xref: /rk3399_ARM-atf/drivers/st/clk/stm32mp1_clk.c (revision f4a2bb986b43fcb1c0c8c45b5d9a93798f655453)
1 /*
2  * Copyright (C) 2018-2024, STMicroelectronics - All Rights Reserved
3  *
4  * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdio.h>
11 
12 #include <arch.h>
13 #include <arch_helpers.h>
14 #include <common/debug.h>
15 #include <common/fdt_wrappers.h>
16 #include <drivers/clk.h>
17 #include <drivers/delay_timer.h>
18 #include <drivers/st/stm32mp_clkfunc.h>
19 #include <drivers/st/stm32mp1_clk.h>
20 #include <drivers/st/stm32mp1_rcc.h>
21 #include <dt-bindings/clock/stm32mp1-clksrc.h>
22 #include <lib/mmio.h>
23 #include <lib/spinlock.h>
24 #include <lib/utils_def.h>
25 #include <libfdt.h>
26 #include <plat/common/platform.h>
27 
28 #include <platform_def.h>
29 
30 #define MAX_HSI_HZ		64000000
31 #define USB_PHY_48_MHZ		48000000
32 
33 #define TIMEOUT_US_200MS	U(200000)
34 #define TIMEOUT_US_1S		U(1000000)
35 
36 #define PLLRDY_TIMEOUT		TIMEOUT_US_200MS
37 #define CLKSRC_TIMEOUT		TIMEOUT_US_200MS
38 #define CLKDIV_TIMEOUT		TIMEOUT_US_200MS
39 #define HSIDIV_TIMEOUT		TIMEOUT_US_200MS
40 #define OSCRDY_TIMEOUT		TIMEOUT_US_1S
41 
42 const char *stm32mp_osc_node_label[NB_OSC] = {
43 	[_LSI] = "clk-lsi",
44 	[_LSE] = "clk-lse",
45 	[_HSI] = "clk-hsi",
46 	[_HSE] = "clk-hse",
47 	[_CSI] = "clk-csi",
48 	[_I2S_CKIN] = "i2s_ckin",
49 };
50 
51 enum stm32mp1_parent_id {
52 /* Oscillators are defined in enum stm32mp_osc_id */
53 
54 /* Other parent source */
55 	_HSI_KER = NB_OSC,
56 	_HSE_KER,
57 	_HSE_KER_DIV2,
58 	_HSE_RTC,
59 	_CSI_KER,
60 	_PLL1_P,
61 	_PLL1_Q,
62 	_PLL1_R,
63 	_PLL2_P,
64 	_PLL2_Q,
65 	_PLL2_R,
66 	_PLL3_P,
67 	_PLL3_Q,
68 	_PLL3_R,
69 	_PLL4_P,
70 	_PLL4_Q,
71 	_PLL4_R,
72 	_ACLK,
73 	_PCLK1,
74 	_PCLK2,
75 	_PCLK3,
76 	_PCLK4,
77 	_PCLK5,
78 	_HCLK6,
79 	_HCLK2,
80 	_CK_PER,
81 	_CK_MPU,
82 	_CK_MCU,
83 	_USB_PHY_48,
84 	_PARENT_NB,
85 	_UNKNOWN_ID = 0xff,
86 };
87 
88 /* Lists only the parent clock we are interested in */
89 enum stm32mp1_parent_sel {
90 	_I2C12_SEL,
91 	_I2C35_SEL,
92 	_STGEN_SEL,
93 	_I2C46_SEL,
94 	_SPI6_SEL,
95 	_UART1_SEL,
96 	_RNG1_SEL,
97 	_UART6_SEL,
98 	_UART24_SEL,
99 	_UART35_SEL,
100 	_UART78_SEL,
101 	_SDMMC12_SEL,
102 	_SDMMC3_SEL,
103 	_QSPI_SEL,
104 	_FMC_SEL,
105 	_AXIS_SEL,
106 	_MCUS_SEL,
107 	_USBPHY_SEL,
108 	_USBO_SEL,
109 	_MPU_SEL,
110 	_CKPER_SEL,
111 	_RTC_SEL,
112 	_PARENT_SEL_NB,
113 	_UNKNOWN_SEL = 0xff,
114 };
115 
116 /* State the parent clock ID straight related to a clock */
117 static const uint8_t parent_id_clock_id[_PARENT_NB] = {
118 	[_HSE] = CK_HSE,
119 	[_HSI] = CK_HSI,
120 	[_CSI] = CK_CSI,
121 	[_LSE] = CK_LSE,
122 	[_LSI] = CK_LSI,
123 	[_I2S_CKIN] = _UNKNOWN_ID,
124 	[_USB_PHY_48] = _UNKNOWN_ID,
125 	[_HSI_KER] = CK_HSI,
126 	[_HSE_KER] = CK_HSE,
127 	[_HSE_KER_DIV2] = CK_HSE_DIV2,
128 	[_HSE_RTC] = _UNKNOWN_ID,
129 	[_CSI_KER] = CK_CSI,
130 	[_PLL1_P] = PLL1_P,
131 	[_PLL1_Q] = PLL1_Q,
132 	[_PLL1_R] = PLL1_R,
133 	[_PLL2_P] = PLL2_P,
134 	[_PLL2_Q] = PLL2_Q,
135 	[_PLL2_R] = PLL2_R,
136 	[_PLL3_P] = PLL3_P,
137 	[_PLL3_Q] = PLL3_Q,
138 	[_PLL3_R] = PLL3_R,
139 	[_PLL4_P] = PLL4_P,
140 	[_PLL4_Q] = PLL4_Q,
141 	[_PLL4_R] = PLL4_R,
142 	[_ACLK] = CK_AXI,
143 	[_PCLK1] = CK_AXI,
144 	[_PCLK2] = CK_AXI,
145 	[_PCLK3] = CK_AXI,
146 	[_PCLK4] = CK_AXI,
147 	[_PCLK5] = CK_AXI,
148 	[_CK_PER] = CK_PER,
149 	[_CK_MPU] = CK_MPU,
150 	[_CK_MCU] = CK_MCU,
151 };
152 
153 static unsigned int clock_id2parent_id(unsigned long id)
154 {
155 	unsigned int n;
156 
157 	for (n = 0U; n < ARRAY_SIZE(parent_id_clock_id); n++) {
158 		if (parent_id_clock_id[n] == id) {
159 			return n;
160 		}
161 	}
162 
163 	return _UNKNOWN_ID;
164 }
165 
166 enum stm32mp1_pll_id {
167 	_PLL1,
168 	_PLL2,
169 	_PLL3,
170 	_PLL4,
171 	_PLL_NB
172 };
173 
174 enum stm32mp1_div_id {
175 	_DIV_P,
176 	_DIV_Q,
177 	_DIV_R,
178 	_DIV_NB,
179 };
180 
181 enum stm32mp1_clksrc_id {
182 	CLKSRC_MPU,
183 	CLKSRC_AXI,
184 	CLKSRC_MCU,
185 	CLKSRC_PLL12,
186 	CLKSRC_PLL3,
187 	CLKSRC_PLL4,
188 	CLKSRC_RTC,
189 	CLKSRC_MCO1,
190 	CLKSRC_MCO2,
191 	CLKSRC_NB
192 };
193 
194 enum stm32mp1_clkdiv_id {
195 	CLKDIV_MPU,
196 	CLKDIV_AXI,
197 	CLKDIV_MCU,
198 	CLKDIV_APB1,
199 	CLKDIV_APB2,
200 	CLKDIV_APB3,
201 	CLKDIV_APB4,
202 	CLKDIV_APB5,
203 	CLKDIV_RTC,
204 	CLKDIV_MCO1,
205 	CLKDIV_MCO2,
206 	CLKDIV_NB
207 };
208 
209 enum stm32mp1_pllcfg {
210 	PLLCFG_M,
211 	PLLCFG_N,
212 	PLLCFG_P,
213 	PLLCFG_Q,
214 	PLLCFG_R,
215 	PLLCFG_O,
216 	PLLCFG_NB
217 };
218 
219 enum stm32mp1_pllcsg {
220 	PLLCSG_MOD_PER,
221 	PLLCSG_INC_STEP,
222 	PLLCSG_SSCG_MODE,
223 	PLLCSG_NB
224 };
225 
226 enum stm32mp1_plltype {
227 	PLL_800,
228 	PLL_1600,
229 	PLL_TYPE_NB
230 };
231 
232 struct stm32mp1_pll {
233 	uint8_t refclk_min;
234 	uint8_t refclk_max;
235 };
236 
237 struct stm32mp1_clk_gate {
238 	uint16_t offset;
239 	uint8_t bit;
240 	uint8_t index;
241 	uint8_t set_clr;
242 	uint8_t secure;
243 	uint8_t sel; /* Relates to enum stm32mp1_parent_sel */
244 	uint8_t fixed; /* Relates to enum stm32mp1_parent_id */
245 };
246 
247 struct stm32mp1_clk_sel {
248 	uint16_t offset;
249 	uint8_t src;
250 	uint8_t msk;
251 	uint8_t nb_parent;
252 	const uint8_t *parent;
253 };
254 
255 #define REFCLK_SIZE 4
256 struct stm32mp1_clk_pll {
257 	enum stm32mp1_plltype plltype;
258 	uint16_t rckxselr;
259 	uint16_t pllxcfgr1;
260 	uint16_t pllxcfgr2;
261 	uint16_t pllxfracr;
262 	uint16_t pllxcr;
263 	uint16_t pllxcsgr;
264 	enum stm32mp_osc_id refclk[REFCLK_SIZE];
265 };
266 
267 /* Clocks with selectable source and non set/clr register access */
268 #define _CLK_SELEC(sec, off, b, idx, s)			\
269 	{						\
270 		.offset = (off),			\
271 		.bit = (b),				\
272 		.index = (idx),				\
273 		.set_clr = 0,				\
274 		.secure = (sec),			\
275 		.sel = (s),				\
276 		.fixed = _UNKNOWN_ID,			\
277 	}
278 
279 /* Clocks with fixed source and non set/clr register access */
280 #define _CLK_FIXED(sec, off, b, idx, f)			\
281 	{						\
282 		.offset = (off),			\
283 		.bit = (b),				\
284 		.index = (idx),				\
285 		.set_clr = 0,				\
286 		.secure = (sec),			\
287 		.sel = _UNKNOWN_SEL,			\
288 		.fixed = (f),				\
289 	}
290 
291 /* Clocks with selectable source and set/clr register access */
292 #define _CLK_SC_SELEC(sec, off, b, idx, s)			\
293 	{						\
294 		.offset = (off),			\
295 		.bit = (b),				\
296 		.index = (idx),				\
297 		.set_clr = 1,				\
298 		.secure = (sec),			\
299 		.sel = (s),				\
300 		.fixed = _UNKNOWN_ID,			\
301 	}
302 
303 /* Clocks with fixed source and set/clr register access */
304 #define _CLK_SC_FIXED(sec, off, b, idx, f)			\
305 	{						\
306 		.offset = (off),			\
307 		.bit = (b),				\
308 		.index = (idx),				\
309 		.set_clr = 1,				\
310 		.secure = (sec),			\
311 		.sel = _UNKNOWN_SEL,			\
312 		.fixed = (f),				\
313 	}
314 
315 #define _CLK_PARENT_SEL(_label, _rcc_selr, _parents)		\
316 	[_ ## _label ## _SEL] = {				\
317 		.offset = _rcc_selr,				\
318 		.src = _rcc_selr ## _ ## _label ## SRC_SHIFT,	\
319 		.msk = (_rcc_selr ## _ ## _label ## SRC_MASK) >> \
320 		       (_rcc_selr ## _ ## _label ## SRC_SHIFT), \
321 		.parent = (_parents),				\
322 		.nb_parent = ARRAY_SIZE(_parents)		\
323 	}
324 
325 #define _CLK_PLL(idx, type, off1, off2, off3,		\
326 		 off4, off5, off6,			\
327 		 p1, p2, p3, p4)			\
328 	[(idx)] = {					\
329 		.plltype = (type),			\
330 		.rckxselr = (off1),			\
331 		.pllxcfgr1 = (off2),			\
332 		.pllxcfgr2 = (off3),			\
333 		.pllxfracr = (off4),			\
334 		.pllxcr = (off5),			\
335 		.pllxcsgr = (off6),			\
336 		.refclk[0] = (p1),			\
337 		.refclk[1] = (p2),			\
338 		.refclk[2] = (p3),			\
339 		.refclk[3] = (p4),			\
340 	}
341 
342 #define NB_GATES	ARRAY_SIZE(stm32mp1_clk_gate)
343 
344 #define SEC		1
345 #define N_S		0
346 
347 static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
348 	_CLK_FIXED(SEC, RCC_DDRITFCR, 0, DDRC1, _ACLK),
349 	_CLK_FIXED(SEC, RCC_DDRITFCR, 1, DDRC1LP, _ACLK),
350 	_CLK_FIXED(SEC, RCC_DDRITFCR, 2, DDRC2, _ACLK),
351 	_CLK_FIXED(SEC, RCC_DDRITFCR, 3, DDRC2LP, _ACLK),
352 	_CLK_FIXED(SEC, RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
353 	_CLK_FIXED(SEC, RCC_DDRITFCR, 5, DDRPHYCLP, _PLL2_R),
354 	_CLK_FIXED(SEC, RCC_DDRITFCR, 6, DDRCAPB, _PCLK4),
355 	_CLK_FIXED(SEC, RCC_DDRITFCR, 7, DDRCAPBLP, _PCLK4),
356 	_CLK_FIXED(SEC, RCC_DDRITFCR, 8, AXIDCG, _ACLK),
357 	_CLK_FIXED(SEC, RCC_DDRITFCR, 9, DDRPHYCAPB, _PCLK4),
358 	_CLK_FIXED(SEC, RCC_DDRITFCR, 10, DDRPHYCAPBLP, _PCLK4),
359 
360 #if defined(IMAGE_BL32)
361 	_CLK_SC_FIXED(N_S, RCC_MP_APB1ENSETR, 6, TIM12_K, _PCLK1),
362 #endif
363 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
364 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
365 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
366 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
367 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
368 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
369 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 21, I2C1_K, _I2C12_SEL),
370 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 22, I2C2_K, _I2C12_SEL),
371 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 23, I2C3_K, _I2C35_SEL),
372 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 24, I2C5_K, _I2C35_SEL),
373 
374 #if defined(IMAGE_BL32)
375 	_CLK_SC_FIXED(N_S, RCC_MP_APB2ENSETR, 2, TIM15_K, _PCLK2),
376 #endif
377 	_CLK_SC_SELEC(N_S, RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
378 
379 	_CLK_SC_FIXED(N_S, RCC_MP_APB3ENSETR, 11, SYSCFG, _UNKNOWN_ID),
380 
381 	_CLK_SC_SELEC(N_S, RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
382 	_CLK_SC_SELEC(N_S, RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
383 	_CLK_SC_SELEC(N_S, RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
384 
385 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 0, SPI6_K, _SPI6_SEL),
386 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
387 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 3, I2C6_K, _I2C46_SEL),
388 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 4, USART1_K, _UART1_SEL),
389 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 8, RTCAPB, _PCLK5),
390 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 11, TZC1, _PCLK5),
391 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 12, TZC2, _PCLK5),
392 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 13, TZPC, _PCLK5),
393 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 15, IWDG1, _PCLK5),
394 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 16, BSEC, _PCLK5),
395 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
396 
397 #if defined(IMAGE_BL32)
398 	_CLK_SC_SELEC(N_S, RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
399 	_CLK_SC_SELEC(N_S, RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
400 #endif
401 
402 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
403 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
404 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
405 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
406 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
407 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
408 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
409 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
410 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
411 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
412 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
413 
414 	_CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 0, GPIOZ, _PCLK5),
415 	_CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 4, CRYP1, _PCLK5),
416 	_CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 5, HASH1, _PCLK5),
417 	_CLK_SC_SELEC(SEC, RCC_MP_AHB5ENSETR, 6, RNG1_K, _RNG1_SEL),
418 	_CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 8, BKPSRAM, _PCLK5),
419 
420 #if defined(IMAGE_BL2)
421 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
422 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
423 #endif
424 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
425 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
426 #if defined(IMAGE_BL32)
427 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
428 #endif
429 
430 	_CLK_SELEC(SEC, RCC_BDCR, 20, RTC, _RTC_SEL),
431 	_CLK_SELEC(N_S, RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
432 };
433 
434 static const uint8_t i2c12_parents[] = {
435 	_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
436 };
437 
438 static const uint8_t i2c35_parents[] = {
439 	_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
440 };
441 
442 static const uint8_t stgen_parents[] = {
443 	_HSI_KER, _HSE_KER
444 };
445 
446 static const uint8_t i2c46_parents[] = {
447 	_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER
448 };
449 
450 static const uint8_t spi6_parents[] = {
451 	_PCLK5, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER, _PLL3_Q
452 };
453 
454 static const uint8_t usart1_parents[] = {
455 	_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER, _PLL4_Q, _HSE_KER
456 };
457 
458 static const uint8_t rng1_parents[] = {
459 	_CSI, _PLL4_R, _LSE, _LSI
460 };
461 
462 static const uint8_t uart6_parents[] = {
463 	_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
464 };
465 
466 static const uint8_t uart234578_parents[] = {
467 	_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
468 };
469 
470 static const uint8_t sdmmc12_parents[] = {
471 	_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER
472 };
473 
474 static const uint8_t sdmmc3_parents[] = {
475 	_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER
476 };
477 
478 static const uint8_t qspi_parents[] = {
479 	_ACLK, _PLL3_R, _PLL4_P, _CK_PER
480 };
481 
482 static const uint8_t fmc_parents[] = {
483 	_ACLK, _PLL3_R, _PLL4_P, _CK_PER
484 };
485 
486 static const uint8_t axiss_parents[] = {
487 	_HSI, _HSE, _PLL2_P
488 };
489 
490 static const uint8_t mcuss_parents[] = {
491 	_HSI, _HSE, _CSI, _PLL3_P
492 };
493 
494 static const uint8_t usbphy_parents[] = {
495 	_HSE_KER, _PLL4_R, _HSE_KER_DIV2
496 };
497 
498 static const uint8_t usbo_parents[] = {
499 	_PLL4_R, _USB_PHY_48
500 };
501 
502 static const uint8_t mpu_parents[] = {
503 	_HSI, _HSE, _PLL1_P, _PLL1_P /* specific div */
504 };
505 
506 static const uint8_t per_parents[] = {
507 	_HSI, _HSE, _CSI,
508 };
509 
510 static const uint8_t rtc_parents[] = {
511 	_UNKNOWN_ID, _LSE, _LSI, _HSE_RTC
512 };
513 
514 static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
515 	_CLK_PARENT_SEL(I2C12, RCC_I2C12CKSELR, i2c12_parents),
516 	_CLK_PARENT_SEL(I2C35, RCC_I2C35CKSELR, i2c35_parents),
517 	_CLK_PARENT_SEL(STGEN, RCC_STGENCKSELR, stgen_parents),
518 	_CLK_PARENT_SEL(I2C46, RCC_I2C46CKSELR, i2c46_parents),
519 	_CLK_PARENT_SEL(SPI6, RCC_SPI6CKSELR, spi6_parents),
520 	_CLK_PARENT_SEL(UART1, RCC_UART1CKSELR, usart1_parents),
521 	_CLK_PARENT_SEL(RNG1, RCC_RNG1CKSELR, rng1_parents),
522 	_CLK_PARENT_SEL(MPU, RCC_MPCKSELR, mpu_parents),
523 	_CLK_PARENT_SEL(CKPER, RCC_CPERCKSELR, per_parents),
524 	_CLK_PARENT_SEL(RTC, RCC_BDCR, rtc_parents),
525 	_CLK_PARENT_SEL(UART6, RCC_UART6CKSELR, uart6_parents),
526 	_CLK_PARENT_SEL(UART24, RCC_UART24CKSELR, uart234578_parents),
527 	_CLK_PARENT_SEL(UART35, RCC_UART35CKSELR, uart234578_parents),
528 	_CLK_PARENT_SEL(UART78, RCC_UART78CKSELR, uart234578_parents),
529 	_CLK_PARENT_SEL(SDMMC12, RCC_SDMMC12CKSELR, sdmmc12_parents),
530 	_CLK_PARENT_SEL(SDMMC3, RCC_SDMMC3CKSELR, sdmmc3_parents),
531 	_CLK_PARENT_SEL(QSPI, RCC_QSPICKSELR, qspi_parents),
532 	_CLK_PARENT_SEL(FMC, RCC_FMCCKSELR, fmc_parents),
533 	_CLK_PARENT_SEL(AXIS, RCC_ASSCKSELR, axiss_parents),
534 	_CLK_PARENT_SEL(MCUS, RCC_MSSCKSELR, mcuss_parents),
535 	_CLK_PARENT_SEL(USBPHY, RCC_USBCKSELR, usbphy_parents),
536 	_CLK_PARENT_SEL(USBO, RCC_USBCKSELR, usbo_parents),
537 };
538 
539 /* Define characteristic of PLL according type */
540 #define DIVN_MIN	24
541 static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
542 	[PLL_800] = {
543 		.refclk_min = 4,
544 		.refclk_max = 16,
545 	},
546 	[PLL_1600] = {
547 		.refclk_min = 8,
548 		.refclk_max = 16,
549 	},
550 };
551 
552 /* PLLNCFGR2 register divider by output */
553 static const uint8_t pllncfgr2[_DIV_NB] = {
554 	[_DIV_P] = RCC_PLLNCFGR2_DIVP_SHIFT,
555 	[_DIV_Q] = RCC_PLLNCFGR2_DIVQ_SHIFT,
556 	[_DIV_R] = RCC_PLLNCFGR2_DIVR_SHIFT,
557 };
558 
559 static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = {
560 	_CLK_PLL(_PLL1, PLL_1600,
561 		 RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
562 		 RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
563 		 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
564 	_CLK_PLL(_PLL2, PLL_1600,
565 		 RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
566 		 RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
567 		 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
568 	_CLK_PLL(_PLL3, PLL_800,
569 		 RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
570 		 RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
571 		 _HSI, _HSE, _CSI, _UNKNOWN_OSC_ID),
572 	_CLK_PLL(_PLL4, PLL_800,
573 		 RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
574 		 RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
575 		 _HSI, _HSE, _CSI, _I2S_CKIN),
576 };
577 
578 /* Prescaler table lookups for clock computation */
579 /* div = /1 /2 /4 /8 / 16 /64 /128 /512 */
580 static const uint8_t stm32mp1_mcu_div[16] = {
581 	0, 1, 2, 3, 4, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9
582 };
583 
584 /* div = /1 /2 /4 /8 /16 : same divider for PMU and APBX */
585 #define stm32mp1_mpu_div stm32mp1_mpu_apbx_div
586 #define stm32mp1_apbx_div stm32mp1_mpu_apbx_div
587 static const uint8_t stm32mp1_mpu_apbx_div[8] = {
588 	0, 1, 2, 3, 4, 4, 4, 4
589 };
590 
591 /* div = /1 /2 /3 /4 */
592 static const uint8_t stm32mp1_axi_div[8] = {
593 	1, 2, 3, 4, 4, 4, 4, 4
594 };
595 
596 static const char * const stm32mp1_clk_parent_name[_PARENT_NB] __unused = {
597 	[_HSI] = "HSI",
598 	[_HSE] = "HSE",
599 	[_CSI] = "CSI",
600 	[_LSI] = "LSI",
601 	[_LSE] = "LSE",
602 	[_I2S_CKIN] = "I2S_CKIN",
603 	[_HSI_KER] = "HSI_KER",
604 	[_HSE_KER] = "HSE_KER",
605 	[_HSE_KER_DIV2] = "HSE_KER_DIV2",
606 	[_HSE_RTC] = "HSE_RTC",
607 	[_CSI_KER] = "CSI_KER",
608 	[_PLL1_P] = "PLL1_P",
609 	[_PLL1_Q] = "PLL1_Q",
610 	[_PLL1_R] = "PLL1_R",
611 	[_PLL2_P] = "PLL2_P",
612 	[_PLL2_Q] = "PLL2_Q",
613 	[_PLL2_R] = "PLL2_R",
614 	[_PLL3_P] = "PLL3_P",
615 	[_PLL3_Q] = "PLL3_Q",
616 	[_PLL3_R] = "PLL3_R",
617 	[_PLL4_P] = "PLL4_P",
618 	[_PLL4_Q] = "PLL4_Q",
619 	[_PLL4_R] = "PLL4_R",
620 	[_ACLK] = "ACLK",
621 	[_PCLK1] = "PCLK1",
622 	[_PCLK2] = "PCLK2",
623 	[_PCLK3] = "PCLK3",
624 	[_PCLK4] = "PCLK4",
625 	[_PCLK5] = "PCLK5",
626 	[_HCLK6] = "KCLK6",
627 	[_HCLK2] = "HCLK2",
628 	[_CK_PER] = "CK_PER",
629 	[_CK_MPU] = "CK_MPU",
630 	[_CK_MCU] = "CK_MCU",
631 	[_USB_PHY_48] = "USB_PHY_48",
632 };
633 
634 /* RCC clock device driver private */
635 static unsigned long stm32mp1_osc[NB_OSC];
636 static struct spinlock reg_lock;
637 static unsigned int gate_refcounts[NB_GATES];
638 static struct spinlock refcount_lock;
639 
640 static const struct stm32mp1_clk_gate *gate_ref(unsigned int idx)
641 {
642 	return &stm32mp1_clk_gate[idx];
643 }
644 
645 #if defined(IMAGE_BL32)
646 static bool gate_is_non_secure(const struct stm32mp1_clk_gate *gate)
647 {
648 	return gate->secure == N_S;
649 }
650 #endif
651 
652 static const struct stm32mp1_clk_sel *clk_sel_ref(unsigned int idx)
653 {
654 	return &stm32mp1_clk_sel[idx];
655 }
656 
657 static const struct stm32mp1_clk_pll *pll_ref(unsigned int idx)
658 {
659 	return &stm32mp1_clk_pll[idx];
660 }
661 
662 static void stm32mp1_clk_lock(struct spinlock *lock)
663 {
664 	if (stm32mp_lock_available()) {
665 		/* Assume interrupts are masked */
666 		spin_lock(lock);
667 	}
668 }
669 
670 static void stm32mp1_clk_unlock(struct spinlock *lock)
671 {
672 	if (stm32mp_lock_available()) {
673 		spin_unlock(lock);
674 	}
675 }
676 
677 bool stm32mp1_rcc_is_secure(void)
678 {
679 	uintptr_t rcc_base = stm32mp_rcc_base();
680 	uint32_t mask = RCC_TZCR_TZEN;
681 
682 	return (mmio_read_32(rcc_base + RCC_TZCR) & mask) == mask;
683 }
684 
685 bool stm32mp1_rcc_is_mckprot(void)
686 {
687 	uintptr_t rcc_base = stm32mp_rcc_base();
688 	uint32_t mask = RCC_TZCR_TZEN | RCC_TZCR_MCKPROT;
689 
690 	return (mmio_read_32(rcc_base + RCC_TZCR) & mask) == mask;
691 }
692 
693 void stm32mp1_clk_rcc_regs_lock(void)
694 {
695 	stm32mp1_clk_lock(&reg_lock);
696 }
697 
698 void stm32mp1_clk_rcc_regs_unlock(void)
699 {
700 	stm32mp1_clk_unlock(&reg_lock);
701 }
702 
703 static unsigned long stm32mp1_clk_get_fixed(enum stm32mp_osc_id idx)
704 {
705 	if (idx >= NB_OSC) {
706 		return 0;
707 	}
708 
709 	return stm32mp1_osc[idx];
710 }
711 
712 static int stm32mp1_clk_get_gated_id(unsigned long id)
713 {
714 	unsigned int i;
715 
716 	for (i = 0U; i < NB_GATES; i++) {
717 		if (gate_ref(i)->index == id) {
718 			return i;
719 		}
720 	}
721 
722 	ERROR("%s: clk id %lu not found\n", __func__, id);
723 
724 	return -EINVAL;
725 }
726 
727 static enum stm32mp1_parent_sel stm32mp1_clk_get_sel(int i)
728 {
729 	return (enum stm32mp1_parent_sel)(gate_ref(i)->sel);
730 }
731 
732 static enum stm32mp1_parent_id stm32mp1_clk_get_fixed_parent(int i)
733 {
734 	return (enum stm32mp1_parent_id)(gate_ref(i)->fixed);
735 }
736 
737 static int stm32mp1_clk_get_parent(unsigned long id)
738 {
739 	const struct stm32mp1_clk_sel *sel;
740 	uint32_t p_sel;
741 	int i;
742 	enum stm32mp1_parent_id p;
743 	enum stm32mp1_parent_sel s;
744 	uintptr_t rcc_base = stm32mp_rcc_base();
745 
746 	/* Few non gateable clock have a static parent ID, find them */
747 	i = (int)clock_id2parent_id(id);
748 	if (i != _UNKNOWN_ID) {
749 		return i;
750 	}
751 
752 	i = stm32mp1_clk_get_gated_id(id);
753 	if (i < 0) {
754 		panic();
755 	}
756 
757 	p = stm32mp1_clk_get_fixed_parent(i);
758 	if (p < _PARENT_NB) {
759 		return (int)p;
760 	}
761 
762 	s = stm32mp1_clk_get_sel(i);
763 	if (s == _UNKNOWN_SEL) {
764 		return -EINVAL;
765 	}
766 	if (s >= _PARENT_SEL_NB) {
767 		panic();
768 	}
769 
770 	sel = clk_sel_ref(s);
771 	p_sel = (mmio_read_32(rcc_base + sel->offset) &
772 		 (sel->msk << sel->src)) >> sel->src;
773 	if (p_sel < sel->nb_parent) {
774 		return (int)sel->parent[p_sel];
775 	}
776 
777 	return -EINVAL;
778 }
779 
780 static unsigned long stm32mp1_pll_get_fref(const struct stm32mp1_clk_pll *pll)
781 {
782 	uint32_t selr = mmio_read_32(stm32mp_rcc_base() + pll->rckxselr);
783 	uint32_t src = selr & RCC_SELR_REFCLK_SRC_MASK;
784 
785 	return stm32mp1_clk_get_fixed(pll->refclk[src]);
786 }
787 
788 /*
789  * pll_get_fvco() : return the VCO or (VCO / 2) frequency for the requested PLL
790  * - PLL1 & PLL2 => return VCO / 2 with Fpll_y_ck = FVCO / 2 * (DIVy + 1)
791  * - PLL3 & PLL4 => return VCO     with Fpll_y_ck = FVCO / (DIVy + 1)
792  * => in all cases Fpll_y_ck = pll_get_fvco() / (DIVy + 1)
793  */
794 static unsigned long stm32mp1_pll_get_fvco(const struct stm32mp1_clk_pll *pll)
795 {
796 	unsigned long refclk, fvco;
797 	uint32_t cfgr1, fracr, divm, divn;
798 	uintptr_t rcc_base = stm32mp_rcc_base();
799 
800 	cfgr1 = mmio_read_32(rcc_base + pll->pllxcfgr1);
801 	fracr = mmio_read_32(rcc_base + pll->pllxfracr);
802 
803 	divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
804 	divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
805 
806 	refclk = stm32mp1_pll_get_fref(pll);
807 
808 	/*
809 	 * With FRACV :
810 	 *   Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1)
811 	 * Without FRACV
812 	 *   Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1)
813 	 */
814 	if ((fracr & RCC_PLLNFRACR_FRACLE) != 0U) {
815 		uint32_t fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK) >>
816 				 RCC_PLLNFRACR_FRACV_SHIFT;
817 		unsigned long long numerator, denominator;
818 
819 		numerator = (((unsigned long long)divn + 1U) << 13) + fracv;
820 		numerator = refclk * numerator;
821 		denominator = ((unsigned long long)divm + 1U) << 13;
822 		fvco = (unsigned long)(numerator / denominator);
823 	} else {
824 		fvco = (unsigned long)(refclk * (divn + 1U) / (divm + 1U));
825 	}
826 
827 	return fvco;
828 }
829 
830 static unsigned long stm32mp1_read_pll_freq(enum stm32mp1_pll_id pll_id,
831 					    enum stm32mp1_div_id div_id)
832 {
833 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
834 	unsigned long dfout;
835 	uint32_t cfgr2, divy;
836 
837 	if (div_id >= _DIV_NB) {
838 		return 0;
839 	}
840 
841 	cfgr2 = mmio_read_32(stm32mp_rcc_base() + pll->pllxcfgr2);
842 	divy = (cfgr2 >> pllncfgr2[div_id]) & RCC_PLLNCFGR2_DIVX_MASK;
843 
844 	dfout = stm32mp1_pll_get_fvco(pll) / (divy + 1U);
845 
846 	return dfout;
847 }
848 
849 static unsigned long get_clock_rate(int p)
850 {
851 	uint32_t reg, clkdiv;
852 	unsigned long clock = 0;
853 	uintptr_t rcc_base = stm32mp_rcc_base();
854 
855 	switch (p) {
856 	case _CK_MPU:
857 	/* MPU sub system */
858 		reg = mmio_read_32(rcc_base + RCC_MPCKSELR);
859 		switch (reg & RCC_SELR_SRC_MASK) {
860 		case RCC_MPCKSELR_HSI:
861 			clock = stm32mp1_clk_get_fixed(_HSI);
862 			break;
863 		case RCC_MPCKSELR_HSE:
864 			clock = stm32mp1_clk_get_fixed(_HSE);
865 			break;
866 		case RCC_MPCKSELR_PLL:
867 			clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
868 			break;
869 		case RCC_MPCKSELR_PLL_MPUDIV:
870 			clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
871 
872 			reg = mmio_read_32(rcc_base + RCC_MPCKDIVR);
873 			clkdiv = reg & RCC_MPUDIV_MASK;
874 			clock >>= stm32mp1_mpu_div[clkdiv];
875 			break;
876 		default:
877 			break;
878 		}
879 		break;
880 	/* AXI sub system */
881 	case _ACLK:
882 	case _HCLK2:
883 	case _HCLK6:
884 	case _PCLK4:
885 	case _PCLK5:
886 		reg = mmio_read_32(rcc_base + RCC_ASSCKSELR);
887 		switch (reg & RCC_SELR_SRC_MASK) {
888 		case RCC_ASSCKSELR_HSI:
889 			clock = stm32mp1_clk_get_fixed(_HSI);
890 			break;
891 		case RCC_ASSCKSELR_HSE:
892 			clock = stm32mp1_clk_get_fixed(_HSE);
893 			break;
894 		case RCC_ASSCKSELR_PLL:
895 			clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
896 			break;
897 		default:
898 			break;
899 		}
900 
901 		/* System clock divider */
902 		reg = mmio_read_32(rcc_base + RCC_AXIDIVR);
903 		clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK];
904 
905 		switch (p) {
906 		case _PCLK4:
907 			reg = mmio_read_32(rcc_base + RCC_APB4DIVR);
908 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
909 			break;
910 		case _PCLK5:
911 			reg = mmio_read_32(rcc_base + RCC_APB5DIVR);
912 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
913 			break;
914 		default:
915 			break;
916 		}
917 		break;
918 	/* MCU sub system */
919 	case _CK_MCU:
920 	case _PCLK1:
921 	case _PCLK2:
922 	case _PCLK3:
923 		reg = mmio_read_32(rcc_base + RCC_MSSCKSELR);
924 		switch (reg & RCC_SELR_SRC_MASK) {
925 		case RCC_MSSCKSELR_HSI:
926 			clock = stm32mp1_clk_get_fixed(_HSI);
927 			break;
928 		case RCC_MSSCKSELR_HSE:
929 			clock = stm32mp1_clk_get_fixed(_HSE);
930 			break;
931 		case RCC_MSSCKSELR_CSI:
932 			clock = stm32mp1_clk_get_fixed(_CSI);
933 			break;
934 		case RCC_MSSCKSELR_PLL:
935 			clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
936 			break;
937 		default:
938 			break;
939 		}
940 
941 		/* MCU clock divider */
942 		reg = mmio_read_32(rcc_base + RCC_MCUDIVR);
943 		clock >>= stm32mp1_mcu_div[reg & RCC_MCUDIV_MASK];
944 
945 		switch (p) {
946 		case _PCLK1:
947 			reg = mmio_read_32(rcc_base + RCC_APB1DIVR);
948 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
949 			break;
950 		case _PCLK2:
951 			reg = mmio_read_32(rcc_base + RCC_APB2DIVR);
952 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
953 			break;
954 		case _PCLK3:
955 			reg = mmio_read_32(rcc_base + RCC_APB3DIVR);
956 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
957 			break;
958 		case _CK_MCU:
959 		default:
960 			break;
961 		}
962 		break;
963 	case _CK_PER:
964 		reg = mmio_read_32(rcc_base + RCC_CPERCKSELR);
965 		switch (reg & RCC_SELR_SRC_MASK) {
966 		case RCC_CPERCKSELR_HSI:
967 			clock = stm32mp1_clk_get_fixed(_HSI);
968 			break;
969 		case RCC_CPERCKSELR_HSE:
970 			clock = stm32mp1_clk_get_fixed(_HSE);
971 			break;
972 		case RCC_CPERCKSELR_CSI:
973 			clock = stm32mp1_clk_get_fixed(_CSI);
974 			break;
975 		default:
976 			break;
977 		}
978 		break;
979 	case _HSI:
980 	case _HSI_KER:
981 		clock = stm32mp1_clk_get_fixed(_HSI);
982 		break;
983 	case _CSI:
984 	case _CSI_KER:
985 		clock = stm32mp1_clk_get_fixed(_CSI);
986 		break;
987 	case _HSE:
988 	case _HSE_KER:
989 		clock = stm32mp1_clk_get_fixed(_HSE);
990 		break;
991 	case _HSE_KER_DIV2:
992 		clock = stm32mp1_clk_get_fixed(_HSE) >> 1;
993 		break;
994 	case _HSE_RTC:
995 		clock = stm32mp1_clk_get_fixed(_HSE);
996 		clock /= (mmio_read_32(rcc_base + RCC_RTCDIVR) & RCC_DIVR_DIV_MASK) + 1U;
997 		break;
998 	case _LSI:
999 		clock = stm32mp1_clk_get_fixed(_LSI);
1000 		break;
1001 	case _LSE:
1002 		clock = stm32mp1_clk_get_fixed(_LSE);
1003 		break;
1004 	/* PLL */
1005 	case _PLL1_P:
1006 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
1007 		break;
1008 	case _PLL1_Q:
1009 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_Q);
1010 		break;
1011 	case _PLL1_R:
1012 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_R);
1013 		break;
1014 	case _PLL2_P:
1015 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
1016 		break;
1017 	case _PLL2_Q:
1018 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_Q);
1019 		break;
1020 	case _PLL2_R:
1021 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_R);
1022 		break;
1023 	case _PLL3_P:
1024 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
1025 		break;
1026 	case _PLL3_Q:
1027 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_Q);
1028 		break;
1029 	case _PLL3_R:
1030 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_R);
1031 		break;
1032 	case _PLL4_P:
1033 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_P);
1034 		break;
1035 	case _PLL4_Q:
1036 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_Q);
1037 		break;
1038 	case _PLL4_R:
1039 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_R);
1040 		break;
1041 	/* Other */
1042 	case _USB_PHY_48:
1043 		clock = USB_PHY_48_MHZ;
1044 		break;
1045 	default:
1046 		break;
1047 	}
1048 
1049 	return clock;
1050 }
1051 
1052 static void __clk_enable(struct stm32mp1_clk_gate const *gate)
1053 {
1054 	uintptr_t rcc_base = stm32mp_rcc_base();
1055 
1056 	VERBOSE("Enable clock %u\n", gate->index);
1057 
1058 	if (gate->set_clr != 0U) {
1059 		mmio_write_32(rcc_base + gate->offset, BIT(gate->bit));
1060 	} else {
1061 		mmio_setbits_32(rcc_base + gate->offset, BIT(gate->bit));
1062 	}
1063 }
1064 
1065 static void __clk_disable(struct stm32mp1_clk_gate const *gate)
1066 {
1067 	uintptr_t rcc_base = stm32mp_rcc_base();
1068 
1069 	VERBOSE("Disable clock %u\n", gate->index);
1070 
1071 	if (gate->set_clr != 0U) {
1072 		mmio_write_32(rcc_base + gate->offset + RCC_MP_ENCLRR_OFFSET,
1073 			      BIT(gate->bit));
1074 	} else {
1075 		mmio_clrbits_32(rcc_base + gate->offset, BIT(gate->bit));
1076 	}
1077 }
1078 
1079 static bool __clk_is_enabled(struct stm32mp1_clk_gate const *gate)
1080 {
1081 	uintptr_t rcc_base = stm32mp_rcc_base();
1082 
1083 	return mmio_read_32(rcc_base + gate->offset) & BIT(gate->bit);
1084 }
1085 
1086 /* Oscillators and PLLs are not gated at runtime */
1087 static bool clock_is_always_on(unsigned long id)
1088 {
1089 	switch (id) {
1090 	case CK_HSE:
1091 	case CK_CSI:
1092 	case CK_LSI:
1093 	case CK_LSE:
1094 	case CK_HSI:
1095 	case CK_HSE_DIV2:
1096 	case PLL1_Q:
1097 	case PLL1_R:
1098 	case PLL2_P:
1099 	case PLL2_Q:
1100 	case PLL2_R:
1101 	case PLL3_P:
1102 	case PLL3_Q:
1103 	case PLL3_R:
1104 	case CK_AXI:
1105 	case CK_MPU:
1106 	case CK_MCU:
1107 	case RTC:
1108 		return true;
1109 	default:
1110 		return false;
1111 	}
1112 }
1113 
1114 static void __stm32mp1_clk_enable(unsigned long id, bool with_refcnt)
1115 {
1116 	const struct stm32mp1_clk_gate *gate;
1117 	int i;
1118 
1119 	if (clock_is_always_on(id)) {
1120 		return;
1121 	}
1122 
1123 	i = stm32mp1_clk_get_gated_id(id);
1124 	if (i < 0) {
1125 		ERROR("Clock %lu can't be enabled\n", id);
1126 		panic();
1127 	}
1128 
1129 	gate = gate_ref(i);
1130 
1131 	if (!with_refcnt) {
1132 		__clk_enable(gate);
1133 		return;
1134 	}
1135 
1136 #if defined(IMAGE_BL32)
1137 	if (gate_is_non_secure(gate)) {
1138 		/* Enable non-secure clock w/o any refcounting */
1139 		__clk_enable(gate);
1140 		return;
1141 	}
1142 #endif
1143 
1144 	stm32mp1_clk_lock(&refcount_lock);
1145 
1146 	if (gate_refcounts[i] == 0U) {
1147 		__clk_enable(gate);
1148 	}
1149 
1150 	gate_refcounts[i]++;
1151 	if (gate_refcounts[i] == UINT_MAX) {
1152 		ERROR("Clock %lu refcount reached max value\n", id);
1153 		panic();
1154 	}
1155 
1156 	stm32mp1_clk_unlock(&refcount_lock);
1157 }
1158 
1159 static void __stm32mp1_clk_disable(unsigned long id, bool with_refcnt)
1160 {
1161 	const struct stm32mp1_clk_gate *gate;
1162 	int i;
1163 
1164 	if (clock_is_always_on(id)) {
1165 		return;
1166 	}
1167 
1168 	i = stm32mp1_clk_get_gated_id(id);
1169 	if (i < 0) {
1170 		ERROR("Clock %lu can't be disabled\n", id);
1171 		panic();
1172 	}
1173 
1174 	gate = gate_ref(i);
1175 
1176 	if (!with_refcnt) {
1177 		__clk_disable(gate);
1178 		return;
1179 	}
1180 
1181 #if defined(IMAGE_BL32)
1182 	if (gate_is_non_secure(gate)) {
1183 		/* Don't disable non-secure clocks */
1184 		return;
1185 	}
1186 #endif
1187 
1188 	stm32mp1_clk_lock(&refcount_lock);
1189 
1190 	if (gate_refcounts[i] == 0U) {
1191 		ERROR("Clock %lu refcount reached 0\n", id);
1192 		panic();
1193 	}
1194 	gate_refcounts[i]--;
1195 
1196 	if (gate_refcounts[i] == 0U) {
1197 		__clk_disable(gate);
1198 	}
1199 
1200 	stm32mp1_clk_unlock(&refcount_lock);
1201 }
1202 
1203 static int stm32mp_clk_enable(unsigned long id)
1204 {
1205 	__stm32mp1_clk_enable(id, true);
1206 
1207 	return 0;
1208 }
1209 
1210 static void stm32mp_clk_disable(unsigned long id)
1211 {
1212 	__stm32mp1_clk_disable(id, true);
1213 }
1214 
1215 static bool stm32mp_clk_is_enabled(unsigned long id)
1216 {
1217 	int i;
1218 
1219 	if (clock_is_always_on(id)) {
1220 		return true;
1221 	}
1222 
1223 	i = stm32mp1_clk_get_gated_id(id);
1224 	if (i < 0) {
1225 		panic();
1226 	}
1227 
1228 	return __clk_is_enabled(gate_ref(i));
1229 }
1230 
1231 static unsigned long stm32mp_clk_get_rate(unsigned long id)
1232 {
1233 	uintptr_t rcc_base = stm32mp_rcc_base();
1234 	int p = stm32mp1_clk_get_parent(id);
1235 	uint32_t prescaler, timpre;
1236 	unsigned long parent_rate;
1237 
1238 	if (p < 0) {
1239 		return 0;
1240 	}
1241 
1242 	parent_rate = get_clock_rate(p);
1243 
1244 	switch (id) {
1245 	case TIM2_K:
1246 	case TIM3_K:
1247 	case TIM4_K:
1248 	case TIM5_K:
1249 	case TIM6_K:
1250 	case TIM7_K:
1251 	case TIM12_K:
1252 	case TIM13_K:
1253 	case TIM14_K:
1254 		prescaler = mmio_read_32(rcc_base + RCC_APB1DIVR) &
1255 			    RCC_APBXDIV_MASK;
1256 		timpre = mmio_read_32(rcc_base + RCC_TIMG1PRER) &
1257 			 RCC_TIMGXPRER_TIMGXPRE;
1258 		break;
1259 
1260 	case TIM1_K:
1261 	case TIM8_K:
1262 	case TIM15_K:
1263 	case TIM16_K:
1264 	case TIM17_K:
1265 		prescaler = mmio_read_32(rcc_base + RCC_APB2DIVR) &
1266 			    RCC_APBXDIV_MASK;
1267 		timpre = mmio_read_32(rcc_base + RCC_TIMG2PRER) &
1268 			 RCC_TIMGXPRER_TIMGXPRE;
1269 		break;
1270 
1271 	default:
1272 		return parent_rate;
1273 	}
1274 
1275 	if (prescaler == 0U) {
1276 		return parent_rate;
1277 	}
1278 
1279 	return parent_rate * (timpre + 1U) * 2U;
1280 }
1281 
1282 static void stm32mp1_ls_osc_set(bool enable, uint32_t offset, uint32_t mask_on)
1283 {
1284 	uintptr_t address = stm32mp_rcc_base() + offset;
1285 
1286 	if (enable) {
1287 		mmio_setbits_32(address, mask_on);
1288 	} else {
1289 		mmio_clrbits_32(address, mask_on);
1290 	}
1291 }
1292 
1293 static void stm32mp1_hs_ocs_set(bool enable, uint32_t mask_on)
1294 {
1295 	uint32_t offset = enable ? RCC_OCENSETR : RCC_OCENCLRR;
1296 	uintptr_t address = stm32mp_rcc_base() + offset;
1297 
1298 	mmio_write_32(address, mask_on);
1299 }
1300 
1301 static int stm32mp1_osc_wait(bool enable, uint32_t offset, uint32_t mask_rdy)
1302 {
1303 	uint64_t timeout;
1304 	uint32_t mask_test;
1305 	uintptr_t address = stm32mp_rcc_base() + offset;
1306 
1307 	if (enable) {
1308 		mask_test = mask_rdy;
1309 	} else {
1310 		mask_test = 0;
1311 	}
1312 
1313 	timeout = timeout_init_us(OSCRDY_TIMEOUT);
1314 	while ((mmio_read_32(address) & mask_rdy) != mask_test) {
1315 		if (timeout_elapsed(timeout)) {
1316 			ERROR("OSC %x @ %lx timeout for enable=%d : 0x%x\n",
1317 			      mask_rdy, address, enable, mmio_read_32(address));
1318 			return -ETIMEDOUT;
1319 		}
1320 	}
1321 
1322 	return 0;
1323 }
1324 
1325 static void stm32mp1_lse_enable(bool bypass, bool digbyp, uint32_t lsedrv)
1326 {
1327 	uint32_t value;
1328 	uintptr_t rcc_base = stm32mp_rcc_base();
1329 
1330 	/* Do not reconfigure LSE if it is already ON */
1331 	if ((mmio_read_32(rcc_base + RCC_BDCR) & RCC_BDCR_LSEON) == RCC_BDCR_LSEON) {
1332 		return;
1333 	}
1334 
1335 	if (digbyp) {
1336 		mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_DIGBYP);
1337 	}
1338 
1339 	if (bypass || digbyp) {
1340 		mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_LSEBYP);
1341 	}
1342 
1343 	/*
1344 	 * Warning: not recommended to switch directly from "high drive"
1345 	 * to "medium low drive", and vice-versa.
1346 	 */
1347 	value = (mmio_read_32(rcc_base + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK) >>
1348 		RCC_BDCR_LSEDRV_SHIFT;
1349 
1350 	while (value != lsedrv) {
1351 		if (value > lsedrv) {
1352 			value--;
1353 		} else {
1354 			value++;
1355 		}
1356 
1357 		mmio_clrsetbits_32(rcc_base + RCC_BDCR,
1358 				   RCC_BDCR_LSEDRV_MASK,
1359 				   value << RCC_BDCR_LSEDRV_SHIFT);
1360 	}
1361 
1362 	stm32mp1_ls_osc_set(true, RCC_BDCR, RCC_BDCR_LSEON);
1363 }
1364 
1365 static void stm32mp1_lse_wait(void)
1366 {
1367 	if (stm32mp1_osc_wait(true, RCC_BDCR, RCC_BDCR_LSERDY) != 0) {
1368 		VERBOSE("%s: failed\n", __func__);
1369 	}
1370 }
1371 
1372 static void stm32mp1_lsi_set(bool enable)
1373 {
1374 	stm32mp1_ls_osc_set(enable, RCC_RDLSICR, RCC_RDLSICR_LSION);
1375 
1376 	if (stm32mp1_osc_wait(enable, RCC_RDLSICR, RCC_RDLSICR_LSIRDY) != 0) {
1377 		VERBOSE("%s: failed\n", __func__);
1378 	}
1379 }
1380 
1381 static void stm32mp1_hse_enable(bool bypass, bool digbyp, bool css)
1382 {
1383 	uintptr_t rcc_base = stm32mp_rcc_base();
1384 
1385 	if (digbyp) {
1386 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_DIGBYP);
1387 	}
1388 
1389 	if (bypass || digbyp) {
1390 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSEBYP);
1391 	}
1392 
1393 	stm32mp1_hs_ocs_set(true, RCC_OCENR_HSEON);
1394 	if (stm32mp1_osc_wait(true, RCC_OCRDYR, RCC_OCRDYR_HSERDY) != 0) {
1395 		VERBOSE("%s: failed\n", __func__);
1396 	}
1397 
1398 	if (css) {
1399 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSECSSON);
1400 	}
1401 
1402 #if STM32MP_UART_PROGRAMMER || STM32MP_USB_PROGRAMMER
1403 	if ((mmio_read_32(rcc_base + RCC_OCENSETR) & RCC_OCENR_HSEBYP) &&
1404 	    (!(digbyp || bypass))) {
1405 		panic();
1406 	}
1407 #endif
1408 }
1409 
1410 static void stm32mp1_csi_set(bool enable)
1411 {
1412 	stm32mp1_hs_ocs_set(enable, RCC_OCENR_CSION);
1413 	if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_CSIRDY) != 0) {
1414 		VERBOSE("%s: failed\n", __func__);
1415 	}
1416 }
1417 
1418 static void stm32mp1_hsi_set(bool enable)
1419 {
1420 	stm32mp1_hs_ocs_set(enable, RCC_OCENR_HSION);
1421 	if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_HSIRDY) != 0) {
1422 		VERBOSE("%s: failed\n", __func__);
1423 	}
1424 }
1425 
1426 static int stm32mp1_set_hsidiv(uint8_t hsidiv)
1427 {
1428 	uint64_t timeout;
1429 	uintptr_t rcc_base = stm32mp_rcc_base();
1430 	uintptr_t address = rcc_base + RCC_OCRDYR;
1431 
1432 	mmio_clrsetbits_32(rcc_base + RCC_HSICFGR,
1433 			   RCC_HSICFGR_HSIDIV_MASK,
1434 			   RCC_HSICFGR_HSIDIV_MASK & (uint32_t)hsidiv);
1435 
1436 	timeout = timeout_init_us(HSIDIV_TIMEOUT);
1437 	while ((mmio_read_32(address) & RCC_OCRDYR_HSIDIVRDY) == 0U) {
1438 		if (timeout_elapsed(timeout)) {
1439 			ERROR("HSIDIV failed @ 0x%lx: 0x%x\n",
1440 			      address, mmio_read_32(address));
1441 			return -ETIMEDOUT;
1442 		}
1443 	}
1444 
1445 	return 0;
1446 }
1447 
1448 static int stm32mp1_hsidiv(unsigned long hsifreq)
1449 {
1450 	uint8_t hsidiv;
1451 	uint32_t hsidivfreq = MAX_HSI_HZ;
1452 
1453 	for (hsidiv = 0; hsidiv < 4U; hsidiv++) {
1454 		if (hsidivfreq == hsifreq) {
1455 			break;
1456 		}
1457 
1458 		hsidivfreq /= 2U;
1459 	}
1460 
1461 	if (hsidiv == 4U) {
1462 		ERROR("Invalid clk-hsi frequency\n");
1463 		return -1;
1464 	}
1465 
1466 	if (hsidiv != 0U) {
1467 		return stm32mp1_set_hsidiv(hsidiv);
1468 	}
1469 
1470 	return 0;
1471 }
1472 
1473 static bool stm32mp1_check_pll_conf(enum stm32mp1_pll_id pll_id,
1474 				    unsigned int clksrc,
1475 				    uint32_t *pllcfg, int plloff)
1476 {
1477 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1478 	uintptr_t rcc_base = stm32mp_rcc_base();
1479 	uintptr_t pllxcr = rcc_base + pll->pllxcr;
1480 	enum stm32mp1_plltype type = pll->plltype;
1481 	uintptr_t clksrc_address = rcc_base + (clksrc >> 4);
1482 	unsigned long refclk;
1483 	uint32_t ifrge = 0U;
1484 	uint32_t src, value, fracv = 0;
1485 	void *fdt;
1486 
1487 	/* Check PLL output */
1488 	if (mmio_read_32(pllxcr) != RCC_PLLNCR_PLLON) {
1489 		return false;
1490 	}
1491 
1492 	/* Check current clksrc */
1493 	src = mmio_read_32(clksrc_address) & RCC_SELR_SRC_MASK;
1494 	if (src != (clksrc & RCC_SELR_SRC_MASK)) {
1495 		return false;
1496 	}
1497 
1498 	/* Check Div */
1499 	src = mmio_read_32(rcc_base + pll->rckxselr) & RCC_SELR_REFCLK_SRC_MASK;
1500 
1501 	refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
1502 		 (pllcfg[PLLCFG_M] + 1U);
1503 
1504 	if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
1505 	    (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
1506 		return false;
1507 	}
1508 
1509 	if ((type == PLL_800) && (refclk >= 8000000U)) {
1510 		ifrge = 1U;
1511 	}
1512 
1513 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
1514 		RCC_PLLNCFGR1_DIVN_MASK;
1515 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
1516 		 RCC_PLLNCFGR1_DIVM_MASK;
1517 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
1518 		 RCC_PLLNCFGR1_IFRGE_MASK;
1519 	if (mmio_read_32(rcc_base + pll->pllxcfgr1) != value) {
1520 		return false;
1521 	}
1522 
1523 	/* Fractional configuration */
1524 	if (fdt_get_address(&fdt) == 1) {
1525 		fracv = fdt_read_uint32_default(fdt, plloff, "frac", 0);
1526 	}
1527 
1528 	value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
1529 	value |= RCC_PLLNFRACR_FRACLE;
1530 	if (mmio_read_32(rcc_base + pll->pllxfracr) != value) {
1531 		return false;
1532 	}
1533 
1534 	/* Output config */
1535 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
1536 		RCC_PLLNCFGR2_DIVP_MASK;
1537 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
1538 		 RCC_PLLNCFGR2_DIVQ_MASK;
1539 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
1540 		 RCC_PLLNCFGR2_DIVR_MASK;
1541 	if (mmio_read_32(rcc_base + pll->pllxcfgr2) != value) {
1542 		return false;
1543 	}
1544 
1545 	return true;
1546 }
1547 
1548 static void stm32mp1_pll_start(enum stm32mp1_pll_id pll_id)
1549 {
1550 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1551 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1552 
1553 	/* Preserve RCC_PLLNCR_SSCG_CTRL value */
1554 	mmio_clrsetbits_32(pllxcr,
1555 			   RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1556 			   RCC_PLLNCR_DIVREN,
1557 			   RCC_PLLNCR_PLLON);
1558 }
1559 
1560 static int stm32mp1_pll_output(enum stm32mp1_pll_id pll_id, uint32_t output)
1561 {
1562 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1563 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1564 	uint64_t timeout = timeout_init_us(PLLRDY_TIMEOUT);
1565 
1566 	/* Wait PLL lock */
1567 	while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) == 0U) {
1568 		if (timeout_elapsed(timeout)) {
1569 			ERROR("PLL%u start failed @ 0x%lx: 0x%x\n",
1570 			      pll_id, pllxcr, mmio_read_32(pllxcr));
1571 			return -ETIMEDOUT;
1572 		}
1573 	}
1574 
1575 	/* Start the requested output */
1576 	mmio_setbits_32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT);
1577 
1578 	return 0;
1579 }
1580 
1581 static int stm32mp1_pll_stop(enum stm32mp1_pll_id pll_id)
1582 {
1583 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1584 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1585 	uint64_t timeout;
1586 
1587 	/* Stop all output */
1588 	mmio_clrbits_32(pllxcr, RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1589 			RCC_PLLNCR_DIVREN);
1590 
1591 	/* Stop PLL */
1592 	mmio_clrbits_32(pllxcr, RCC_PLLNCR_PLLON);
1593 
1594 	timeout = timeout_init_us(PLLRDY_TIMEOUT);
1595 	/* Wait PLL stopped */
1596 	while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) != 0U) {
1597 		if (timeout_elapsed(timeout)) {
1598 			ERROR("PLL%u stop failed @ 0x%lx: 0x%x\n",
1599 			      pll_id, pllxcr, mmio_read_32(pllxcr));
1600 			return -ETIMEDOUT;
1601 		}
1602 	}
1603 
1604 	return 0;
1605 }
1606 
1607 static void stm32mp1_pll_config_output(enum stm32mp1_pll_id pll_id,
1608 				       uint32_t *pllcfg)
1609 {
1610 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1611 	uintptr_t rcc_base = stm32mp_rcc_base();
1612 	uint32_t value;
1613 
1614 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
1615 		RCC_PLLNCFGR2_DIVP_MASK;
1616 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
1617 		 RCC_PLLNCFGR2_DIVQ_MASK;
1618 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
1619 		 RCC_PLLNCFGR2_DIVR_MASK;
1620 	mmio_write_32(rcc_base + pll->pllxcfgr2, value);
1621 }
1622 
1623 static int stm32mp1_pll_config(enum stm32mp1_pll_id pll_id,
1624 			       uint32_t *pllcfg, uint32_t fracv)
1625 {
1626 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1627 	uintptr_t rcc_base = stm32mp_rcc_base();
1628 	enum stm32mp1_plltype type = pll->plltype;
1629 	unsigned long refclk;
1630 	uint32_t ifrge = 0;
1631 	uint32_t src, value;
1632 
1633 	src = mmio_read_32(rcc_base + pll->rckxselr) &
1634 		RCC_SELR_REFCLK_SRC_MASK;
1635 
1636 	refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
1637 		 (pllcfg[PLLCFG_M] + 1U);
1638 
1639 	if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
1640 	    (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
1641 		return -EINVAL;
1642 	}
1643 
1644 	if ((type == PLL_800) && (refclk >= 8000000U)) {
1645 		ifrge = 1U;
1646 	}
1647 
1648 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
1649 		RCC_PLLNCFGR1_DIVN_MASK;
1650 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
1651 		 RCC_PLLNCFGR1_DIVM_MASK;
1652 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
1653 		 RCC_PLLNCFGR1_IFRGE_MASK;
1654 	mmio_write_32(rcc_base + pll->pllxcfgr1, value);
1655 
1656 	/* Fractional configuration */
1657 	value = 0;
1658 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1659 
1660 	value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
1661 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1662 
1663 	value |= RCC_PLLNFRACR_FRACLE;
1664 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1665 
1666 	stm32mp1_pll_config_output(pll_id, pllcfg);
1667 
1668 	return 0;
1669 }
1670 
1671 static void stm32mp1_pll_csg(enum stm32mp1_pll_id pll_id, uint32_t *csg)
1672 {
1673 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1674 	uint32_t pllxcsg = 0;
1675 
1676 	pllxcsg |= (csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) &
1677 		    RCC_PLLNCSGR_MOD_PER_MASK;
1678 
1679 	pllxcsg |= (csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) &
1680 		    RCC_PLLNCSGR_INC_STEP_MASK;
1681 
1682 	pllxcsg |= (csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) &
1683 		    RCC_PLLNCSGR_SSCG_MODE_MASK;
1684 
1685 	mmio_write_32(stm32mp_rcc_base() + pll->pllxcsgr, pllxcsg);
1686 
1687 	mmio_setbits_32(stm32mp_rcc_base() + pll->pllxcr,
1688 			RCC_PLLNCR_SSCG_CTRL);
1689 }
1690 
1691 static int stm32mp1_set_clksrc(unsigned int clksrc)
1692 {
1693 	uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4);
1694 	uint64_t timeout;
1695 
1696 	mmio_clrsetbits_32(clksrc_address, RCC_SELR_SRC_MASK,
1697 			   clksrc & RCC_SELR_SRC_MASK);
1698 
1699 	timeout = timeout_init_us(CLKSRC_TIMEOUT);
1700 	while ((mmio_read_32(clksrc_address) & RCC_SELR_SRCRDY) == 0U) {
1701 		if (timeout_elapsed(timeout)) {
1702 			ERROR("CLKSRC %x start failed @ 0x%lx: 0x%x\n", clksrc,
1703 			      clksrc_address, mmio_read_32(clksrc_address));
1704 			return -ETIMEDOUT;
1705 		}
1706 	}
1707 
1708 	return 0;
1709 }
1710 
1711 static int stm32mp1_set_clkdiv(unsigned int clkdiv, uintptr_t address)
1712 {
1713 	uint64_t timeout;
1714 
1715 	mmio_clrsetbits_32(address, RCC_DIVR_DIV_MASK,
1716 			   clkdiv & RCC_DIVR_DIV_MASK);
1717 
1718 	timeout = timeout_init_us(CLKDIV_TIMEOUT);
1719 	while ((mmio_read_32(address) & RCC_DIVR_DIVRDY) == 0U) {
1720 		if (timeout_elapsed(timeout)) {
1721 			ERROR("CLKDIV %x start failed @ 0x%lx: 0x%x\n",
1722 			      clkdiv, address, mmio_read_32(address));
1723 			return -ETIMEDOUT;
1724 		}
1725 	}
1726 
1727 	return 0;
1728 }
1729 
1730 static void stm32mp1_mco_csg(uint32_t clksrc, uint32_t clkdiv)
1731 {
1732 	uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4);
1733 
1734 	/*
1735 	 * Binding clksrc :
1736 	 *      bit15-4 offset
1737 	 *      bit3:   disable
1738 	 *      bit2-0: MCOSEL[2:0]
1739 	 */
1740 	if ((clksrc & 0x8U) != 0U) {
1741 		mmio_clrbits_32(clksrc_address, RCC_MCOCFG_MCOON);
1742 	} else {
1743 		mmio_clrsetbits_32(clksrc_address,
1744 				   RCC_MCOCFG_MCOSRC_MASK,
1745 				   clksrc & RCC_MCOCFG_MCOSRC_MASK);
1746 		mmio_clrsetbits_32(clksrc_address,
1747 				   RCC_MCOCFG_MCODIV_MASK,
1748 				   clkdiv << RCC_MCOCFG_MCODIV_SHIFT);
1749 		mmio_setbits_32(clksrc_address, RCC_MCOCFG_MCOON);
1750 	}
1751 }
1752 
1753 static void stm32mp1_set_rtcsrc(unsigned int clksrc, bool lse_css)
1754 {
1755 	uintptr_t address = stm32mp_rcc_base() + RCC_BDCR;
1756 
1757 	if (((mmio_read_32(address) & RCC_BDCR_RTCCKEN) == 0U) ||
1758 	    (clksrc != (uint32_t)CLK_RTC_DISABLED)) {
1759 		mmio_clrsetbits_32(address,
1760 				   RCC_BDCR_RTCSRC_MASK,
1761 				   (clksrc & RCC_SELR_SRC_MASK) << RCC_BDCR_RTCSRC_SHIFT);
1762 
1763 		mmio_setbits_32(address, RCC_BDCR_RTCCKEN);
1764 	}
1765 
1766 	if (lse_css) {
1767 		mmio_setbits_32(address, RCC_BDCR_LSECSSON);
1768 	}
1769 }
1770 
1771 static void stm32mp1_pkcs_config(uint32_t pkcs)
1772 {
1773 	uintptr_t address = stm32mp_rcc_base() + ((pkcs >> 4) & 0xFFFU);
1774 	uint32_t value = pkcs & 0xFU;
1775 	uint32_t mask = 0xFU;
1776 
1777 	if ((pkcs & BIT(31)) != 0U) {
1778 		mask <<= 4;
1779 		value <<= 4;
1780 	}
1781 
1782 	mmio_clrsetbits_32(address, mask, value);
1783 }
1784 
1785 static int clk_get_pll_settings_from_dt(int plloff, unsigned int *pllcfg,
1786 					uint32_t *fracv, uint32_t *csg,
1787 					bool *csg_set)
1788 {
1789 	void *fdt;
1790 	int ret;
1791 
1792 	if (fdt_get_address(&fdt) == 0) {
1793 		return -FDT_ERR_NOTFOUND;
1794 	}
1795 
1796 	ret = fdt_read_uint32_array(fdt, plloff, "cfg", (uint32_t)PLLCFG_NB,
1797 				    pllcfg);
1798 	if (ret < 0) {
1799 		return -FDT_ERR_NOTFOUND;
1800 	}
1801 
1802 	*fracv = fdt_read_uint32_default(fdt, plloff, "frac", 0);
1803 
1804 	ret = fdt_read_uint32_array(fdt, plloff, "csg", (uint32_t)PLLCSG_NB,
1805 				    csg);
1806 
1807 	*csg_set = (ret == 0);
1808 
1809 	if (ret == -FDT_ERR_NOTFOUND) {
1810 		ret = 0;
1811 	}
1812 
1813 	return ret;
1814 }
1815 
1816 int stm32mp1_clk_init(void)
1817 {
1818 	uintptr_t rcc_base = stm32mp_rcc_base();
1819 	uint32_t pllfracv[_PLL_NB];
1820 	uint32_t pllcsg[_PLL_NB][PLLCSG_NB];
1821 	unsigned int clksrc[CLKSRC_NB];
1822 	unsigned int clkdiv[CLKDIV_NB];
1823 	unsigned int pllcfg[_PLL_NB][PLLCFG_NB];
1824 	int plloff[_PLL_NB];
1825 	int ret, len;
1826 	enum stm32mp1_pll_id i;
1827 	bool pllcsg_set[_PLL_NB];
1828 	bool pllcfg_valid[_PLL_NB];
1829 	bool lse_css = false;
1830 	bool pll3_preserve = false;
1831 	bool pll4_preserve = false;
1832 	bool pll4_bootrom = false;
1833 	const fdt32_t *pkcs_cell;
1834 	void *fdt;
1835 	int stgen_p = stm32mp1_clk_get_parent(STGEN_K);
1836 	int usbphy_p = stm32mp1_clk_get_parent(USBPHY_K);
1837 
1838 	if (fdt_get_address(&fdt) == 0) {
1839 		return -FDT_ERR_NOTFOUND;
1840 	}
1841 
1842 	ret = fdt_rcc_read_uint32_array("st,clksrc", (uint32_t)CLKSRC_NB,
1843 					clksrc);
1844 	if (ret < 0) {
1845 		return -FDT_ERR_NOTFOUND;
1846 	}
1847 
1848 	ret = fdt_rcc_read_uint32_array("st,clkdiv", (uint32_t)CLKDIV_NB,
1849 					clkdiv);
1850 	if (ret < 0) {
1851 		return -FDT_ERR_NOTFOUND;
1852 	}
1853 
1854 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1855 		char name[12];
1856 
1857 		snprintf(name, sizeof(name), "st,pll@%u", i);
1858 		plloff[i] = fdt_rcc_subnode_offset(name);
1859 
1860 		pllcfg_valid[i] = fdt_check_node(plloff[i]);
1861 		if (!pllcfg_valid[i]) {
1862 			continue;
1863 		}
1864 
1865 		ret = clk_get_pll_settings_from_dt(plloff[i], pllcfg[i],
1866 						   &pllfracv[i], pllcsg[i],
1867 						   &pllcsg_set[i]);
1868 		if (ret != 0) {
1869 			return ret;
1870 		}
1871 	}
1872 
1873 	stm32mp1_mco_csg(clksrc[CLKSRC_MCO1], clkdiv[CLKDIV_MCO1]);
1874 	stm32mp1_mco_csg(clksrc[CLKSRC_MCO2], clkdiv[CLKDIV_MCO2]);
1875 
1876 	/*
1877 	 * Switch ON oscillator found in device-tree.
1878 	 * Note: HSI already ON after BootROM stage.
1879 	 */
1880 	if (stm32mp1_osc[_LSI] != 0U) {
1881 		stm32mp1_lsi_set(true);
1882 	}
1883 	if (stm32mp1_osc[_LSE] != 0U) {
1884 		const char *name = stm32mp_osc_node_label[_LSE];
1885 		bool bypass, digbyp;
1886 		uint32_t lsedrv;
1887 
1888 		bypass = fdt_clk_read_bool(name, "st,bypass");
1889 		digbyp = fdt_clk_read_bool(name, "st,digbypass");
1890 		lse_css = fdt_clk_read_bool(name, "st,css");
1891 		lsedrv = fdt_clk_read_uint32_default(name, "st,drive",
1892 						     LSEDRV_MEDIUM_HIGH);
1893 		stm32mp1_lse_enable(bypass, digbyp, lsedrv);
1894 	}
1895 	if (stm32mp1_osc[_HSE] != 0U) {
1896 		const char *name = stm32mp_osc_node_label[_HSE];
1897 		bool bypass, digbyp, css;
1898 
1899 		bypass = fdt_clk_read_bool(name, "st,bypass");
1900 		digbyp = fdt_clk_read_bool(name, "st,digbypass");
1901 		css = fdt_clk_read_bool(name, "st,css");
1902 		stm32mp1_hse_enable(bypass, digbyp, css);
1903 	}
1904 	/*
1905 	 * CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR)
1906 	 * => switch on CSI even if node is not present in device tree
1907 	 */
1908 	stm32mp1_csi_set(true);
1909 
1910 	/* Come back to HSI */
1911 	ret = stm32mp1_set_clksrc(CLK_MPU_HSI);
1912 	if (ret != 0) {
1913 		return ret;
1914 	}
1915 	ret = stm32mp1_set_clksrc(CLK_AXI_HSI);
1916 	if (ret != 0) {
1917 		return ret;
1918 	}
1919 	ret = stm32mp1_set_clksrc(CLK_MCU_HSI);
1920 	if (ret != 0) {
1921 		return ret;
1922 	}
1923 
1924 	if ((mmio_read_32(rcc_base + RCC_MP_RSTSCLRR) &
1925 	     RCC_MP_RSTSCLRR_MPUP0RSTF) != 0) {
1926 		if (pllcfg_valid[_PLL3]) {
1927 			pll3_preserve =
1928 				stm32mp1_check_pll_conf(_PLL3,
1929 							clksrc[CLKSRC_PLL3],
1930 							pllcfg[_PLL3],
1931 							plloff[_PLL3]);
1932 		}
1933 
1934 		if (pllcfg_valid[_PLL4]) {
1935 			pll4_preserve =
1936 				stm32mp1_check_pll_conf(_PLL4,
1937 							clksrc[CLKSRC_PLL4],
1938 							pllcfg[_PLL4],
1939 							plloff[_PLL4]);
1940 		}
1941 	}
1942 	/* Don't initialize PLL4, when used by BOOTROM */
1943 	if ((stm32mp_get_boot_itf_selected() ==
1944 	     BOOT_API_CTX_BOOT_INTERFACE_SEL_SERIAL_USB) &&
1945 	    ((stgen_p == (int)_PLL4_R) || (usbphy_p == (int)_PLL4_R))) {
1946 		pll4_bootrom = true;
1947 		pll4_preserve = true;
1948 	}
1949 
1950 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1951 		if (((i == _PLL3) && pll3_preserve) ||
1952 		    ((i == _PLL4) && pll4_preserve)) {
1953 			continue;
1954 		}
1955 
1956 		ret = stm32mp1_pll_stop(i);
1957 		if (ret != 0) {
1958 			return ret;
1959 		}
1960 	}
1961 
1962 	/* Configure HSIDIV */
1963 	if (stm32mp1_osc[_HSI] != 0U) {
1964 		ret = stm32mp1_hsidiv(stm32mp1_osc[_HSI]);
1965 		if (ret != 0) {
1966 			return ret;
1967 		}
1968 
1969 		stm32mp_stgen_config(stm32mp_clk_get_rate(STGEN_K));
1970 	}
1971 
1972 	/* Select DIV */
1973 	/* No ready bit when MPUSRC != CLK_MPU_PLL1P_DIV, MPUDIV is disabled */
1974 	mmio_write_32(rcc_base + RCC_MPCKDIVR,
1975 		      clkdiv[CLKDIV_MPU] & RCC_DIVR_DIV_MASK);
1976 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_AXI], rcc_base + RCC_AXIDIVR);
1977 	if (ret != 0) {
1978 		return ret;
1979 	}
1980 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB4], rcc_base + RCC_APB4DIVR);
1981 	if (ret != 0) {
1982 		return ret;
1983 	}
1984 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB5], rcc_base + RCC_APB5DIVR);
1985 	if (ret != 0) {
1986 		return ret;
1987 	}
1988 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_MCU], rcc_base + RCC_MCUDIVR);
1989 	if (ret != 0) {
1990 		return ret;
1991 	}
1992 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB1], rcc_base + RCC_APB1DIVR);
1993 	if (ret != 0) {
1994 		return ret;
1995 	}
1996 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB2], rcc_base + RCC_APB2DIVR);
1997 	if (ret != 0) {
1998 		return ret;
1999 	}
2000 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB3], rcc_base + RCC_APB3DIVR);
2001 	if (ret != 0) {
2002 		return ret;
2003 	}
2004 
2005 	/* No ready bit for RTC */
2006 	mmio_write_32(rcc_base + RCC_RTCDIVR,
2007 		      clkdiv[CLKDIV_RTC] & RCC_DIVR_DIV_MASK);
2008 
2009 	/* Configure PLLs source */
2010 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL12]);
2011 	if (ret != 0) {
2012 		return ret;
2013 	}
2014 
2015 	if (!pll3_preserve) {
2016 		ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL3]);
2017 		if (ret != 0) {
2018 			return ret;
2019 		}
2020 	}
2021 
2022 	if (!pll4_preserve) {
2023 		ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL4]);
2024 		if (ret != 0) {
2025 			return ret;
2026 		}
2027 	}
2028 
2029 	/* Configure and start PLLs */
2030 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
2031 		if (((i == _PLL3) && pll3_preserve) ||
2032 		    ((i == _PLL4) && pll4_preserve && !pll4_bootrom)) {
2033 			continue;
2034 		}
2035 
2036 		if (!pllcfg_valid[i]) {
2037 			continue;
2038 		}
2039 
2040 		if ((i == _PLL4) && pll4_bootrom) {
2041 			/* Set output divider if not done by the Bootrom */
2042 			stm32mp1_pll_config_output(i, pllcfg[i]);
2043 			continue;
2044 		}
2045 
2046 		ret = stm32mp1_pll_config(i, pllcfg[i], pllfracv[i]);
2047 		if (ret != 0) {
2048 			return ret;
2049 		}
2050 
2051 		if (pllcsg_set[i]) {
2052 			stm32mp1_pll_csg(i, pllcsg[i]);
2053 		}
2054 
2055 		stm32mp1_pll_start(i);
2056 	}
2057 	/* Wait and start PLLs output when ready */
2058 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
2059 		if (!pllcfg_valid[i]) {
2060 			continue;
2061 		}
2062 
2063 		ret = stm32mp1_pll_output(i, pllcfg[i][PLLCFG_O]);
2064 		if (ret != 0) {
2065 			return ret;
2066 		}
2067 	}
2068 	/* Wait LSE ready before to use it */
2069 	if (stm32mp1_osc[_LSE] != 0U) {
2070 		stm32mp1_lse_wait();
2071 	}
2072 
2073 	/* Configure with expected clock source */
2074 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_MPU]);
2075 	if (ret != 0) {
2076 		return ret;
2077 	}
2078 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_AXI]);
2079 	if (ret != 0) {
2080 		return ret;
2081 	}
2082 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_MCU]);
2083 	if (ret != 0) {
2084 		return ret;
2085 	}
2086 	stm32mp1_set_rtcsrc(clksrc[CLKSRC_RTC], lse_css);
2087 
2088 	/* Configure PKCK */
2089 	pkcs_cell = fdt_rcc_read_prop("st,pkcs", &len);
2090 	if (pkcs_cell != NULL) {
2091 		bool ckper_disabled = false;
2092 		uint32_t j;
2093 		uint32_t usbreg_bootrom = 0U;
2094 
2095 		if (pll4_bootrom) {
2096 			usbreg_bootrom = mmio_read_32(rcc_base + RCC_USBCKSELR);
2097 		}
2098 
2099 		for (j = 0; j < ((uint32_t)len / sizeof(uint32_t)); j++) {
2100 			uint32_t pkcs = fdt32_to_cpu(pkcs_cell[j]);
2101 
2102 			if (pkcs == (uint32_t)CLK_CKPER_DISABLED) {
2103 				ckper_disabled = true;
2104 				continue;
2105 			}
2106 			stm32mp1_pkcs_config(pkcs);
2107 		}
2108 
2109 		/*
2110 		 * CKPER is source for some peripheral clocks
2111 		 * (FMC-NAND / QPSI-NOR) and switching source is allowed
2112 		 * only if previous clock is still ON
2113 		 * => deactivated CKPER only after switching clock
2114 		 */
2115 		if (ckper_disabled) {
2116 			stm32mp1_pkcs_config(CLK_CKPER_DISABLED);
2117 		}
2118 
2119 		if (pll4_bootrom) {
2120 			uint32_t usbreg_value, usbreg_mask;
2121 			const struct stm32mp1_clk_sel *sel;
2122 
2123 			sel = clk_sel_ref(_USBPHY_SEL);
2124 			usbreg_mask = (uint32_t)sel->msk << sel->src;
2125 			sel = clk_sel_ref(_USBO_SEL);
2126 			usbreg_mask |= (uint32_t)sel->msk << sel->src;
2127 
2128 			usbreg_value = mmio_read_32(rcc_base + RCC_USBCKSELR) &
2129 				       usbreg_mask;
2130 			usbreg_bootrom &= usbreg_mask;
2131 			if (usbreg_bootrom != usbreg_value) {
2132 				VERBOSE("forbidden new USB clk path\n");
2133 				VERBOSE("vs bootrom on USB boot\n");
2134 				return -FDT_ERR_BADVALUE;
2135 			}
2136 		}
2137 	}
2138 
2139 	/* Switch OFF HSI if not found in device-tree */
2140 	if (stm32mp1_osc[_HSI] == 0U) {
2141 		stm32mp1_hsi_set(false);
2142 	}
2143 
2144 	stm32mp_stgen_config(stm32mp_clk_get_rate(STGEN_K));
2145 
2146 	/* Software Self-Refresh mode (SSR) during DDR initilialization */
2147 	mmio_clrsetbits_32(rcc_base + RCC_DDRITFCR,
2148 			   RCC_DDRITFCR_DDRCKMOD_MASK,
2149 			   RCC_DDRITFCR_DDRCKMOD_SSR <<
2150 			   RCC_DDRITFCR_DDRCKMOD_SHIFT);
2151 
2152 	return 0;
2153 }
2154 
2155 static void stm32mp1_osc_clk_init(const char *name,
2156 				  enum stm32mp_osc_id index)
2157 {
2158 	uint32_t frequency;
2159 
2160 	if (fdt_osc_read_freq(name, &frequency) == 0) {
2161 		stm32mp1_osc[index] = frequency;
2162 	}
2163 }
2164 
2165 static void stm32mp1_osc_init(void)
2166 {
2167 	enum stm32mp_osc_id i;
2168 
2169 	for (i = (enum stm32mp_osc_id)0 ; i < NB_OSC; i++) {
2170 		stm32mp1_osc_clk_init(stm32mp_osc_node_label[i], i);
2171 	}
2172 }
2173 
2174 #ifdef STM32MP_SHARED_RESOURCES
2175 /*
2176  * Get the parent ID of the target parent clock, for tagging as secure
2177  * shared clock dependencies.
2178  */
2179 static int get_parent_id_parent(unsigned int parent_id)
2180 {
2181 	enum stm32mp1_parent_sel s = _UNKNOWN_SEL;
2182 	enum stm32mp1_pll_id pll_id;
2183 	uint32_t p_sel;
2184 	uintptr_t rcc_base = stm32mp_rcc_base();
2185 
2186 	switch (parent_id) {
2187 	case _ACLK:
2188 	case _PCLK4:
2189 	case _PCLK5:
2190 		s = _AXIS_SEL;
2191 		break;
2192 	case _PLL1_P:
2193 	case _PLL1_Q:
2194 	case _PLL1_R:
2195 		pll_id = _PLL1;
2196 		break;
2197 	case _PLL2_P:
2198 	case _PLL2_Q:
2199 	case _PLL2_R:
2200 		pll_id = _PLL2;
2201 		break;
2202 	case _PLL3_P:
2203 	case _PLL3_Q:
2204 	case _PLL3_R:
2205 		pll_id = _PLL3;
2206 		break;
2207 	case _PLL4_P:
2208 	case _PLL4_Q:
2209 	case _PLL4_R:
2210 		pll_id = _PLL4;
2211 		break;
2212 	case _PCLK1:
2213 	case _PCLK2:
2214 	case _HCLK2:
2215 	case _HCLK6:
2216 	case _CK_PER:
2217 	case _CK_MPU:
2218 	case _CK_MCU:
2219 	case _USB_PHY_48:
2220 		/* We do not expect to access these */
2221 		panic();
2222 		break;
2223 	default:
2224 		/* Other parents have no parent */
2225 		return -1;
2226 	}
2227 
2228 	if (s != _UNKNOWN_SEL) {
2229 		const struct stm32mp1_clk_sel *sel = clk_sel_ref(s);
2230 
2231 		p_sel = (mmio_read_32(rcc_base + sel->offset) >> sel->src) &
2232 			sel->msk;
2233 
2234 		if (p_sel < sel->nb_parent) {
2235 			return (int)sel->parent[p_sel];
2236 		}
2237 	} else {
2238 		const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
2239 
2240 		p_sel = mmio_read_32(rcc_base + pll->rckxselr) &
2241 			RCC_SELR_REFCLK_SRC_MASK;
2242 
2243 		if (pll->refclk[p_sel] != _UNKNOWN_OSC_ID) {
2244 			return (int)pll->refclk[p_sel];
2245 		}
2246 	}
2247 
2248 	VERBOSE("No parent selected for %s\n",
2249 		stm32mp1_clk_parent_name[parent_id]);
2250 
2251 	return -1;
2252 }
2253 
2254 static void secure_parent_clocks(unsigned long parent_id)
2255 {
2256 	int grandparent_id;
2257 
2258 	switch (parent_id) {
2259 	case _PLL3_P:
2260 	case _PLL3_Q:
2261 	case _PLL3_R:
2262 		stm32mp_register_secure_periph(STM32MP1_SHRES_PLL3);
2263 		break;
2264 
2265 	/* These clocks are always secure when RCC is secure */
2266 	case _ACLK:
2267 	case _HCLK2:
2268 	case _HCLK6:
2269 	case _PCLK4:
2270 	case _PCLK5:
2271 	case _PLL1_P:
2272 	case _PLL1_Q:
2273 	case _PLL1_R:
2274 	case _PLL2_P:
2275 	case _PLL2_Q:
2276 	case _PLL2_R:
2277 	case _HSI:
2278 	case _HSI_KER:
2279 	case _LSI:
2280 	case _CSI:
2281 	case _CSI_KER:
2282 	case _HSE:
2283 	case _HSE_KER:
2284 	case _HSE_KER_DIV2:
2285 	case _HSE_RTC:
2286 	case _LSE:
2287 		break;
2288 
2289 	default:
2290 		VERBOSE("Cannot secure parent clock %s\n",
2291 			stm32mp1_clk_parent_name[parent_id]);
2292 		panic();
2293 	}
2294 
2295 	grandparent_id = get_parent_id_parent(parent_id);
2296 	if (grandparent_id >= 0) {
2297 		secure_parent_clocks(grandparent_id);
2298 	}
2299 }
2300 
2301 void stm32mp1_register_clock_parents_secure(unsigned long clock_id)
2302 {
2303 	int parent_id;
2304 
2305 	if (!stm32mp1_rcc_is_secure()) {
2306 		return;
2307 	}
2308 
2309 	switch (clock_id) {
2310 	case PLL1:
2311 	case PLL2:
2312 		/* PLL1/PLL2 are always secure: nothing to do */
2313 		break;
2314 	case PLL3:
2315 		stm32mp_register_secure_periph(STM32MP1_SHRES_PLL3);
2316 		break;
2317 	case PLL4:
2318 		ERROR("PLL4 cannot be secured\n");
2319 		panic();
2320 		break;
2321 	default:
2322 		/* Others are expected gateable clock */
2323 		parent_id = stm32mp1_clk_get_parent(clock_id);
2324 		if (parent_id < 0) {
2325 			INFO("No parent found for clock %lu\n", clock_id);
2326 		} else {
2327 			secure_parent_clocks(parent_id);
2328 		}
2329 		break;
2330 	}
2331 }
2332 #endif /* STM32MP_SHARED_RESOURCES */
2333 
2334 void stm32mp1_clk_mcuss_protect(bool enable)
2335 {
2336 	uintptr_t rcc_base = stm32mp_rcc_base();
2337 
2338 	if (enable) {
2339 		mmio_setbits_32(rcc_base + RCC_TZCR, RCC_TZCR_MCKPROT);
2340 	} else {
2341 		mmio_clrbits_32(rcc_base + RCC_TZCR, RCC_TZCR_MCKPROT);
2342 	}
2343 }
2344 
2345 static void sync_earlyboot_clocks_state(void)
2346 {
2347 	unsigned int idx;
2348 	const unsigned long secure_enable[] = {
2349 		AXIDCG,
2350 		BSEC,
2351 		DDRC1, DDRC1LP,
2352 		DDRC2, DDRC2LP,
2353 		DDRCAPB, DDRPHYCAPB, DDRPHYCAPBLP,
2354 		DDRPHYC, DDRPHYCLP,
2355 		RTCAPB,
2356 		TZC1, TZC2,
2357 		TZPC,
2358 		STGEN_K,
2359 	};
2360 
2361 	for (idx = 0U; idx < ARRAY_SIZE(secure_enable); idx++) {
2362 		stm32mp_clk_enable(secure_enable[idx]);
2363 	}
2364 }
2365 
2366 static const struct clk_ops stm32mp_clk_ops = {
2367 	.enable		= stm32mp_clk_enable,
2368 	.disable	= stm32mp_clk_disable,
2369 	.is_enabled	= stm32mp_clk_is_enabled,
2370 	.get_rate	= stm32mp_clk_get_rate,
2371 	.get_parent	= stm32mp1_clk_get_parent,
2372 };
2373 
2374 int stm32mp1_clk_probe(void)
2375 {
2376 #if defined(IMAGE_BL32)
2377 	if (!fdt_get_rcc_secure_state()) {
2378 		mmio_write_32(stm32mp_rcc_base() + RCC_TZCR, 0U);
2379 	}
2380 #endif
2381 
2382 	stm32mp1_osc_init();
2383 
2384 	sync_earlyboot_clocks_state();
2385 
2386 	clk_register(&stm32mp_clk_ops);
2387 
2388 	return 0;
2389 }
2390