xref: /rk3399_ARM-atf/drivers/st/clk/stm32mp1_clk.c (revision f65592278869951330325085cf373c3306ccab57)
1 /*
2  * Copyright (C) 2018-2024, STMicroelectronics - All Rights Reserved
3  *
4  * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdio.h>
11 
12 #include <arch.h>
13 #include <arch_helpers.h>
14 #include <common/debug.h>
15 #include <common/fdt_wrappers.h>
16 #include <drivers/clk.h>
17 #include <drivers/delay_timer.h>
18 #include <drivers/st/stm32mp_clkfunc.h>
19 #include <drivers/st/stm32mp1_clk.h>
20 #include <drivers/st/stm32mp1_rcc.h>
21 #include <dt-bindings/clock/stm32mp1-clksrc.h>
22 #include <lib/mmio.h>
23 #include <lib/spinlock.h>
24 #include <lib/utils_def.h>
25 #include <libfdt.h>
26 #include <plat/common/platform.h>
27 
28 #include <platform_def.h>
29 
30 #define MAX_HSI_HZ		64000000
31 #define USB_PHY_48_MHZ		48000000
32 
33 #define TIMEOUT_US_200MS	U(200000)
34 #define TIMEOUT_US_1S		U(1000000)
35 
36 #define PLLRDY_TIMEOUT		TIMEOUT_US_200MS
37 #define CLKSRC_TIMEOUT		TIMEOUT_US_200MS
38 #define CLKDIV_TIMEOUT		TIMEOUT_US_200MS
39 #define HSIDIV_TIMEOUT		TIMEOUT_US_200MS
40 #define OSCRDY_TIMEOUT		TIMEOUT_US_1S
41 
42 const char *stm32mp_osc_node_label[NB_OSC] = {
43 	[_LSI] = "clk-lsi",
44 	[_LSE] = "clk-lse",
45 	[_HSI] = "clk-hsi",
46 	[_HSE] = "clk-hse",
47 	[_CSI] = "clk-csi",
48 	[_I2S_CKIN] = "i2s_ckin",
49 };
50 
51 enum stm32mp1_parent_id {
52 /* Oscillators are defined in enum stm32mp_osc_id */
53 
54 /* Other parent source */
55 	_HSI_KER = NB_OSC,
56 	_HSE_KER,
57 	_HSE_KER_DIV2,
58 	_HSE_RTC,
59 	_CSI_KER,
60 	_PLL1_P,
61 	_PLL1_Q,
62 	_PLL1_R,
63 	_PLL2_P,
64 	_PLL2_Q,
65 	_PLL2_R,
66 	_PLL3_P,
67 	_PLL3_Q,
68 	_PLL3_R,
69 	_PLL4_P,
70 	_PLL4_Q,
71 	_PLL4_R,
72 	_ACLK,
73 	_PCLK1,
74 	_PCLK2,
75 	_PCLK3,
76 	_PCLK4,
77 	_PCLK5,
78 	_HCLK6,
79 	_HCLK2,
80 	_CK_PER,
81 	_CK_MPU,
82 	_CK_MCU,
83 	_USB_PHY_48,
84 	_PARENT_NB,
85 	_UNKNOWN_ID = 0xff,
86 };
87 
88 /* Lists only the parent clock we are interested in */
89 enum stm32mp1_parent_sel {
90 	_I2C12_SEL,
91 	_I2C35_SEL,
92 	_STGEN_SEL,
93 	_I2C46_SEL,
94 	_SPI6_SEL,
95 	_UART1_SEL,
96 	_RNG1_SEL,
97 	_UART6_SEL,
98 	_UART24_SEL,
99 	_UART35_SEL,
100 	_UART78_SEL,
101 	_SDMMC12_SEL,
102 	_SDMMC3_SEL,
103 	_QSPI_SEL,
104 	_FMC_SEL,
105 	_AXIS_SEL,
106 	_MCUS_SEL,
107 	_USBPHY_SEL,
108 	_USBO_SEL,
109 	_MPU_SEL,
110 	_CKPER_SEL,
111 	_RTC_SEL,
112 	_PARENT_SEL_NB,
113 	_UNKNOWN_SEL = 0xff,
114 };
115 
116 /* State the parent clock ID straight related to a clock */
117 static const uint8_t parent_id_clock_id[_PARENT_NB] = {
118 	[_HSE] = CK_HSE,
119 	[_HSI] = CK_HSI,
120 	[_CSI] = CK_CSI,
121 	[_LSE] = CK_LSE,
122 	[_LSI] = CK_LSI,
123 	[_I2S_CKIN] = _UNKNOWN_ID,
124 	[_USB_PHY_48] = _UNKNOWN_ID,
125 	[_HSI_KER] = CK_HSI,
126 	[_HSE_KER] = CK_HSE,
127 	[_HSE_KER_DIV2] = CK_HSE_DIV2,
128 	[_HSE_RTC] = _UNKNOWN_ID,
129 	[_CSI_KER] = CK_CSI,
130 	[_PLL1_P] = PLL1_P,
131 	[_PLL1_Q] = PLL1_Q,
132 	[_PLL1_R] = PLL1_R,
133 	[_PLL2_P] = PLL2_P,
134 	[_PLL2_Q] = PLL2_Q,
135 	[_PLL2_R] = PLL2_R,
136 	[_PLL3_P] = PLL3_P,
137 	[_PLL3_Q] = PLL3_Q,
138 	[_PLL3_R] = PLL3_R,
139 	[_PLL4_P] = PLL4_P,
140 	[_PLL4_Q] = PLL4_Q,
141 	[_PLL4_R] = PLL4_R,
142 	[_ACLK] = CK_AXI,
143 	[_PCLK1] = CK_AXI,
144 	[_PCLK2] = CK_AXI,
145 	[_PCLK3] = CK_AXI,
146 	[_PCLK4] = CK_AXI,
147 	[_PCLK5] = CK_AXI,
148 	[_CK_PER] = CK_PER,
149 	[_CK_MPU] = CK_MPU,
150 	[_CK_MCU] = CK_MCU,
151 };
152 
153 static unsigned int clock_id2parent_id(unsigned long id)
154 {
155 	unsigned int n;
156 
157 	for (n = 0U; n < ARRAY_SIZE(parent_id_clock_id); n++) {
158 		if (parent_id_clock_id[n] == id) {
159 			return n;
160 		}
161 	}
162 
163 	return _UNKNOWN_ID;
164 }
165 
166 enum stm32mp1_pll_id {
167 	_PLL1,
168 	_PLL2,
169 	_PLL3,
170 	_PLL4,
171 	_PLL_NB
172 };
173 
174 enum stm32mp1_div_id {
175 	_DIV_P,
176 	_DIV_Q,
177 	_DIV_R,
178 	_DIV_NB,
179 };
180 
181 enum stm32mp1_clksrc_id {
182 	CLKSRC_MPU,
183 	CLKSRC_AXI,
184 	CLKSRC_MCU,
185 	CLKSRC_PLL12,
186 	CLKSRC_PLL3,
187 	CLKSRC_PLL4,
188 	CLKSRC_RTC,
189 	CLKSRC_MCO1,
190 	CLKSRC_MCO2,
191 	CLKSRC_NB
192 };
193 
194 enum stm32mp1_clkdiv_id {
195 	CLKDIV_MPU,
196 	CLKDIV_AXI,
197 	CLKDIV_MCU,
198 	CLKDIV_APB1,
199 	CLKDIV_APB2,
200 	CLKDIV_APB3,
201 	CLKDIV_APB4,
202 	CLKDIV_APB5,
203 	CLKDIV_RTC,
204 	CLKDIV_MCO1,
205 	CLKDIV_MCO2,
206 	CLKDIV_NB
207 };
208 
209 enum stm32mp1_pllcfg {
210 	PLLCFG_M,
211 	PLLCFG_N,
212 	PLLCFG_P,
213 	PLLCFG_Q,
214 	PLLCFG_R,
215 	PLLCFG_O,
216 	PLLCFG_NB
217 };
218 
219 enum stm32mp1_pllcsg {
220 	PLLCSG_MOD_PER,
221 	PLLCSG_INC_STEP,
222 	PLLCSG_SSCG_MODE,
223 	PLLCSG_NB
224 };
225 
226 enum stm32mp1_plltype {
227 	PLL_800,
228 	PLL_1600,
229 	PLL_TYPE_NB
230 };
231 
232 struct stm32mp1_pll {
233 	uint8_t refclk_min;
234 	uint8_t refclk_max;
235 };
236 
237 struct stm32mp1_clk_gate {
238 	uint16_t offset;
239 	uint8_t bit;
240 	uint8_t index;
241 	uint8_t set_clr;
242 	uint8_t secure;
243 	uint8_t sel; /* Relates to enum stm32mp1_parent_sel */
244 	uint8_t fixed; /* Relates to enum stm32mp1_parent_id */
245 };
246 
247 struct stm32mp1_clk_sel {
248 	uint16_t offset;
249 	uint8_t src;
250 	uint8_t msk;
251 	uint8_t nb_parent;
252 	const uint8_t *parent;
253 };
254 
255 #define REFCLK_SIZE 4
256 struct stm32mp1_clk_pll {
257 	enum stm32mp1_plltype plltype;
258 	uint16_t rckxselr;
259 	uint16_t pllxcfgr1;
260 	uint16_t pllxcfgr2;
261 	uint16_t pllxfracr;
262 	uint16_t pllxcr;
263 	uint16_t pllxcsgr;
264 	enum stm32mp_osc_id refclk[REFCLK_SIZE];
265 };
266 
267 /* Clocks with selectable source and non set/clr register access */
268 #define _CLK_SELEC(sec, off, b, idx, s)			\
269 	{						\
270 		.offset = (off),			\
271 		.bit = (b),				\
272 		.index = (idx),				\
273 		.set_clr = 0,				\
274 		.secure = (sec),			\
275 		.sel = (s),				\
276 		.fixed = _UNKNOWN_ID,			\
277 	}
278 
279 /* Clocks with fixed source and non set/clr register access */
280 #define _CLK_FIXED(sec, off, b, idx, f)			\
281 	{						\
282 		.offset = (off),			\
283 		.bit = (b),				\
284 		.index = (idx),				\
285 		.set_clr = 0,				\
286 		.secure = (sec),			\
287 		.sel = _UNKNOWN_SEL,			\
288 		.fixed = (f),				\
289 	}
290 
291 /* Clocks with selectable source and set/clr register access */
292 #define _CLK_SC_SELEC(sec, off, b, idx, s)			\
293 	{						\
294 		.offset = (off),			\
295 		.bit = (b),				\
296 		.index = (idx),				\
297 		.set_clr = 1,				\
298 		.secure = (sec),			\
299 		.sel = (s),				\
300 		.fixed = _UNKNOWN_ID,			\
301 	}
302 
303 /* Clocks with fixed source and set/clr register access */
304 #define _CLK_SC_FIXED(sec, off, b, idx, f)			\
305 	{						\
306 		.offset = (off),			\
307 		.bit = (b),				\
308 		.index = (idx),				\
309 		.set_clr = 1,				\
310 		.secure = (sec),			\
311 		.sel = _UNKNOWN_SEL,			\
312 		.fixed = (f),				\
313 	}
314 
315 #define _CLK_PARENT_SEL(_label, _rcc_selr, _parents)		\
316 	[_ ## _label ## _SEL] = {				\
317 		.offset = _rcc_selr,				\
318 		.src = _rcc_selr ## _ ## _label ## SRC_SHIFT,	\
319 		.msk = (_rcc_selr ## _ ## _label ## SRC_MASK) >> \
320 		       (_rcc_selr ## _ ## _label ## SRC_SHIFT), \
321 		.parent = (_parents),				\
322 		.nb_parent = ARRAY_SIZE(_parents)		\
323 	}
324 
325 #define _CLK_PLL(idx, type, off1, off2, off3,		\
326 		 off4, off5, off6,			\
327 		 p1, p2, p3, p4)			\
328 	[(idx)] = {					\
329 		.plltype = (type),			\
330 		.rckxselr = (off1),			\
331 		.pllxcfgr1 = (off2),			\
332 		.pllxcfgr2 = (off3),			\
333 		.pllxfracr = (off4),			\
334 		.pllxcr = (off5),			\
335 		.pllxcsgr = (off6),			\
336 		.refclk[0] = (p1),			\
337 		.refclk[1] = (p2),			\
338 		.refclk[2] = (p3),			\
339 		.refclk[3] = (p4),			\
340 	}
341 
342 #define NB_GATES	ARRAY_SIZE(stm32mp1_clk_gate)
343 
344 #define SEC		1
345 #define N_S		0
346 
347 static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
348 	_CLK_FIXED(SEC, RCC_DDRITFCR, 0, DDRC1, _ACLK),
349 	_CLK_FIXED(SEC, RCC_DDRITFCR, 1, DDRC1LP, _ACLK),
350 	_CLK_FIXED(SEC, RCC_DDRITFCR, 2, DDRC2, _ACLK),
351 	_CLK_FIXED(SEC, RCC_DDRITFCR, 3, DDRC2LP, _ACLK),
352 	_CLK_FIXED(SEC, RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
353 	_CLK_FIXED(SEC, RCC_DDRITFCR, 5, DDRPHYCLP, _PLL2_R),
354 	_CLK_FIXED(SEC, RCC_DDRITFCR, 6, DDRCAPB, _PCLK4),
355 	_CLK_FIXED(SEC, RCC_DDRITFCR, 7, DDRCAPBLP, _PCLK4),
356 	_CLK_FIXED(SEC, RCC_DDRITFCR, 8, AXIDCG, _ACLK),
357 	_CLK_FIXED(SEC, RCC_DDRITFCR, 9, DDRPHYCAPB, _PCLK4),
358 	_CLK_FIXED(SEC, RCC_DDRITFCR, 10, DDRPHYCAPBLP, _PCLK4),
359 
360 #if defined(IMAGE_BL32)
361 	_CLK_SC_FIXED(N_S, RCC_MP_APB1ENSETR, 6, TIM12_K, _PCLK1),
362 #endif
363 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
364 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
365 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
366 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
367 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
368 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
369 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 21, I2C1_K, _I2C12_SEL),
370 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 22, I2C2_K, _I2C12_SEL),
371 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 23, I2C3_K, _I2C35_SEL),
372 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 24, I2C5_K, _I2C35_SEL),
373 
374 #if defined(IMAGE_BL32)
375 	_CLK_SC_FIXED(N_S, RCC_MP_APB2ENSETR, 2, TIM15_K, _PCLK2),
376 #endif
377 	_CLK_SC_SELEC(N_S, RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
378 
379 	_CLK_SC_FIXED(N_S, RCC_MP_APB3ENSETR, 11, SYSCFG, _UNKNOWN_ID),
380 
381 	_CLK_SC_SELEC(N_S, RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
382 	_CLK_SC_SELEC(N_S, RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
383 	_CLK_SC_SELEC(N_S, RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
384 
385 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 0, SPI6_K, _SPI6_SEL),
386 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
387 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 3, I2C6_K, _I2C46_SEL),
388 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 4, USART1_K, _UART1_SEL),
389 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 8, RTCAPB, _PCLK5),
390 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 11, TZC1, _PCLK5),
391 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 12, TZC2, _PCLK5),
392 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 13, TZPC, _PCLK5),
393 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 15, IWDG1, _PCLK5),
394 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 16, BSEC, _PCLK5),
395 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
396 
397 #if defined(IMAGE_BL32)
398 	_CLK_SC_SELEC(N_S, RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
399 	_CLK_SC_SELEC(N_S, RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
400 #endif
401 
402 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
403 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
404 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
405 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
406 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
407 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
408 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
409 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
410 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
411 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
412 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
413 
414 	_CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 0, GPIOZ, _PCLK5),
415 	_CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 4, CRYP1, _PCLK5),
416 	_CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 5, HASH1, _PCLK5),
417 	_CLK_SC_SELEC(SEC, RCC_MP_AHB5ENSETR, 6, RNG1_K, _RNG1_SEL),
418 	_CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 8, BKPSRAM, _PCLK5),
419 
420 #if defined(IMAGE_BL2)
421 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
422 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
423 #endif
424 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
425 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
426 #if defined(IMAGE_BL32)
427 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
428 #endif
429 
430 	_CLK_SELEC(SEC, RCC_BDCR, 20, RTC, _RTC_SEL),
431 	_CLK_SELEC(N_S, RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
432 };
433 
434 static const uint8_t i2c12_parents[] = {
435 	_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
436 };
437 
438 static const uint8_t i2c35_parents[] = {
439 	_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
440 };
441 
442 static const uint8_t stgen_parents[] = {
443 	_HSI_KER, _HSE_KER
444 };
445 
446 static const uint8_t i2c46_parents[] = {
447 	_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER
448 };
449 
450 static const uint8_t spi6_parents[] = {
451 	_PCLK5, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER, _PLL3_Q
452 };
453 
454 static const uint8_t usart1_parents[] = {
455 	_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER, _PLL4_Q, _HSE_KER
456 };
457 
458 static const uint8_t rng1_parents[] = {
459 	_CSI, _PLL4_R, _LSE, _LSI
460 };
461 
462 static const uint8_t uart6_parents[] = {
463 	_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
464 };
465 
466 static const uint8_t uart234578_parents[] = {
467 	_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
468 };
469 
470 static const uint8_t sdmmc12_parents[] = {
471 	_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER
472 };
473 
474 static const uint8_t sdmmc3_parents[] = {
475 	_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER
476 };
477 
478 static const uint8_t qspi_parents[] = {
479 	_ACLK, _PLL3_R, _PLL4_P, _CK_PER
480 };
481 
482 static const uint8_t fmc_parents[] = {
483 	_ACLK, _PLL3_R, _PLL4_P, _CK_PER
484 };
485 
486 static const uint8_t axiss_parents[] = {
487 	_HSI, _HSE, _PLL2_P
488 };
489 
490 static const uint8_t mcuss_parents[] = {
491 	_HSI, _HSE, _CSI, _PLL3_P
492 };
493 
494 static const uint8_t usbphy_parents[] = {
495 	_HSE_KER, _PLL4_R, _HSE_KER_DIV2
496 };
497 
498 static const uint8_t usbo_parents[] = {
499 	_PLL4_R, _USB_PHY_48
500 };
501 
502 static const uint8_t mpu_parents[] = {
503 	_HSI, _HSE, _PLL1_P, _PLL1_P /* specific div */
504 };
505 
506 static const uint8_t per_parents[] = {
507 	_HSI, _HSE, _CSI,
508 };
509 
510 static const uint8_t rtc_parents[] = {
511 	_UNKNOWN_ID, _LSE, _LSI, _HSE_RTC
512 };
513 
514 static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
515 	_CLK_PARENT_SEL(I2C12, RCC_I2C12CKSELR, i2c12_parents),
516 	_CLK_PARENT_SEL(I2C35, RCC_I2C35CKSELR, i2c35_parents),
517 	_CLK_PARENT_SEL(STGEN, RCC_STGENCKSELR, stgen_parents),
518 	_CLK_PARENT_SEL(I2C46, RCC_I2C46CKSELR, i2c46_parents),
519 	_CLK_PARENT_SEL(SPI6, RCC_SPI6CKSELR, spi6_parents),
520 	_CLK_PARENT_SEL(UART1, RCC_UART1CKSELR, usart1_parents),
521 	_CLK_PARENT_SEL(RNG1, RCC_RNG1CKSELR, rng1_parents),
522 	_CLK_PARENT_SEL(MPU, RCC_MPCKSELR, mpu_parents),
523 	_CLK_PARENT_SEL(CKPER, RCC_CPERCKSELR, per_parents),
524 	_CLK_PARENT_SEL(RTC, RCC_BDCR, rtc_parents),
525 	_CLK_PARENT_SEL(UART6, RCC_UART6CKSELR, uart6_parents),
526 	_CLK_PARENT_SEL(UART24, RCC_UART24CKSELR, uart234578_parents),
527 	_CLK_PARENT_SEL(UART35, RCC_UART35CKSELR, uart234578_parents),
528 	_CLK_PARENT_SEL(UART78, RCC_UART78CKSELR, uart234578_parents),
529 	_CLK_PARENT_SEL(SDMMC12, RCC_SDMMC12CKSELR, sdmmc12_parents),
530 	_CLK_PARENT_SEL(SDMMC3, RCC_SDMMC3CKSELR, sdmmc3_parents),
531 	_CLK_PARENT_SEL(QSPI, RCC_QSPICKSELR, qspi_parents),
532 	_CLK_PARENT_SEL(FMC, RCC_FMCCKSELR, fmc_parents),
533 	_CLK_PARENT_SEL(AXIS, RCC_ASSCKSELR, axiss_parents),
534 	_CLK_PARENT_SEL(MCUS, RCC_MSSCKSELR, mcuss_parents),
535 	_CLK_PARENT_SEL(USBPHY, RCC_USBCKSELR, usbphy_parents),
536 	_CLK_PARENT_SEL(USBO, RCC_USBCKSELR, usbo_parents),
537 };
538 
539 /* Define characteristic of PLL according type */
540 #define POST_DIVM_MIN	8000000U
541 #define POST_DIVM_MAX	16000000U
542 #define DIVM_MIN	0U
543 #define DIVM_MAX	63U
544 #define DIVN_MIN	24U
545 #define DIVN_MAX	99U
546 #define DIVP_MIN	0U
547 #define DIVP_MAX	127U
548 #define FRAC_MAX	8192U
549 #define VCO_MIN		800000000U
550 #define VCO_MAX		1600000000U
551 
552 static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
553 	[PLL_800] = {
554 		.refclk_min = 4,
555 		.refclk_max = 16,
556 	},
557 	[PLL_1600] = {
558 		.refclk_min = 8,
559 		.refclk_max = 16,
560 	},
561 };
562 
563 /* PLLNCFGR2 register divider by output */
564 static const uint8_t pllncfgr2[_DIV_NB] = {
565 	[_DIV_P] = RCC_PLLNCFGR2_DIVP_SHIFT,
566 	[_DIV_Q] = RCC_PLLNCFGR2_DIVQ_SHIFT,
567 	[_DIV_R] = RCC_PLLNCFGR2_DIVR_SHIFT,
568 };
569 
570 static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = {
571 	_CLK_PLL(_PLL1, PLL_1600,
572 		 RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
573 		 RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
574 		 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
575 	_CLK_PLL(_PLL2, PLL_1600,
576 		 RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
577 		 RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
578 		 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
579 	_CLK_PLL(_PLL3, PLL_800,
580 		 RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
581 		 RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
582 		 _HSI, _HSE, _CSI, _UNKNOWN_OSC_ID),
583 	_CLK_PLL(_PLL4, PLL_800,
584 		 RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
585 		 RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
586 		 _HSI, _HSE, _CSI, _I2S_CKIN),
587 };
588 
589 /* Prescaler table lookups for clock computation */
590 /* div = /1 /2 /4 /8 / 16 /64 /128 /512 */
591 static const uint8_t stm32mp1_mcu_div[16] = {
592 	0, 1, 2, 3, 4, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9
593 };
594 
595 /* div = /1 /2 /4 /8 /16 : same divider for PMU and APBX */
596 #define stm32mp1_mpu_div stm32mp1_mpu_apbx_div
597 #define stm32mp1_apbx_div stm32mp1_mpu_apbx_div
598 static const uint8_t stm32mp1_mpu_apbx_div[8] = {
599 	0, 1, 2, 3, 4, 4, 4, 4
600 };
601 
602 /* div = /1 /2 /3 /4 */
603 static const uint8_t stm32mp1_axi_div[8] = {
604 	1, 2, 3, 4, 4, 4, 4, 4
605 };
606 
607 static const char * const stm32mp1_clk_parent_name[_PARENT_NB] __unused = {
608 	[_HSI] = "HSI",
609 	[_HSE] = "HSE",
610 	[_CSI] = "CSI",
611 	[_LSI] = "LSI",
612 	[_LSE] = "LSE",
613 	[_I2S_CKIN] = "I2S_CKIN",
614 	[_HSI_KER] = "HSI_KER",
615 	[_HSE_KER] = "HSE_KER",
616 	[_HSE_KER_DIV2] = "HSE_KER_DIV2",
617 	[_HSE_RTC] = "HSE_RTC",
618 	[_CSI_KER] = "CSI_KER",
619 	[_PLL1_P] = "PLL1_P",
620 	[_PLL1_Q] = "PLL1_Q",
621 	[_PLL1_R] = "PLL1_R",
622 	[_PLL2_P] = "PLL2_P",
623 	[_PLL2_Q] = "PLL2_Q",
624 	[_PLL2_R] = "PLL2_R",
625 	[_PLL3_P] = "PLL3_P",
626 	[_PLL3_Q] = "PLL3_Q",
627 	[_PLL3_R] = "PLL3_R",
628 	[_PLL4_P] = "PLL4_P",
629 	[_PLL4_Q] = "PLL4_Q",
630 	[_PLL4_R] = "PLL4_R",
631 	[_ACLK] = "ACLK",
632 	[_PCLK1] = "PCLK1",
633 	[_PCLK2] = "PCLK2",
634 	[_PCLK3] = "PCLK3",
635 	[_PCLK4] = "PCLK4",
636 	[_PCLK5] = "PCLK5",
637 	[_HCLK6] = "KCLK6",
638 	[_HCLK2] = "HCLK2",
639 	[_CK_PER] = "CK_PER",
640 	[_CK_MPU] = "CK_MPU",
641 	[_CK_MCU] = "CK_MCU",
642 	[_USB_PHY_48] = "USB_PHY_48",
643 };
644 
645 /* RCC clock device driver private */
646 static unsigned long stm32mp1_osc[NB_OSC];
647 static struct spinlock reg_lock;
648 static unsigned int gate_refcounts[NB_GATES];
649 static struct spinlock refcount_lock;
650 
651 static const struct stm32mp1_clk_gate *gate_ref(unsigned int idx)
652 {
653 	return &stm32mp1_clk_gate[idx];
654 }
655 
656 #if defined(IMAGE_BL32)
657 static bool gate_is_non_secure(const struct stm32mp1_clk_gate *gate)
658 {
659 	return gate->secure == N_S;
660 }
661 #endif
662 
663 static const struct stm32mp1_clk_sel *clk_sel_ref(unsigned int idx)
664 {
665 	return &stm32mp1_clk_sel[idx];
666 }
667 
668 static const struct stm32mp1_clk_pll *pll_ref(unsigned int idx)
669 {
670 	return &stm32mp1_clk_pll[idx];
671 }
672 
673 static void stm32mp1_clk_lock(struct spinlock *lock)
674 {
675 	if (stm32mp_lock_available()) {
676 		/* Assume interrupts are masked */
677 		spin_lock(lock);
678 	}
679 }
680 
681 static void stm32mp1_clk_unlock(struct spinlock *lock)
682 {
683 	if (stm32mp_lock_available()) {
684 		spin_unlock(lock);
685 	}
686 }
687 
688 bool stm32mp1_rcc_is_secure(void)
689 {
690 	uintptr_t rcc_base = stm32mp_rcc_base();
691 	uint32_t mask = RCC_TZCR_TZEN;
692 
693 	return (mmio_read_32(rcc_base + RCC_TZCR) & mask) == mask;
694 }
695 
696 bool stm32mp1_rcc_is_mckprot(void)
697 {
698 	uintptr_t rcc_base = stm32mp_rcc_base();
699 	uint32_t mask = RCC_TZCR_TZEN | RCC_TZCR_MCKPROT;
700 
701 	return (mmio_read_32(rcc_base + RCC_TZCR) & mask) == mask;
702 }
703 
704 void stm32mp1_clk_rcc_regs_lock(void)
705 {
706 	stm32mp1_clk_lock(&reg_lock);
707 }
708 
709 void stm32mp1_clk_rcc_regs_unlock(void)
710 {
711 	stm32mp1_clk_unlock(&reg_lock);
712 }
713 
714 static unsigned long stm32mp1_clk_get_fixed(enum stm32mp_osc_id idx)
715 {
716 	if (idx >= NB_OSC) {
717 		return 0;
718 	}
719 
720 	return stm32mp1_osc[idx];
721 }
722 
723 static int stm32mp1_clk_get_gated_id(unsigned long id)
724 {
725 	unsigned int i;
726 
727 	for (i = 0U; i < NB_GATES; i++) {
728 		if (gate_ref(i)->index == id) {
729 			return i;
730 		}
731 	}
732 
733 	ERROR("%s: clk id %lu not found\n", __func__, id);
734 
735 	return -EINVAL;
736 }
737 
738 static enum stm32mp1_parent_sel stm32mp1_clk_get_sel(int i)
739 {
740 	return (enum stm32mp1_parent_sel)(gate_ref(i)->sel);
741 }
742 
743 static enum stm32mp1_parent_id stm32mp1_clk_get_fixed_parent(int i)
744 {
745 	return (enum stm32mp1_parent_id)(gate_ref(i)->fixed);
746 }
747 
748 static int stm32mp1_clk_get_parent(unsigned long id)
749 {
750 	const struct stm32mp1_clk_sel *sel;
751 	uint32_t p_sel;
752 	int i;
753 	enum stm32mp1_parent_id p;
754 	enum stm32mp1_parent_sel s;
755 	uintptr_t rcc_base = stm32mp_rcc_base();
756 
757 	/* Few non gateable clock have a static parent ID, find them */
758 	i = (int)clock_id2parent_id(id);
759 	if (i != _UNKNOWN_ID) {
760 		return i;
761 	}
762 
763 	i = stm32mp1_clk_get_gated_id(id);
764 	if (i < 0) {
765 		panic();
766 	}
767 
768 	p = stm32mp1_clk_get_fixed_parent(i);
769 	if (p < _PARENT_NB) {
770 		return (int)p;
771 	}
772 
773 	s = stm32mp1_clk_get_sel(i);
774 	if (s == _UNKNOWN_SEL) {
775 		return -EINVAL;
776 	}
777 	if (s >= _PARENT_SEL_NB) {
778 		panic();
779 	}
780 
781 	sel = clk_sel_ref(s);
782 	p_sel = (mmio_read_32(rcc_base + sel->offset) &
783 		 (sel->msk << sel->src)) >> sel->src;
784 	if (p_sel < sel->nb_parent) {
785 		return (int)sel->parent[p_sel];
786 	}
787 
788 	return -EINVAL;
789 }
790 
791 static unsigned long stm32mp1_pll_get_fref(const struct stm32mp1_clk_pll *pll)
792 {
793 	uint32_t selr = mmio_read_32(stm32mp_rcc_base() + pll->rckxselr);
794 	uint32_t src = selr & RCC_SELR_REFCLK_SRC_MASK;
795 
796 	return stm32mp1_clk_get_fixed(pll->refclk[src]);
797 }
798 
799 /*
800  * pll_get_fvco() : return the VCO or (VCO / 2) frequency for the requested PLL
801  * - PLL1 & PLL2 => return VCO / 2 with Fpll_y_ck = FVCO / 2 * (DIVy + 1)
802  * - PLL3 & PLL4 => return VCO     with Fpll_y_ck = FVCO / (DIVy + 1)
803  * => in all cases Fpll_y_ck = pll_get_fvco() / (DIVy + 1)
804  */
805 static unsigned long stm32mp1_pll_get_fvco(const struct stm32mp1_clk_pll *pll)
806 {
807 	unsigned long refclk, fvco;
808 	uint32_t cfgr1, fracr, divm, divn;
809 	uintptr_t rcc_base = stm32mp_rcc_base();
810 
811 	cfgr1 = mmio_read_32(rcc_base + pll->pllxcfgr1);
812 	fracr = mmio_read_32(rcc_base + pll->pllxfracr);
813 
814 	divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
815 	divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
816 
817 	refclk = stm32mp1_pll_get_fref(pll);
818 
819 	/*
820 	 * With FRACV :
821 	 *   Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1)
822 	 * Without FRACV
823 	 *   Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1)
824 	 */
825 	if ((fracr & RCC_PLLNFRACR_FRACLE) != 0U) {
826 		uint32_t fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK) >>
827 				 RCC_PLLNFRACR_FRACV_SHIFT;
828 		unsigned long long numerator, denominator;
829 
830 		numerator = (((unsigned long long)divn + 1U) << 13) + fracv;
831 		numerator = refclk * numerator;
832 		denominator = ((unsigned long long)divm + 1U) << 13;
833 		fvco = (unsigned long)(numerator / denominator);
834 	} else {
835 		fvco = (unsigned long)(refclk * (divn + 1U) / (divm + 1U));
836 	}
837 
838 	return fvco;
839 }
840 
841 static unsigned long stm32mp1_read_pll_freq(enum stm32mp1_pll_id pll_id,
842 					    enum stm32mp1_div_id div_id)
843 {
844 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
845 	unsigned long dfout;
846 	uint32_t cfgr2, divy;
847 
848 	if (div_id >= _DIV_NB) {
849 		return 0;
850 	}
851 
852 	cfgr2 = mmio_read_32(stm32mp_rcc_base() + pll->pllxcfgr2);
853 	divy = (cfgr2 >> pllncfgr2[div_id]) & RCC_PLLNCFGR2_DIVX_MASK;
854 
855 	dfout = stm32mp1_pll_get_fvco(pll) / (divy + 1U);
856 
857 	return dfout;
858 }
859 
860 static unsigned long get_clock_rate(int p)
861 {
862 	uint32_t reg, clkdiv;
863 	unsigned long clock = 0;
864 	uintptr_t rcc_base = stm32mp_rcc_base();
865 
866 	switch (p) {
867 	case _CK_MPU:
868 	/* MPU sub system */
869 		reg = mmio_read_32(rcc_base + RCC_MPCKSELR);
870 		switch (reg & RCC_SELR_SRC_MASK) {
871 		case RCC_MPCKSELR_HSI:
872 			clock = stm32mp1_clk_get_fixed(_HSI);
873 			break;
874 		case RCC_MPCKSELR_HSE:
875 			clock = stm32mp1_clk_get_fixed(_HSE);
876 			break;
877 		case RCC_MPCKSELR_PLL:
878 			clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
879 			break;
880 		case RCC_MPCKSELR_PLL_MPUDIV:
881 			clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
882 
883 			reg = mmio_read_32(rcc_base + RCC_MPCKDIVR);
884 			clkdiv = reg & RCC_MPUDIV_MASK;
885 			clock >>= stm32mp1_mpu_div[clkdiv];
886 			break;
887 		default:
888 			break;
889 		}
890 		break;
891 	/* AXI sub system */
892 	case _ACLK:
893 	case _HCLK2:
894 	case _HCLK6:
895 	case _PCLK4:
896 	case _PCLK5:
897 		reg = mmio_read_32(rcc_base + RCC_ASSCKSELR);
898 		switch (reg & RCC_SELR_SRC_MASK) {
899 		case RCC_ASSCKSELR_HSI:
900 			clock = stm32mp1_clk_get_fixed(_HSI);
901 			break;
902 		case RCC_ASSCKSELR_HSE:
903 			clock = stm32mp1_clk_get_fixed(_HSE);
904 			break;
905 		case RCC_ASSCKSELR_PLL:
906 			clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
907 			break;
908 		default:
909 			break;
910 		}
911 
912 		/* System clock divider */
913 		reg = mmio_read_32(rcc_base + RCC_AXIDIVR);
914 		clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK];
915 
916 		switch (p) {
917 		case _PCLK4:
918 			reg = mmio_read_32(rcc_base + RCC_APB4DIVR);
919 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
920 			break;
921 		case _PCLK5:
922 			reg = mmio_read_32(rcc_base + RCC_APB5DIVR);
923 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
924 			break;
925 		default:
926 			break;
927 		}
928 		break;
929 	/* MCU sub system */
930 	case _CK_MCU:
931 	case _PCLK1:
932 	case _PCLK2:
933 	case _PCLK3:
934 		reg = mmio_read_32(rcc_base + RCC_MSSCKSELR);
935 		switch (reg & RCC_SELR_SRC_MASK) {
936 		case RCC_MSSCKSELR_HSI:
937 			clock = stm32mp1_clk_get_fixed(_HSI);
938 			break;
939 		case RCC_MSSCKSELR_HSE:
940 			clock = stm32mp1_clk_get_fixed(_HSE);
941 			break;
942 		case RCC_MSSCKSELR_CSI:
943 			clock = stm32mp1_clk_get_fixed(_CSI);
944 			break;
945 		case RCC_MSSCKSELR_PLL:
946 			clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
947 			break;
948 		default:
949 			break;
950 		}
951 
952 		/* MCU clock divider */
953 		reg = mmio_read_32(rcc_base + RCC_MCUDIVR);
954 		clock >>= stm32mp1_mcu_div[reg & RCC_MCUDIV_MASK];
955 
956 		switch (p) {
957 		case _PCLK1:
958 			reg = mmio_read_32(rcc_base + RCC_APB1DIVR);
959 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
960 			break;
961 		case _PCLK2:
962 			reg = mmio_read_32(rcc_base + RCC_APB2DIVR);
963 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
964 			break;
965 		case _PCLK3:
966 			reg = mmio_read_32(rcc_base + RCC_APB3DIVR);
967 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
968 			break;
969 		case _CK_MCU:
970 		default:
971 			break;
972 		}
973 		break;
974 	case _CK_PER:
975 		reg = mmio_read_32(rcc_base + RCC_CPERCKSELR);
976 		switch (reg & RCC_SELR_SRC_MASK) {
977 		case RCC_CPERCKSELR_HSI:
978 			clock = stm32mp1_clk_get_fixed(_HSI);
979 			break;
980 		case RCC_CPERCKSELR_HSE:
981 			clock = stm32mp1_clk_get_fixed(_HSE);
982 			break;
983 		case RCC_CPERCKSELR_CSI:
984 			clock = stm32mp1_clk_get_fixed(_CSI);
985 			break;
986 		default:
987 			break;
988 		}
989 		break;
990 	case _HSI:
991 	case _HSI_KER:
992 		clock = stm32mp1_clk_get_fixed(_HSI);
993 		break;
994 	case _CSI:
995 	case _CSI_KER:
996 		clock = stm32mp1_clk_get_fixed(_CSI);
997 		break;
998 	case _HSE:
999 	case _HSE_KER:
1000 		clock = stm32mp1_clk_get_fixed(_HSE);
1001 		break;
1002 	case _HSE_KER_DIV2:
1003 		clock = stm32mp1_clk_get_fixed(_HSE) >> 1;
1004 		break;
1005 	case _HSE_RTC:
1006 		clock = stm32mp1_clk_get_fixed(_HSE);
1007 		clock /= (mmio_read_32(rcc_base + RCC_RTCDIVR) & RCC_DIVR_DIV_MASK) + 1U;
1008 		break;
1009 	case _LSI:
1010 		clock = stm32mp1_clk_get_fixed(_LSI);
1011 		break;
1012 	case _LSE:
1013 		clock = stm32mp1_clk_get_fixed(_LSE);
1014 		break;
1015 	/* PLL */
1016 	case _PLL1_P:
1017 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
1018 		break;
1019 	case _PLL1_Q:
1020 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_Q);
1021 		break;
1022 	case _PLL1_R:
1023 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_R);
1024 		break;
1025 	case _PLL2_P:
1026 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
1027 		break;
1028 	case _PLL2_Q:
1029 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_Q);
1030 		break;
1031 	case _PLL2_R:
1032 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_R);
1033 		break;
1034 	case _PLL3_P:
1035 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
1036 		break;
1037 	case _PLL3_Q:
1038 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_Q);
1039 		break;
1040 	case _PLL3_R:
1041 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_R);
1042 		break;
1043 	case _PLL4_P:
1044 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_P);
1045 		break;
1046 	case _PLL4_Q:
1047 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_Q);
1048 		break;
1049 	case _PLL4_R:
1050 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_R);
1051 		break;
1052 	/* Other */
1053 	case _USB_PHY_48:
1054 		clock = USB_PHY_48_MHZ;
1055 		break;
1056 	default:
1057 		break;
1058 	}
1059 
1060 	return clock;
1061 }
1062 
1063 static void __clk_enable(struct stm32mp1_clk_gate const *gate)
1064 {
1065 	uintptr_t rcc_base = stm32mp_rcc_base();
1066 
1067 	VERBOSE("Enable clock %u\n", gate->index);
1068 
1069 	if (gate->set_clr != 0U) {
1070 		mmio_write_32(rcc_base + gate->offset, BIT(gate->bit));
1071 	} else {
1072 		mmio_setbits_32(rcc_base + gate->offset, BIT(gate->bit));
1073 	}
1074 }
1075 
1076 static void __clk_disable(struct stm32mp1_clk_gate const *gate)
1077 {
1078 	uintptr_t rcc_base = stm32mp_rcc_base();
1079 
1080 	VERBOSE("Disable clock %u\n", gate->index);
1081 
1082 	if (gate->set_clr != 0U) {
1083 		mmio_write_32(rcc_base + gate->offset + RCC_MP_ENCLRR_OFFSET,
1084 			      BIT(gate->bit));
1085 	} else {
1086 		mmio_clrbits_32(rcc_base + gate->offset, BIT(gate->bit));
1087 	}
1088 }
1089 
1090 static bool __clk_is_enabled(struct stm32mp1_clk_gate const *gate)
1091 {
1092 	uintptr_t rcc_base = stm32mp_rcc_base();
1093 
1094 	return mmio_read_32(rcc_base + gate->offset) & BIT(gate->bit);
1095 }
1096 
1097 /* Oscillators and PLLs are not gated at runtime */
1098 static bool clock_is_always_on(unsigned long id)
1099 {
1100 	switch (id) {
1101 	case CK_HSE:
1102 	case CK_CSI:
1103 	case CK_LSI:
1104 	case CK_LSE:
1105 	case CK_HSI:
1106 	case CK_HSE_DIV2:
1107 	case PLL1_Q:
1108 	case PLL1_R:
1109 	case PLL2_P:
1110 	case PLL2_Q:
1111 	case PLL2_R:
1112 	case PLL3_P:
1113 	case PLL3_Q:
1114 	case PLL3_R:
1115 	case CK_AXI:
1116 	case CK_MPU:
1117 	case CK_MCU:
1118 	case RTC:
1119 		return true;
1120 	default:
1121 		return false;
1122 	}
1123 }
1124 
1125 static void __stm32mp1_clk_enable(unsigned long id, bool with_refcnt)
1126 {
1127 	const struct stm32mp1_clk_gate *gate;
1128 	int i;
1129 
1130 	if (clock_is_always_on(id)) {
1131 		return;
1132 	}
1133 
1134 	i = stm32mp1_clk_get_gated_id(id);
1135 	if (i < 0) {
1136 		ERROR("Clock %lu can't be enabled\n", id);
1137 		panic();
1138 	}
1139 
1140 	gate = gate_ref(i);
1141 
1142 	if (!with_refcnt) {
1143 		__clk_enable(gate);
1144 		return;
1145 	}
1146 
1147 #if defined(IMAGE_BL32)
1148 	if (gate_is_non_secure(gate)) {
1149 		/* Enable non-secure clock w/o any refcounting */
1150 		__clk_enable(gate);
1151 		return;
1152 	}
1153 #endif
1154 
1155 	stm32mp1_clk_lock(&refcount_lock);
1156 
1157 	if (gate_refcounts[i] == 0U) {
1158 		__clk_enable(gate);
1159 	}
1160 
1161 	gate_refcounts[i]++;
1162 	if (gate_refcounts[i] == UINT_MAX) {
1163 		ERROR("Clock %lu refcount reached max value\n", id);
1164 		panic();
1165 	}
1166 
1167 	stm32mp1_clk_unlock(&refcount_lock);
1168 }
1169 
1170 static void __stm32mp1_clk_disable(unsigned long id, bool with_refcnt)
1171 {
1172 	const struct stm32mp1_clk_gate *gate;
1173 	int i;
1174 
1175 	if (clock_is_always_on(id)) {
1176 		return;
1177 	}
1178 
1179 	i = stm32mp1_clk_get_gated_id(id);
1180 	if (i < 0) {
1181 		ERROR("Clock %lu can't be disabled\n", id);
1182 		panic();
1183 	}
1184 
1185 	gate = gate_ref(i);
1186 
1187 	if (!with_refcnt) {
1188 		__clk_disable(gate);
1189 		return;
1190 	}
1191 
1192 #if defined(IMAGE_BL32)
1193 	if (gate_is_non_secure(gate)) {
1194 		/* Don't disable non-secure clocks */
1195 		return;
1196 	}
1197 #endif
1198 
1199 	stm32mp1_clk_lock(&refcount_lock);
1200 
1201 	if (gate_refcounts[i] == 0U) {
1202 		ERROR("Clock %lu refcount reached 0\n", id);
1203 		panic();
1204 	}
1205 	gate_refcounts[i]--;
1206 
1207 	if (gate_refcounts[i] == 0U) {
1208 		__clk_disable(gate);
1209 	}
1210 
1211 	stm32mp1_clk_unlock(&refcount_lock);
1212 }
1213 
1214 static int stm32mp_clk_enable(unsigned long id)
1215 {
1216 	__stm32mp1_clk_enable(id, true);
1217 
1218 	return 0;
1219 }
1220 
1221 static void stm32mp_clk_disable(unsigned long id)
1222 {
1223 	__stm32mp1_clk_disable(id, true);
1224 }
1225 
1226 static bool stm32mp_clk_is_enabled(unsigned long id)
1227 {
1228 	int i;
1229 
1230 	if (clock_is_always_on(id)) {
1231 		return true;
1232 	}
1233 
1234 	i = stm32mp1_clk_get_gated_id(id);
1235 	if (i < 0) {
1236 		panic();
1237 	}
1238 
1239 	return __clk_is_enabled(gate_ref(i));
1240 }
1241 
1242 static unsigned long stm32mp_clk_get_rate(unsigned long id)
1243 {
1244 	uintptr_t rcc_base = stm32mp_rcc_base();
1245 	int p = stm32mp1_clk_get_parent(id);
1246 	uint32_t prescaler, timpre;
1247 	unsigned long parent_rate;
1248 
1249 	if (p < 0) {
1250 		return 0;
1251 	}
1252 
1253 	parent_rate = get_clock_rate(p);
1254 
1255 	switch (id) {
1256 	case TIM2_K:
1257 	case TIM3_K:
1258 	case TIM4_K:
1259 	case TIM5_K:
1260 	case TIM6_K:
1261 	case TIM7_K:
1262 	case TIM12_K:
1263 	case TIM13_K:
1264 	case TIM14_K:
1265 		prescaler = mmio_read_32(rcc_base + RCC_APB1DIVR) &
1266 			    RCC_APBXDIV_MASK;
1267 		timpre = mmio_read_32(rcc_base + RCC_TIMG1PRER) &
1268 			 RCC_TIMGXPRER_TIMGXPRE;
1269 		break;
1270 
1271 	case TIM1_K:
1272 	case TIM8_K:
1273 	case TIM15_K:
1274 	case TIM16_K:
1275 	case TIM17_K:
1276 		prescaler = mmio_read_32(rcc_base + RCC_APB2DIVR) &
1277 			    RCC_APBXDIV_MASK;
1278 		timpre = mmio_read_32(rcc_base + RCC_TIMG2PRER) &
1279 			 RCC_TIMGXPRER_TIMGXPRE;
1280 		break;
1281 
1282 	default:
1283 		return parent_rate;
1284 	}
1285 
1286 	if (prescaler == 0U) {
1287 		return parent_rate;
1288 	}
1289 
1290 	return parent_rate * (timpre + 1U) * 2U;
1291 }
1292 
1293 static void stm32mp1_ls_osc_set(bool enable, uint32_t offset, uint32_t mask_on)
1294 {
1295 	uintptr_t address = stm32mp_rcc_base() + offset;
1296 
1297 	if (enable) {
1298 		mmio_setbits_32(address, mask_on);
1299 	} else {
1300 		mmio_clrbits_32(address, mask_on);
1301 	}
1302 }
1303 
1304 static void stm32mp1_hs_ocs_set(bool enable, uint32_t mask_on)
1305 {
1306 	uint32_t offset = enable ? RCC_OCENSETR : RCC_OCENCLRR;
1307 	uintptr_t address = stm32mp_rcc_base() + offset;
1308 
1309 	mmio_write_32(address, mask_on);
1310 }
1311 
1312 static int stm32mp1_osc_wait(bool enable, uint32_t offset, uint32_t mask_rdy)
1313 {
1314 	uint64_t timeout;
1315 	uint32_t mask_test;
1316 	uintptr_t address = stm32mp_rcc_base() + offset;
1317 
1318 	if (enable) {
1319 		mask_test = mask_rdy;
1320 	} else {
1321 		mask_test = 0;
1322 	}
1323 
1324 	timeout = timeout_init_us(OSCRDY_TIMEOUT);
1325 	while ((mmio_read_32(address) & mask_rdy) != mask_test) {
1326 		if (timeout_elapsed(timeout)) {
1327 			ERROR("OSC %x @ %lx timeout for enable=%d : 0x%x\n",
1328 			      mask_rdy, address, enable, mmio_read_32(address));
1329 			return -ETIMEDOUT;
1330 		}
1331 	}
1332 
1333 	return 0;
1334 }
1335 
1336 static void stm32mp1_lse_enable(bool bypass, bool digbyp, uint32_t lsedrv)
1337 {
1338 	uint32_t value;
1339 	uintptr_t rcc_base = stm32mp_rcc_base();
1340 
1341 	/* Do not reconfigure LSE if it is already ON */
1342 	if ((mmio_read_32(rcc_base + RCC_BDCR) & RCC_BDCR_LSEON) == RCC_BDCR_LSEON) {
1343 		return;
1344 	}
1345 
1346 	if (digbyp) {
1347 		mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_DIGBYP);
1348 	}
1349 
1350 	if (bypass || digbyp) {
1351 		mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_LSEBYP);
1352 	}
1353 
1354 	/*
1355 	 * Warning: not recommended to switch directly from "high drive"
1356 	 * to "medium low drive", and vice-versa.
1357 	 */
1358 	value = (mmio_read_32(rcc_base + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK) >>
1359 		RCC_BDCR_LSEDRV_SHIFT;
1360 
1361 	while (value != lsedrv) {
1362 		if (value > lsedrv) {
1363 			value--;
1364 		} else {
1365 			value++;
1366 		}
1367 
1368 		mmio_clrsetbits_32(rcc_base + RCC_BDCR,
1369 				   RCC_BDCR_LSEDRV_MASK,
1370 				   value << RCC_BDCR_LSEDRV_SHIFT);
1371 	}
1372 
1373 	stm32mp1_ls_osc_set(true, RCC_BDCR, RCC_BDCR_LSEON);
1374 }
1375 
1376 static void stm32mp1_lse_wait(void)
1377 {
1378 	if (stm32mp1_osc_wait(true, RCC_BDCR, RCC_BDCR_LSERDY) != 0) {
1379 		VERBOSE("%s: failed\n", __func__);
1380 	}
1381 }
1382 
1383 static void stm32mp1_lsi_set(bool enable)
1384 {
1385 	stm32mp1_ls_osc_set(enable, RCC_RDLSICR, RCC_RDLSICR_LSION);
1386 
1387 	if (stm32mp1_osc_wait(enable, RCC_RDLSICR, RCC_RDLSICR_LSIRDY) != 0) {
1388 		VERBOSE("%s: failed\n", __func__);
1389 	}
1390 }
1391 
1392 static void stm32mp1_hse_enable(bool bypass, bool digbyp, bool css)
1393 {
1394 	uintptr_t rcc_base = stm32mp_rcc_base();
1395 
1396 	if (digbyp) {
1397 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_DIGBYP);
1398 	}
1399 
1400 	if (bypass || digbyp) {
1401 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSEBYP);
1402 	}
1403 
1404 	stm32mp1_hs_ocs_set(true, RCC_OCENR_HSEON);
1405 	if (stm32mp1_osc_wait(true, RCC_OCRDYR, RCC_OCRDYR_HSERDY) != 0) {
1406 		VERBOSE("%s: failed\n", __func__);
1407 	}
1408 
1409 	if (css) {
1410 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSECSSON);
1411 	}
1412 
1413 #if STM32MP_UART_PROGRAMMER || STM32MP_USB_PROGRAMMER
1414 	if ((mmio_read_32(rcc_base + RCC_OCENSETR) & RCC_OCENR_HSEBYP) &&
1415 	    (!(digbyp || bypass))) {
1416 		panic();
1417 	}
1418 #endif
1419 }
1420 
1421 static void stm32mp1_csi_set(bool enable)
1422 {
1423 	stm32mp1_hs_ocs_set(enable, RCC_OCENR_CSION);
1424 	if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_CSIRDY) != 0) {
1425 		VERBOSE("%s: failed\n", __func__);
1426 	}
1427 }
1428 
1429 static void stm32mp1_hsi_set(bool enable)
1430 {
1431 	stm32mp1_hs_ocs_set(enable, RCC_OCENR_HSION);
1432 	if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_HSIRDY) != 0) {
1433 		VERBOSE("%s: failed\n", __func__);
1434 	}
1435 }
1436 
1437 static int stm32mp1_set_hsidiv(uint8_t hsidiv)
1438 {
1439 	uint64_t timeout;
1440 	uintptr_t rcc_base = stm32mp_rcc_base();
1441 	uintptr_t address = rcc_base + RCC_OCRDYR;
1442 
1443 	mmio_clrsetbits_32(rcc_base + RCC_HSICFGR,
1444 			   RCC_HSICFGR_HSIDIV_MASK,
1445 			   RCC_HSICFGR_HSIDIV_MASK & (uint32_t)hsidiv);
1446 
1447 	timeout = timeout_init_us(HSIDIV_TIMEOUT);
1448 	while ((mmio_read_32(address) & RCC_OCRDYR_HSIDIVRDY) == 0U) {
1449 		if (timeout_elapsed(timeout)) {
1450 			ERROR("HSIDIV failed @ 0x%lx: 0x%x\n",
1451 			      address, mmio_read_32(address));
1452 			return -ETIMEDOUT;
1453 		}
1454 	}
1455 
1456 	return 0;
1457 }
1458 
1459 static int stm32mp1_hsidiv(unsigned long hsifreq)
1460 {
1461 	uint8_t hsidiv;
1462 	uint32_t hsidivfreq = MAX_HSI_HZ;
1463 
1464 	for (hsidiv = 0; hsidiv < 4U; hsidiv++) {
1465 		if (hsidivfreq == hsifreq) {
1466 			break;
1467 		}
1468 
1469 		hsidivfreq /= 2U;
1470 	}
1471 
1472 	if (hsidiv == 4U) {
1473 		ERROR("Invalid clk-hsi frequency\n");
1474 		return -1;
1475 	}
1476 
1477 	if (hsidiv != 0U) {
1478 		return stm32mp1_set_hsidiv(hsidiv);
1479 	}
1480 
1481 	return 0;
1482 }
1483 
1484 static bool stm32mp1_check_pll_conf(enum stm32mp1_pll_id pll_id,
1485 				    unsigned int clksrc,
1486 				    uint32_t *pllcfg, int plloff)
1487 {
1488 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1489 	uintptr_t rcc_base = stm32mp_rcc_base();
1490 	uintptr_t pllxcr = rcc_base + pll->pllxcr;
1491 	enum stm32mp1_plltype type = pll->plltype;
1492 	uintptr_t clksrc_address = rcc_base + (clksrc >> 4);
1493 	unsigned long refclk;
1494 	uint32_t ifrge = 0U;
1495 	uint32_t src, value, fracv = 0;
1496 	void *fdt;
1497 
1498 	/* Check PLL output */
1499 	if (mmio_read_32(pllxcr) != RCC_PLLNCR_PLLON) {
1500 		return false;
1501 	}
1502 
1503 	/* Check current clksrc */
1504 	src = mmio_read_32(clksrc_address) & RCC_SELR_SRC_MASK;
1505 	if (src != (clksrc & RCC_SELR_SRC_MASK)) {
1506 		return false;
1507 	}
1508 
1509 	/* Check Div */
1510 	src = mmio_read_32(rcc_base + pll->rckxselr) & RCC_SELR_REFCLK_SRC_MASK;
1511 
1512 	refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
1513 		 (pllcfg[PLLCFG_M] + 1U);
1514 
1515 	if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
1516 	    (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
1517 		return false;
1518 	}
1519 
1520 	if ((type == PLL_800) && (refclk >= 8000000U)) {
1521 		ifrge = 1U;
1522 	}
1523 
1524 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
1525 		RCC_PLLNCFGR1_DIVN_MASK;
1526 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
1527 		 RCC_PLLNCFGR1_DIVM_MASK;
1528 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
1529 		 RCC_PLLNCFGR1_IFRGE_MASK;
1530 	if (mmio_read_32(rcc_base + pll->pllxcfgr1) != value) {
1531 		return false;
1532 	}
1533 
1534 	/* Fractional configuration */
1535 	if (fdt_get_address(&fdt) == 1) {
1536 		fracv = fdt_read_uint32_default(fdt, plloff, "frac", 0);
1537 	}
1538 
1539 	value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
1540 	value |= RCC_PLLNFRACR_FRACLE;
1541 	if (mmio_read_32(rcc_base + pll->pllxfracr) != value) {
1542 		return false;
1543 	}
1544 
1545 	/* Output config */
1546 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
1547 		RCC_PLLNCFGR2_DIVP_MASK;
1548 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
1549 		 RCC_PLLNCFGR2_DIVQ_MASK;
1550 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
1551 		 RCC_PLLNCFGR2_DIVR_MASK;
1552 	if (mmio_read_32(rcc_base + pll->pllxcfgr2) != value) {
1553 		return false;
1554 	}
1555 
1556 	return true;
1557 }
1558 
1559 static void stm32mp1_pll_start(enum stm32mp1_pll_id pll_id)
1560 {
1561 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1562 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1563 
1564 	/* Preserve RCC_PLLNCR_SSCG_CTRL value */
1565 	mmio_clrsetbits_32(pllxcr,
1566 			   RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1567 			   RCC_PLLNCR_DIVREN,
1568 			   RCC_PLLNCR_PLLON);
1569 }
1570 
1571 static int stm32mp1_pll_output(enum stm32mp1_pll_id pll_id, uint32_t output)
1572 {
1573 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1574 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1575 	uint64_t timeout = timeout_init_us(PLLRDY_TIMEOUT);
1576 
1577 	/* Wait PLL lock */
1578 	while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) == 0U) {
1579 		if (timeout_elapsed(timeout)) {
1580 			ERROR("PLL%u start failed @ 0x%lx: 0x%x\n",
1581 			      pll_id, pllxcr, mmio_read_32(pllxcr));
1582 			return -ETIMEDOUT;
1583 		}
1584 	}
1585 
1586 	/* Start the requested output */
1587 	mmio_setbits_32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT);
1588 
1589 	return 0;
1590 }
1591 
1592 static int stm32mp1_pll_stop(enum stm32mp1_pll_id pll_id)
1593 {
1594 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1595 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1596 	uint64_t timeout;
1597 
1598 	/* Stop all output */
1599 	mmio_clrbits_32(pllxcr, RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1600 			RCC_PLLNCR_DIVREN);
1601 
1602 	/* Stop PLL */
1603 	mmio_clrbits_32(pllxcr, RCC_PLLNCR_PLLON);
1604 
1605 	timeout = timeout_init_us(PLLRDY_TIMEOUT);
1606 	/* Wait PLL stopped */
1607 	while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) != 0U) {
1608 		if (timeout_elapsed(timeout)) {
1609 			ERROR("PLL%u stop failed @ 0x%lx: 0x%x\n",
1610 			      pll_id, pllxcr, mmio_read_32(pllxcr));
1611 			return -ETIMEDOUT;
1612 		}
1613 	}
1614 
1615 	return 0;
1616 }
1617 
1618 static void stm32mp1_pll_config_output(enum stm32mp1_pll_id pll_id,
1619 				       uint32_t *pllcfg)
1620 {
1621 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1622 	uintptr_t rcc_base = stm32mp_rcc_base();
1623 	uint32_t value;
1624 
1625 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
1626 		RCC_PLLNCFGR2_DIVP_MASK;
1627 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
1628 		 RCC_PLLNCFGR2_DIVQ_MASK;
1629 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
1630 		 RCC_PLLNCFGR2_DIVR_MASK;
1631 	mmio_write_32(rcc_base + pll->pllxcfgr2, value);
1632 }
1633 
1634 static int stm32mp1_pll_config(enum stm32mp1_pll_id pll_id,
1635 			       uint32_t *pllcfg, uint32_t fracv)
1636 {
1637 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1638 	uintptr_t rcc_base = stm32mp_rcc_base();
1639 	enum stm32mp1_plltype type = pll->plltype;
1640 	unsigned long refclk;
1641 	uint32_t ifrge = 0;
1642 	uint32_t src, value;
1643 
1644 	src = mmio_read_32(rcc_base + pll->rckxselr) &
1645 		RCC_SELR_REFCLK_SRC_MASK;
1646 
1647 	refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
1648 		 (pllcfg[PLLCFG_M] + 1U);
1649 
1650 	if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
1651 	    (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
1652 		return -EINVAL;
1653 	}
1654 
1655 	if ((type == PLL_800) && (refclk >= 8000000U)) {
1656 		ifrge = 1U;
1657 	}
1658 
1659 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
1660 		RCC_PLLNCFGR1_DIVN_MASK;
1661 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
1662 		 RCC_PLLNCFGR1_DIVM_MASK;
1663 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
1664 		 RCC_PLLNCFGR1_IFRGE_MASK;
1665 	mmio_write_32(rcc_base + pll->pllxcfgr1, value);
1666 
1667 	/* Fractional configuration */
1668 	value = 0;
1669 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1670 
1671 	value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
1672 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1673 
1674 	value |= RCC_PLLNFRACR_FRACLE;
1675 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1676 
1677 	stm32mp1_pll_config_output(pll_id, pllcfg);
1678 
1679 	return 0;
1680 }
1681 
1682 static void stm32mp1_pll_csg(enum stm32mp1_pll_id pll_id, uint32_t *csg)
1683 {
1684 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1685 	uint32_t pllxcsg = 0;
1686 
1687 	pllxcsg |= (csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) &
1688 		    RCC_PLLNCSGR_MOD_PER_MASK;
1689 
1690 	pllxcsg |= (csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) &
1691 		    RCC_PLLNCSGR_INC_STEP_MASK;
1692 
1693 	pllxcsg |= (csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) &
1694 		    RCC_PLLNCSGR_SSCG_MODE_MASK;
1695 
1696 	mmio_write_32(stm32mp_rcc_base() + pll->pllxcsgr, pllxcsg);
1697 
1698 	mmio_setbits_32(stm32mp_rcc_base() + pll->pllxcr,
1699 			RCC_PLLNCR_SSCG_CTRL);
1700 }
1701 
1702 static int stm32mp1_set_clksrc(unsigned int clksrc)
1703 {
1704 	uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4);
1705 	uint64_t timeout;
1706 
1707 	mmio_clrsetbits_32(clksrc_address, RCC_SELR_SRC_MASK,
1708 			   clksrc & RCC_SELR_SRC_MASK);
1709 
1710 	timeout = timeout_init_us(CLKSRC_TIMEOUT);
1711 	while ((mmio_read_32(clksrc_address) & RCC_SELR_SRCRDY) == 0U) {
1712 		if (timeout_elapsed(timeout)) {
1713 			ERROR("CLKSRC %x start failed @ 0x%lx: 0x%x\n", clksrc,
1714 			      clksrc_address, mmio_read_32(clksrc_address));
1715 			return -ETIMEDOUT;
1716 		}
1717 	}
1718 
1719 	return 0;
1720 }
1721 
1722 static int stm32mp1_set_clkdiv(unsigned int clkdiv, uintptr_t address)
1723 {
1724 	uint64_t timeout;
1725 
1726 	mmio_clrsetbits_32(address, RCC_DIVR_DIV_MASK,
1727 			   clkdiv & RCC_DIVR_DIV_MASK);
1728 
1729 	timeout = timeout_init_us(CLKDIV_TIMEOUT);
1730 	while ((mmio_read_32(address) & RCC_DIVR_DIVRDY) == 0U) {
1731 		if (timeout_elapsed(timeout)) {
1732 			ERROR("CLKDIV %x start failed @ 0x%lx: 0x%x\n",
1733 			      clkdiv, address, mmio_read_32(address));
1734 			return -ETIMEDOUT;
1735 		}
1736 	}
1737 
1738 	return 0;
1739 }
1740 
1741 static void stm32mp1_mco_csg(uint32_t clksrc, uint32_t clkdiv)
1742 {
1743 	uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4);
1744 
1745 	/*
1746 	 * Binding clksrc :
1747 	 *      bit15-4 offset
1748 	 *      bit3:   disable
1749 	 *      bit2-0: MCOSEL[2:0]
1750 	 */
1751 	if ((clksrc & 0x8U) != 0U) {
1752 		mmio_clrbits_32(clksrc_address, RCC_MCOCFG_MCOON);
1753 	} else {
1754 		mmio_clrsetbits_32(clksrc_address,
1755 				   RCC_MCOCFG_MCOSRC_MASK,
1756 				   clksrc & RCC_MCOCFG_MCOSRC_MASK);
1757 		mmio_clrsetbits_32(clksrc_address,
1758 				   RCC_MCOCFG_MCODIV_MASK,
1759 				   clkdiv << RCC_MCOCFG_MCODIV_SHIFT);
1760 		mmio_setbits_32(clksrc_address, RCC_MCOCFG_MCOON);
1761 	}
1762 }
1763 
1764 static void stm32mp1_set_rtcsrc(unsigned int clksrc, bool lse_css)
1765 {
1766 	uintptr_t address = stm32mp_rcc_base() + RCC_BDCR;
1767 
1768 	if (((mmio_read_32(address) & RCC_BDCR_RTCCKEN) == 0U) ||
1769 	    (clksrc != (uint32_t)CLK_RTC_DISABLED)) {
1770 		mmio_clrsetbits_32(address,
1771 				   RCC_BDCR_RTCSRC_MASK,
1772 				   (clksrc & RCC_SELR_SRC_MASK) << RCC_BDCR_RTCSRC_SHIFT);
1773 
1774 		mmio_setbits_32(address, RCC_BDCR_RTCCKEN);
1775 	}
1776 
1777 	if (lse_css) {
1778 		mmio_setbits_32(address, RCC_BDCR_LSECSSON);
1779 	}
1780 }
1781 
1782 static void stm32mp1_pkcs_config(uint32_t pkcs)
1783 {
1784 	uintptr_t address = stm32mp_rcc_base() + ((pkcs >> 4) & 0xFFFU);
1785 	uint32_t value = pkcs & 0xFU;
1786 	uint32_t mask = 0xFU;
1787 
1788 	if ((pkcs & BIT(31)) != 0U) {
1789 		mask <<= 4;
1790 		value <<= 4;
1791 	}
1792 
1793 	mmio_clrsetbits_32(address, mask, value);
1794 }
1795 
1796 static int clk_get_pll_settings_from_dt(int plloff, unsigned int *pllcfg,
1797 					uint32_t *fracv, uint32_t *csg,
1798 					bool *csg_set)
1799 {
1800 	void *fdt;
1801 	int ret;
1802 
1803 	if (fdt_get_address(&fdt) == 0) {
1804 		return -FDT_ERR_NOTFOUND;
1805 	}
1806 
1807 	ret = fdt_read_uint32_array(fdt, plloff, "cfg", (uint32_t)PLLCFG_NB,
1808 				    pllcfg);
1809 	if (ret < 0) {
1810 		return -FDT_ERR_NOTFOUND;
1811 	}
1812 
1813 	*fracv = fdt_read_uint32_default(fdt, plloff, "frac", 0);
1814 
1815 	ret = fdt_read_uint32_array(fdt, plloff, "csg", (uint32_t)PLLCSG_NB,
1816 				    csg);
1817 
1818 	*csg_set = (ret == 0);
1819 
1820 	if (ret == -FDT_ERR_NOTFOUND) {
1821 		ret = 0;
1822 	}
1823 
1824 	return ret;
1825 }
1826 
1827 static int clk_compute_pll1_settings(unsigned long input_freq,
1828 				     uint32_t freq_khz,
1829 				     uint32_t *pllcfg, uint32_t *fracv)
1830 {
1831 	unsigned long long best_diff = ULLONG_MAX;
1832 	unsigned int divm;
1833 
1834 	/* Following parameters have always the same value */
1835 	pllcfg[PLLCFG_Q] = 0U;
1836 	pllcfg[PLLCFG_R] = 0U;
1837 	pllcfg[PLLCFG_O] = PQR(1, 0, 0);
1838 
1839 	for (divm = (DIVM_MAX + 1U); divm != DIVM_MIN; divm--) {
1840 		unsigned long post_divm = input_freq / divm;
1841 		unsigned int divp;
1842 
1843 		if ((post_divm < POST_DIVM_MIN) || (post_divm > POST_DIVM_MAX)) {
1844 			continue;
1845 		}
1846 
1847 		for (divp = DIVP_MIN; divp <= DIVP_MAX; divp++) {
1848 			unsigned long long output_freq = freq_khz * 1000ULL;
1849 			unsigned long long freq;
1850 			unsigned long long divn;
1851 			unsigned long long frac;
1852 			unsigned int i;
1853 
1854 			freq = output_freq * divm * (divp + 1U);
1855 
1856 			divn = (freq / input_freq) - 1U;
1857 			if ((divn < DIVN_MIN) || (divn > DIVN_MAX)) {
1858 				continue;
1859 			}
1860 
1861 			frac = ((freq * FRAC_MAX) / input_freq) - ((divn + 1U) * FRAC_MAX);
1862 
1863 			/* 2 loops to refine the fractional part */
1864 			for (i = 2U; i != 0U; i--) {
1865 				unsigned long long diff;
1866 				unsigned long long vco;
1867 
1868 				if (frac > FRAC_MAX) {
1869 					break;
1870 				}
1871 
1872 				vco = (post_divm * (divn + 1U)) + ((post_divm * frac) / FRAC_MAX);
1873 
1874 				if ((vco < (VCO_MIN / 2U)) || (vco > (VCO_MAX / 2U))) {
1875 					frac++;
1876 					continue;
1877 				}
1878 
1879 				freq = vco / (divp + 1U);
1880 				if (output_freq < freq) {
1881 					diff = freq - output_freq;
1882 				} else {
1883 					diff = output_freq - freq;
1884 				}
1885 
1886 				if (diff < best_diff)  {
1887 					pllcfg[PLLCFG_M] = divm - 1U;
1888 					pllcfg[PLLCFG_N] = (uint32_t)divn;
1889 					pllcfg[PLLCFG_P] = divp;
1890 					*fracv = (uint32_t)frac;
1891 
1892 					if (diff == 0U) {
1893 						return 0;
1894 					}
1895 
1896 					best_diff = diff;
1897 				}
1898 
1899 				frac++;
1900 			}
1901 		}
1902 	}
1903 
1904 	if (best_diff == ULLONG_MAX) {
1905 		return -EINVAL;
1906 	}
1907 
1908 	return 0;
1909 }
1910 
1911 static int clk_get_pll1_settings(uint32_t clksrc, uint32_t freq_khz,
1912 				 uint32_t *pllcfg, uint32_t *fracv)
1913 {
1914 	unsigned long input_freq = 0UL;
1915 
1916 	assert(pllcfg != NULL);
1917 	assert(fracv != NULL);
1918 
1919 	switch (clksrc) {
1920 	case CLK_PLL12_HSI:
1921 		input_freq = stm32mp_clk_get_rate(CK_HSI);
1922 		break;
1923 	case CLK_PLL12_HSE:
1924 		input_freq = stm32mp_clk_get_rate(CK_HSE);
1925 		break;
1926 	default:
1927 		break;
1928 	}
1929 
1930 	if (input_freq == 0UL) {
1931 		panic();
1932 	}
1933 
1934 	return clk_compute_pll1_settings(input_freq, freq_khz, pllcfg, fracv);
1935 }
1936 
1937 int stm32mp1_clk_init(void)
1938 {
1939 	uintptr_t rcc_base = stm32mp_rcc_base();
1940 	uint32_t pllfracv[_PLL_NB];
1941 	uint32_t pllcsg[_PLL_NB][PLLCSG_NB];
1942 	unsigned int clksrc[CLKSRC_NB];
1943 	unsigned int clkdiv[CLKDIV_NB];
1944 	unsigned int pllcfg[_PLL_NB][PLLCFG_NB];
1945 	int plloff[_PLL_NB];
1946 	int ret, len;
1947 	enum stm32mp1_pll_id i;
1948 	bool pllcsg_set[_PLL_NB];
1949 	bool pllcfg_valid[_PLL_NB];
1950 	bool lse_css = false;
1951 	bool pll3_preserve = false;
1952 	bool pll4_preserve = false;
1953 	bool pll4_bootrom = false;
1954 	const fdt32_t *pkcs_cell;
1955 	void *fdt;
1956 	int stgen_p = stm32mp1_clk_get_parent(STGEN_K);
1957 	int usbphy_p = stm32mp1_clk_get_parent(USBPHY_K);
1958 
1959 	if (fdt_get_address(&fdt) == 0) {
1960 		return -FDT_ERR_NOTFOUND;
1961 	}
1962 
1963 	ret = fdt_rcc_read_uint32_array("st,clksrc", (uint32_t)CLKSRC_NB,
1964 					clksrc);
1965 	if (ret < 0) {
1966 		return -FDT_ERR_NOTFOUND;
1967 	}
1968 
1969 	ret = fdt_rcc_read_uint32_array("st,clkdiv", (uint32_t)CLKDIV_NB,
1970 					clkdiv);
1971 	if (ret < 0) {
1972 		return -FDT_ERR_NOTFOUND;
1973 	}
1974 
1975 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1976 		char name[12];
1977 
1978 		snprintf(name, sizeof(name), "st,pll@%u", i);
1979 		plloff[i] = fdt_rcc_subnode_offset(name);
1980 
1981 		pllcfg_valid[i] = fdt_check_node(plloff[i]);
1982 		if (pllcfg_valid[i]) {
1983 			ret = clk_get_pll_settings_from_dt(plloff[i], pllcfg[i],
1984 							   &pllfracv[i],
1985 							   pllcsg[i],
1986 							   &pllcsg_set[i]);
1987 			if (ret != 0) {
1988 				return ret;
1989 			}
1990 
1991 			continue;
1992 		}
1993 
1994 		if (i == _PLL1) {
1995 			ret = clk_get_pll1_settings(clksrc[CLKSRC_PLL12],
1996 						    PLL1_NOMINAL_FREQ_IN_KHZ,
1997 						    pllcfg[i], &pllfracv[i]);
1998 			if (ret != 0) {
1999 				return ret;
2000 			}
2001 
2002 			pllcfg_valid[i] = true;
2003 		}
2004 	}
2005 
2006 	stm32mp1_mco_csg(clksrc[CLKSRC_MCO1], clkdiv[CLKDIV_MCO1]);
2007 	stm32mp1_mco_csg(clksrc[CLKSRC_MCO2], clkdiv[CLKDIV_MCO2]);
2008 
2009 	/*
2010 	 * Switch ON oscillator found in device-tree.
2011 	 * Note: HSI already ON after BootROM stage.
2012 	 */
2013 	if (stm32mp1_osc[_LSI] != 0U) {
2014 		stm32mp1_lsi_set(true);
2015 	}
2016 	if (stm32mp1_osc[_LSE] != 0U) {
2017 		const char *name = stm32mp_osc_node_label[_LSE];
2018 		bool bypass, digbyp;
2019 		uint32_t lsedrv;
2020 
2021 		bypass = fdt_clk_read_bool(name, "st,bypass");
2022 		digbyp = fdt_clk_read_bool(name, "st,digbypass");
2023 		lse_css = fdt_clk_read_bool(name, "st,css");
2024 		lsedrv = fdt_clk_read_uint32_default(name, "st,drive",
2025 						     LSEDRV_MEDIUM_HIGH);
2026 		stm32mp1_lse_enable(bypass, digbyp, lsedrv);
2027 	}
2028 	if (stm32mp1_osc[_HSE] != 0U) {
2029 		const char *name = stm32mp_osc_node_label[_HSE];
2030 		bool bypass, digbyp, css;
2031 
2032 		bypass = fdt_clk_read_bool(name, "st,bypass");
2033 		digbyp = fdt_clk_read_bool(name, "st,digbypass");
2034 		css = fdt_clk_read_bool(name, "st,css");
2035 		stm32mp1_hse_enable(bypass, digbyp, css);
2036 	}
2037 	/*
2038 	 * CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR)
2039 	 * => switch on CSI even if node is not present in device tree
2040 	 */
2041 	stm32mp1_csi_set(true);
2042 
2043 	/* Come back to HSI */
2044 	ret = stm32mp1_set_clksrc(CLK_MPU_HSI);
2045 	if (ret != 0) {
2046 		return ret;
2047 	}
2048 	ret = stm32mp1_set_clksrc(CLK_AXI_HSI);
2049 	if (ret != 0) {
2050 		return ret;
2051 	}
2052 	ret = stm32mp1_set_clksrc(CLK_MCU_HSI);
2053 	if (ret != 0) {
2054 		return ret;
2055 	}
2056 
2057 	if ((mmio_read_32(rcc_base + RCC_MP_RSTSCLRR) &
2058 	     RCC_MP_RSTSCLRR_MPUP0RSTF) != 0) {
2059 		if (pllcfg_valid[_PLL3]) {
2060 			pll3_preserve =
2061 				stm32mp1_check_pll_conf(_PLL3,
2062 							clksrc[CLKSRC_PLL3],
2063 							pllcfg[_PLL3],
2064 							plloff[_PLL3]);
2065 		}
2066 
2067 		if (pllcfg_valid[_PLL4]) {
2068 			pll4_preserve =
2069 				stm32mp1_check_pll_conf(_PLL4,
2070 							clksrc[CLKSRC_PLL4],
2071 							pllcfg[_PLL4],
2072 							plloff[_PLL4]);
2073 		}
2074 	}
2075 	/* Don't initialize PLL4, when used by BOOTROM */
2076 	if ((stm32mp_get_boot_itf_selected() ==
2077 	     BOOT_API_CTX_BOOT_INTERFACE_SEL_SERIAL_USB) &&
2078 	    ((stgen_p == (int)_PLL4_R) || (usbphy_p == (int)_PLL4_R))) {
2079 		pll4_bootrom = true;
2080 		pll4_preserve = true;
2081 	}
2082 
2083 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
2084 		if (((i == _PLL3) && pll3_preserve) ||
2085 		    ((i == _PLL4) && pll4_preserve)) {
2086 			continue;
2087 		}
2088 
2089 		ret = stm32mp1_pll_stop(i);
2090 		if (ret != 0) {
2091 			return ret;
2092 		}
2093 	}
2094 
2095 	/* Configure HSIDIV */
2096 	if (stm32mp1_osc[_HSI] != 0U) {
2097 		ret = stm32mp1_hsidiv(stm32mp1_osc[_HSI]);
2098 		if (ret != 0) {
2099 			return ret;
2100 		}
2101 
2102 		stm32mp_stgen_config(stm32mp_clk_get_rate(STGEN_K));
2103 	}
2104 
2105 	/* Select DIV */
2106 	/* No ready bit when MPUSRC != CLK_MPU_PLL1P_DIV, MPUDIV is disabled */
2107 	mmio_write_32(rcc_base + RCC_MPCKDIVR,
2108 		      clkdiv[CLKDIV_MPU] & RCC_DIVR_DIV_MASK);
2109 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_AXI], rcc_base + RCC_AXIDIVR);
2110 	if (ret != 0) {
2111 		return ret;
2112 	}
2113 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB4], rcc_base + RCC_APB4DIVR);
2114 	if (ret != 0) {
2115 		return ret;
2116 	}
2117 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB5], rcc_base + RCC_APB5DIVR);
2118 	if (ret != 0) {
2119 		return ret;
2120 	}
2121 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_MCU], rcc_base + RCC_MCUDIVR);
2122 	if (ret != 0) {
2123 		return ret;
2124 	}
2125 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB1], rcc_base + RCC_APB1DIVR);
2126 	if (ret != 0) {
2127 		return ret;
2128 	}
2129 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB2], rcc_base + RCC_APB2DIVR);
2130 	if (ret != 0) {
2131 		return ret;
2132 	}
2133 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB3], rcc_base + RCC_APB3DIVR);
2134 	if (ret != 0) {
2135 		return ret;
2136 	}
2137 
2138 	/* No ready bit for RTC */
2139 	mmio_write_32(rcc_base + RCC_RTCDIVR,
2140 		      clkdiv[CLKDIV_RTC] & RCC_DIVR_DIV_MASK);
2141 
2142 	/* Configure PLLs source */
2143 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL12]);
2144 	if (ret != 0) {
2145 		return ret;
2146 	}
2147 
2148 	if (!pll3_preserve) {
2149 		ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL3]);
2150 		if (ret != 0) {
2151 			return ret;
2152 		}
2153 	}
2154 
2155 	if (!pll4_preserve) {
2156 		ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL4]);
2157 		if (ret != 0) {
2158 			return ret;
2159 		}
2160 	}
2161 
2162 	/* Configure and start PLLs */
2163 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
2164 		if (((i == _PLL3) && pll3_preserve) ||
2165 		    ((i == _PLL4) && pll4_preserve && !pll4_bootrom)) {
2166 			continue;
2167 		}
2168 
2169 		if (!pllcfg_valid[i]) {
2170 			continue;
2171 		}
2172 
2173 		if ((i == _PLL4) && pll4_bootrom) {
2174 			/* Set output divider if not done by the Bootrom */
2175 			stm32mp1_pll_config_output(i, pllcfg[i]);
2176 			continue;
2177 		}
2178 
2179 		ret = stm32mp1_pll_config(i, pllcfg[i], pllfracv[i]);
2180 		if (ret != 0) {
2181 			return ret;
2182 		}
2183 
2184 		if (pllcsg_set[i]) {
2185 			stm32mp1_pll_csg(i, pllcsg[i]);
2186 		}
2187 
2188 		stm32mp1_pll_start(i);
2189 	}
2190 	/* Wait and start PLLs output when ready */
2191 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
2192 		if (!pllcfg_valid[i]) {
2193 			continue;
2194 		}
2195 
2196 		ret = stm32mp1_pll_output(i, pllcfg[i][PLLCFG_O]);
2197 		if (ret != 0) {
2198 			return ret;
2199 		}
2200 	}
2201 	/* Wait LSE ready before to use it */
2202 	if (stm32mp1_osc[_LSE] != 0U) {
2203 		stm32mp1_lse_wait();
2204 	}
2205 
2206 	/* Configure with expected clock source */
2207 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_MPU]);
2208 	if (ret != 0) {
2209 		return ret;
2210 	}
2211 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_AXI]);
2212 	if (ret != 0) {
2213 		return ret;
2214 	}
2215 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_MCU]);
2216 	if (ret != 0) {
2217 		return ret;
2218 	}
2219 	stm32mp1_set_rtcsrc(clksrc[CLKSRC_RTC], lse_css);
2220 
2221 	/* Configure PKCK */
2222 	pkcs_cell = fdt_rcc_read_prop("st,pkcs", &len);
2223 	if (pkcs_cell != NULL) {
2224 		bool ckper_disabled = false;
2225 		uint32_t j;
2226 		uint32_t usbreg_bootrom = 0U;
2227 
2228 		if (pll4_bootrom) {
2229 			usbreg_bootrom = mmio_read_32(rcc_base + RCC_USBCKSELR);
2230 		}
2231 
2232 		for (j = 0; j < ((uint32_t)len / sizeof(uint32_t)); j++) {
2233 			uint32_t pkcs = fdt32_to_cpu(pkcs_cell[j]);
2234 
2235 			if (pkcs == (uint32_t)CLK_CKPER_DISABLED) {
2236 				ckper_disabled = true;
2237 				continue;
2238 			}
2239 			stm32mp1_pkcs_config(pkcs);
2240 		}
2241 
2242 		/*
2243 		 * CKPER is source for some peripheral clocks
2244 		 * (FMC-NAND / QPSI-NOR) and switching source is allowed
2245 		 * only if previous clock is still ON
2246 		 * => deactivated CKPER only after switching clock
2247 		 */
2248 		if (ckper_disabled) {
2249 			stm32mp1_pkcs_config(CLK_CKPER_DISABLED);
2250 		}
2251 
2252 		if (pll4_bootrom) {
2253 			uint32_t usbreg_value, usbreg_mask;
2254 			const struct stm32mp1_clk_sel *sel;
2255 
2256 			sel = clk_sel_ref(_USBPHY_SEL);
2257 			usbreg_mask = (uint32_t)sel->msk << sel->src;
2258 			sel = clk_sel_ref(_USBO_SEL);
2259 			usbreg_mask |= (uint32_t)sel->msk << sel->src;
2260 
2261 			usbreg_value = mmio_read_32(rcc_base + RCC_USBCKSELR) &
2262 				       usbreg_mask;
2263 			usbreg_bootrom &= usbreg_mask;
2264 			if (usbreg_bootrom != usbreg_value) {
2265 				VERBOSE("forbidden new USB clk path\n");
2266 				VERBOSE("vs bootrom on USB boot\n");
2267 				return -FDT_ERR_BADVALUE;
2268 			}
2269 		}
2270 	}
2271 
2272 	/* Switch OFF HSI if not found in device-tree */
2273 	if (stm32mp1_osc[_HSI] == 0U) {
2274 		stm32mp1_hsi_set(false);
2275 	}
2276 
2277 	stm32mp_stgen_config(stm32mp_clk_get_rate(STGEN_K));
2278 
2279 	/* Software Self-Refresh mode (SSR) during DDR initilialization */
2280 	mmio_clrsetbits_32(rcc_base + RCC_DDRITFCR,
2281 			   RCC_DDRITFCR_DDRCKMOD_MASK,
2282 			   RCC_DDRITFCR_DDRCKMOD_SSR <<
2283 			   RCC_DDRITFCR_DDRCKMOD_SHIFT);
2284 
2285 	return 0;
2286 }
2287 
2288 static void stm32mp1_osc_clk_init(const char *name,
2289 				  enum stm32mp_osc_id index)
2290 {
2291 	uint32_t frequency;
2292 
2293 	if (fdt_osc_read_freq(name, &frequency) == 0) {
2294 		stm32mp1_osc[index] = frequency;
2295 	}
2296 }
2297 
2298 static void stm32mp1_osc_init(void)
2299 {
2300 	enum stm32mp_osc_id i;
2301 
2302 	for (i = (enum stm32mp_osc_id)0 ; i < NB_OSC; i++) {
2303 		stm32mp1_osc_clk_init(stm32mp_osc_node_label[i], i);
2304 	}
2305 }
2306 
2307 #ifdef STM32MP_SHARED_RESOURCES
2308 /*
2309  * Get the parent ID of the target parent clock, for tagging as secure
2310  * shared clock dependencies.
2311  */
2312 static int get_parent_id_parent(unsigned int parent_id)
2313 {
2314 	enum stm32mp1_parent_sel s = _UNKNOWN_SEL;
2315 	enum stm32mp1_pll_id pll_id;
2316 	uint32_t p_sel;
2317 	uintptr_t rcc_base = stm32mp_rcc_base();
2318 
2319 	switch (parent_id) {
2320 	case _ACLK:
2321 	case _PCLK4:
2322 	case _PCLK5:
2323 		s = _AXIS_SEL;
2324 		break;
2325 	case _PLL1_P:
2326 	case _PLL1_Q:
2327 	case _PLL1_R:
2328 		pll_id = _PLL1;
2329 		break;
2330 	case _PLL2_P:
2331 	case _PLL2_Q:
2332 	case _PLL2_R:
2333 		pll_id = _PLL2;
2334 		break;
2335 	case _PLL3_P:
2336 	case _PLL3_Q:
2337 	case _PLL3_R:
2338 		pll_id = _PLL3;
2339 		break;
2340 	case _PLL4_P:
2341 	case _PLL4_Q:
2342 	case _PLL4_R:
2343 		pll_id = _PLL4;
2344 		break;
2345 	case _PCLK1:
2346 	case _PCLK2:
2347 	case _HCLK2:
2348 	case _HCLK6:
2349 	case _CK_PER:
2350 	case _CK_MPU:
2351 	case _CK_MCU:
2352 	case _USB_PHY_48:
2353 		/* We do not expect to access these */
2354 		panic();
2355 		break;
2356 	default:
2357 		/* Other parents have no parent */
2358 		return -1;
2359 	}
2360 
2361 	if (s != _UNKNOWN_SEL) {
2362 		const struct stm32mp1_clk_sel *sel = clk_sel_ref(s);
2363 
2364 		p_sel = (mmio_read_32(rcc_base + sel->offset) >> sel->src) &
2365 			sel->msk;
2366 
2367 		if (p_sel < sel->nb_parent) {
2368 			return (int)sel->parent[p_sel];
2369 		}
2370 	} else {
2371 		const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
2372 
2373 		p_sel = mmio_read_32(rcc_base + pll->rckxselr) &
2374 			RCC_SELR_REFCLK_SRC_MASK;
2375 
2376 		if (pll->refclk[p_sel] != _UNKNOWN_OSC_ID) {
2377 			return (int)pll->refclk[p_sel];
2378 		}
2379 	}
2380 
2381 	VERBOSE("No parent selected for %s\n",
2382 		stm32mp1_clk_parent_name[parent_id]);
2383 
2384 	return -1;
2385 }
2386 
2387 static void secure_parent_clocks(unsigned long parent_id)
2388 {
2389 	int grandparent_id;
2390 
2391 	switch (parent_id) {
2392 	case _PLL3_P:
2393 	case _PLL3_Q:
2394 	case _PLL3_R:
2395 		stm32mp_register_secure_periph(STM32MP1_SHRES_PLL3);
2396 		break;
2397 
2398 	/* These clocks are always secure when RCC is secure */
2399 	case _ACLK:
2400 	case _HCLK2:
2401 	case _HCLK6:
2402 	case _PCLK4:
2403 	case _PCLK5:
2404 	case _PLL1_P:
2405 	case _PLL1_Q:
2406 	case _PLL1_R:
2407 	case _PLL2_P:
2408 	case _PLL2_Q:
2409 	case _PLL2_R:
2410 	case _HSI:
2411 	case _HSI_KER:
2412 	case _LSI:
2413 	case _CSI:
2414 	case _CSI_KER:
2415 	case _HSE:
2416 	case _HSE_KER:
2417 	case _HSE_KER_DIV2:
2418 	case _HSE_RTC:
2419 	case _LSE:
2420 		break;
2421 
2422 	default:
2423 		VERBOSE("Cannot secure parent clock %s\n",
2424 			stm32mp1_clk_parent_name[parent_id]);
2425 		panic();
2426 	}
2427 
2428 	grandparent_id = get_parent_id_parent(parent_id);
2429 	if (grandparent_id >= 0) {
2430 		secure_parent_clocks(grandparent_id);
2431 	}
2432 }
2433 
2434 void stm32mp1_register_clock_parents_secure(unsigned long clock_id)
2435 {
2436 	int parent_id;
2437 
2438 	if (!stm32mp1_rcc_is_secure()) {
2439 		return;
2440 	}
2441 
2442 	switch (clock_id) {
2443 	case PLL1:
2444 	case PLL2:
2445 		/* PLL1/PLL2 are always secure: nothing to do */
2446 		break;
2447 	case PLL3:
2448 		stm32mp_register_secure_periph(STM32MP1_SHRES_PLL3);
2449 		break;
2450 	case PLL4:
2451 		ERROR("PLL4 cannot be secured\n");
2452 		panic();
2453 		break;
2454 	default:
2455 		/* Others are expected gateable clock */
2456 		parent_id = stm32mp1_clk_get_parent(clock_id);
2457 		if (parent_id < 0) {
2458 			INFO("No parent found for clock %lu\n", clock_id);
2459 		} else {
2460 			secure_parent_clocks(parent_id);
2461 		}
2462 		break;
2463 	}
2464 }
2465 #endif /* STM32MP_SHARED_RESOURCES */
2466 
2467 void stm32mp1_clk_mcuss_protect(bool enable)
2468 {
2469 	uintptr_t rcc_base = stm32mp_rcc_base();
2470 
2471 	if (enable) {
2472 		mmio_setbits_32(rcc_base + RCC_TZCR, RCC_TZCR_MCKPROT);
2473 	} else {
2474 		mmio_clrbits_32(rcc_base + RCC_TZCR, RCC_TZCR_MCKPROT);
2475 	}
2476 }
2477 
2478 static void sync_earlyboot_clocks_state(void)
2479 {
2480 	unsigned int idx;
2481 	const unsigned long secure_enable[] = {
2482 		AXIDCG,
2483 		BSEC,
2484 		DDRC1, DDRC1LP,
2485 		DDRC2, DDRC2LP,
2486 		DDRCAPB, DDRPHYCAPB, DDRPHYCAPBLP,
2487 		DDRPHYC, DDRPHYCLP,
2488 		RTCAPB,
2489 		TZC1, TZC2,
2490 		TZPC,
2491 		STGEN_K,
2492 	};
2493 
2494 	for (idx = 0U; idx < ARRAY_SIZE(secure_enable); idx++) {
2495 		stm32mp_clk_enable(secure_enable[idx]);
2496 	}
2497 }
2498 
2499 static const struct clk_ops stm32mp_clk_ops = {
2500 	.enable		= stm32mp_clk_enable,
2501 	.disable	= stm32mp_clk_disable,
2502 	.is_enabled	= stm32mp_clk_is_enabled,
2503 	.get_rate	= stm32mp_clk_get_rate,
2504 	.get_parent	= stm32mp1_clk_get_parent,
2505 };
2506 
2507 int stm32mp1_clk_probe(void)
2508 {
2509 #if defined(IMAGE_BL32)
2510 	if (!fdt_get_rcc_secure_state()) {
2511 		mmio_write_32(stm32mp_rcc_base() + RCC_TZCR, 0U);
2512 	}
2513 #endif
2514 
2515 	stm32mp1_osc_init();
2516 
2517 	sync_earlyboot_clocks_state();
2518 
2519 	clk_register(&stm32mp_clk_ops);
2520 
2521 	return 0;
2522 }
2523