 		mmio_read_32((uint32_t)&priv->ctl->pctrl_0));
892 
893 	/* Enable uMCTL2 AXI port 1 */
894 	mmio_setbits_32((uint32_t)&priv->ctl->pctrl_1, DDRCTRL_PCTRL_N_PORT_EN);
895 	VERBOSE("[0x%x] pctrl_1 = 0x%x\n",
896 		(uint32_t)&priv->ctl->pctrl_1,
897 		mmio_read_32((uint32_t)&priv->ctl->pctrl_1));
898 }
899