xref: /rk3399_ARM-atf/drivers/st/clk/stm32mp1_clk.c (revision ae1e503763c8bc52eba1a38e320539d61ebe2043)
1 /*
2  * Copyright (C) 2018-2024, STMicroelectronics - All Rights Reserved
3  *
4  * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdio.h>
11 
12 #include <arch.h>
13 #include <arch_helpers.h>
14 #include <common/debug.h>
15 #include <common/fdt_wrappers.h>
16 #include <drivers/clk.h>
17 #include <drivers/delay_timer.h>
18 #include <drivers/st/stm32mp_clkfunc.h>
19 #include <drivers/st/stm32mp1_clk.h>
20 #include <drivers/st/stm32mp1_rcc.h>
21 #include <dt-bindings/clock/stm32mp1-clksrc.h>
22 #include <lib/mmio.h>
23 #include <lib/spinlock.h>
24 #include <lib/utils_def.h>
25 #include <libfdt.h>
26 #include <plat/common/platform.h>
27 
28 #include <platform_def.h>
29 
30 enum stm32mp1_pllcfg {
31 	PLLCFG_M,
32 	PLLCFG_N,
33 	PLL_DIV_MN_NB,
34 	PLLCFG_P = PLL_DIV_MN_NB,
35 	PLLCFG_Q,
36 	PLLCFG_R,
37 	PLLCFG_O,
38 	PLLCFG_NB
39 };
40 
41 #define PLL_DIV_MN_NB	2
42 #define PLL_DIV_PQR_NB	3
43 
44 enum stm32mp1_pllcsg {
45 	PLLCSG_MOD_PER,
46 	PLLCSG_INC_STEP,
47 	PLLCSG_SSCG_MODE,
48 	PLLCSG_NB
49 };
50 
51 struct stm32_pll_dt_cfg {
52 	bool status;
53 	uint32_t src;
54 	uint32_t cfg[PLLCFG_NB];
55 	uint32_t frac;
56 	bool csg_enabled;
57 	uint32_t csg[PLLCSG_NB];
58 };
59 
60 struct stm32_clk_platdata {
61 	uint32_t npll;
62 	struct stm32_pll_dt_cfg *pll;
63 	uint32_t nclksrc;
64 	uint32_t *clksrc;
65 	uint32_t nclkdiv;
66 	uint32_t *clkdiv;
67 };
68 
69 struct stm32_clk_priv {
70 	uintptr_t base;
71 	const struct mux_cfg *parents;
72 	const uint32_t nb_parents;
73 	const struct div_cfg *div;
74 	const uint32_t nb_div;
75 	void *pdata;
76 };
77 
78 static struct stm32_clk_priv *stm32_clock_data;
79 
80 static struct stm32_clk_priv *clk_stm32_get_priv(void)
81 {
82 	return stm32_clock_data;
83 }
84 
85 static int clk_stm32_init(struct stm32_clk_priv *priv, uintptr_t base)
86 {
87 	stm32_clock_data = priv;
88 
89 	priv->base = base;
90 
91 	return 0;
92 }
93 
94 #define MAX_HSI_HZ		64000000
95 #define USB_PHY_48_MHZ		48000000
96 
97 #define TIMEOUT_US_200MS	U(200000)
98 #define TIMEOUT_US_1S		U(1000000)
99 
100 #define PLLRDY_TIMEOUT		TIMEOUT_US_200MS
101 #define CLKSRC_TIMEOUT		TIMEOUT_US_200MS
102 #define CLKDIV_TIMEOUT		TIMEOUT_US_200MS
103 #define HSIDIV_TIMEOUT		TIMEOUT_US_200MS
104 #define OSCRDY_TIMEOUT		TIMEOUT_US_1S
105 
106 struct mux_cfg {
107 	uint16_t offset;
108 	uint8_t shift;
109 	uint8_t width;
110 	uint8_t bitrdy;
111 };
112 
113 struct div_cfg {
114 	uint16_t offset;
115 	uint8_t shift;
116 	uint8_t width;
117 	uint8_t bitrdy;
118 };
119 
120 #define DIV_NO_BIT_RDY UINT8_MAX
121 
122 #define DIV_CFG(_id, _offset, _shift, _width,  _bitrdy)\
123 	[(_id)] = {\
124 		.offset	= (_offset),\
125 		.shift	= (_shift),\
126 		.width	= (_width),\
127 		.bitrdy	= (_bitrdy),\
128 	}
129 
130 static const struct div_cfg dividers_mp15[] = {
131 	DIV_CFG(DIV_MPU, RCC_MPCKDIVR, 0, 4, 31),
132 	DIV_CFG(DIV_AXI, RCC_AXIDIVR, 0, 3, 31),
133 	DIV_CFG(DIV_MCU, RCC_MCUDIVR, 0, 4, 31),
134 	DIV_CFG(DIV_APB1, RCC_APB1DIVR, 0, 3, 31),
135 	DIV_CFG(DIV_APB2, RCC_APB2DIVR, 0, 3, 31),
136 	DIV_CFG(DIV_APB3, RCC_APB3DIVR, 0, 3, 31),
137 	DIV_CFG(DIV_APB4, RCC_APB4DIVR, 0, 3, 31),
138 	DIV_CFG(DIV_APB5, RCC_APB5DIVR, 0, 3, 31),
139 	DIV_CFG(DIV_RTC, RCC_RTCDIVR, 0, 6, DIV_NO_BIT_RDY),
140 	DIV_CFG(DIV_MCO1, RCC_MCO1CFGR, 4, 4, DIV_NO_BIT_RDY),
141 	DIV_CFG(DIV_MCO2, RCC_MCO2CFGR, 4, 4, DIV_NO_BIT_RDY),
142 	DIV_CFG(DIV_TRACE, RCC_DBGCFGR, 0, 3, DIV_NO_BIT_RDY),
143 	DIV_CFG(DIV_ETHPTP, RCC_ETHCKSELR, 4, 4, DIV_NO_BIT_RDY),
144 };
145 
146 /*
147  * MUX CONFIG
148  */
149 
150 #define MUX_NO_BIT_RDY		UINT8_MAX
151 
152 #define MUXRDY_CFG(_id, _offset, _shift, _width,  _bitrdy)\
153 	[(_id)] = {\
154 		.offset	= (_offset),\
155 		.shift	= (_shift),\
156 		.width	= (_width),\
157 		.bitrdy = (_bitrdy),\
158 	}
159 
160 #define MUX_CFG(_id, _offset, _shift, _width)\
161 	MUXRDY_CFG(_id, _offset, _shift, _width,  MUX_NO_BIT_RDY)
162 
163 static const struct mux_cfg parent_mp15[MUX_NB] = {
164 	MUX_CFG(MUX_PLL12,	RCC_RCK12SELR, 0, 2),
165 	MUX_CFG(MUX_PLL3,	RCC_RCK3SELR, 0, 2),
166 	MUX_CFG(MUX_PLL4,	RCC_RCK4SELR, 0, 2),
167 	MUX_CFG(MUX_CKPER,	RCC_CPERCKSELR, 0, 2),
168 	MUXRDY_CFG(MUX_MPU,	RCC_MPCKSELR, 0, 2, 31),
169 	MUXRDY_CFG(MUX_AXI,	RCC_ASSCKSELR, 0, 3, 31),
170 	MUXRDY_CFG(MUX_MCU,	RCC_MSSCKSELR, 0, 2, 31),
171 	MUX_CFG(MUX_RTC,	RCC_BDCR, 16, 2),
172 	MUX_CFG(MUX_SDMMC12,	RCC_SDMMC12CKSELR, 0, 3),
173 	MUX_CFG(MUX_SPI2S23,	RCC_SPI2S23CKSELR, 0, 3),
174 	MUX_CFG(MUX_SPI45,	RCC_SPI45CKSELR, 0, 3),
175 	MUX_CFG(MUX_I2C12,	RCC_I2C12CKSELR, 0, 3),
176 	MUX_CFG(MUX_I2C35,	RCC_I2C35CKSELR, 0, 3),
177 	MUX_CFG(MUX_LPTIM23,	RCC_LPTIM23CKSELR, 0, 3),
178 	MUX_CFG(MUX_LPTIM45,	RCC_LPTIM45CKSELR, 0, 3),
179 	MUX_CFG(MUX_UART24,	RCC_UART24CKSELR, 0, 3),
180 	MUX_CFG(MUX_UART35,	RCC_UART35CKSELR, 0, 3),
181 	MUX_CFG(MUX_UART78,	RCC_UART78CKSELR, 0, 3),
182 	MUX_CFG(MUX_SAI1,	RCC_SAI1CKSELR, 0, 3),
183 	MUX_CFG(MUX_ETH,	RCC_ETHCKSELR, 0, 2),
184 	MUX_CFG(MUX_I2C46,	RCC_I2C46CKSELR, 0, 3),
185 	MUX_CFG(MUX_RNG2,	RCC_RNG2CKSELR, 0, 2),
186 	MUX_CFG(MUX_SDMMC3,	RCC_SDMMC3CKSELR, 0, 3),
187 	MUX_CFG(MUX_FMC,	RCC_FMCCKSELR, 0, 2),
188 	MUX_CFG(MUX_QSPI,	RCC_QSPICKSELR, 0, 2),
189 	MUX_CFG(MUX_USBPHY,	RCC_USBCKSELR, 0, 2),
190 	MUX_CFG(MUX_USBO,	RCC_USBCKSELR, 4, 1),
191 	MUX_CFG(MUX_SPDIF,	RCC_SPDIFCKSELR, 0, 2),
192 	MUX_CFG(MUX_SPI2S1,	RCC_SPI2S1CKSELR, 0, 3),
193 	MUX_CFG(MUX_CEC,	RCC_CECCKSELR, 0, 2),
194 	MUX_CFG(MUX_LPTIM1,	RCC_LPTIM1CKSELR, 0, 3),
195 	MUX_CFG(MUX_UART6,	RCC_UART6CKSELR, 0, 3),
196 	MUX_CFG(MUX_FDCAN,	RCC_FDCANCKSELR, 0, 2),
197 	MUX_CFG(MUX_SAI2,	RCC_SAI2CKSELR, 0, 3),
198 	MUX_CFG(MUX_SAI3,	RCC_SAI3CKSELR, 0, 3),
199 	MUX_CFG(MUX_SAI4,	RCC_SAI4CKSELR, 0, 3),
200 	MUX_CFG(MUX_ADC,	RCC_ADCCKSELR, 0, 2),
201 	MUX_CFG(MUX_DSI,	RCC_DSICKSELR, 0, 1),
202 	MUX_CFG(MUX_RNG1,	RCC_RNG1CKSELR, 0, 2),
203 	MUX_CFG(MUX_STGEN,	RCC_STGENCKSELR, 0, 2),
204 	MUX_CFG(MUX_UART1,	RCC_UART1CKSELR, 0, 3),
205 	MUX_CFG(MUX_SPI6,	RCC_SPI6CKSELR, 0, 3),
206 	MUX_CFG(MUX_MCO1,	RCC_MCO1CFGR, 0, 3),
207 	MUX_CFG(MUX_MCO2,	RCC_MCO2CFGR, 0, 3),
208 };
209 
210 #define MASK_WIDTH_SHIFT(_width, _shift) \
211 	GENMASK(((_width) + (_shift) - 1U), (_shift))
212 
213 int clk_mux_get_parent(struct stm32_clk_priv *priv, uint32_t mux_id)
214 {
215 	const struct mux_cfg *mux;
216 	uint32_t mask;
217 
218 	if (mux_id >= priv->nb_parents) {
219 		panic();
220 	}
221 
222 	mux = &priv->parents[mux_id];
223 
224 	mask = MASK_WIDTH_SHIFT(mux->width, mux->shift);
225 
226 	return (mmio_read_32(priv->base + mux->offset) & mask) >> mux->shift;
227 }
228 
229 static int clk_mux_set_parent(struct stm32_clk_priv *priv, uint16_t pid, uint8_t sel)
230 {
231 	const struct mux_cfg *mux = &priv->parents[pid];
232 	uintptr_t address = priv->base + mux->offset;
233 	uint32_t mask;
234 	uint64_t timeout;
235 
236 	mask = MASK_WIDTH_SHIFT(mux->width, mux->shift);
237 
238 	mmio_clrsetbits_32(address, mask, (sel << mux->shift) & mask);
239 
240 	if (mux->bitrdy == MUX_NO_BIT_RDY) {
241 		return 0;
242 	}
243 
244 	timeout = timeout_init_us(CLKSRC_TIMEOUT);
245 
246 	mask = BIT(mux->bitrdy);
247 
248 	while ((mmio_read_32(address) & mask) == 0U) {
249 		if (timeout_elapsed(timeout)) {
250 			return -ETIMEDOUT;
251 		}
252 	}
253 
254 	return 0;
255 }
256 
257 static int stm32_clk_configure_mux(struct stm32_clk_priv *priv, uint32_t val)
258 {
259 	uint32_t data = val & CMD_DATA_MASK;
260 	int mux = (data & MUX_ID_MASK) >> MUX_ID_SHIFT;
261 	int sel = (data & MUX_SEL_MASK) >> MUX_SEL_SHIFT;
262 
263 	return clk_mux_set_parent(priv, mux, sel);
264 }
265 
266 int clk_stm32_set_div(struct stm32_clk_priv *priv, uint32_t div_id, uint32_t value)
267 {
268 	const struct div_cfg *divider;
269 	uintptr_t address;
270 	uint64_t timeout;
271 	uint32_t mask;
272 
273 	if (div_id >= priv->nb_div) {
274 		panic();
275 	}
276 
277 	divider = &priv->div[div_id];
278 	address = priv->base + divider->offset;
279 
280 	mask = MASK_WIDTH_SHIFT(divider->width, divider->shift);
281 	mmio_clrsetbits_32(address, mask, (value << divider->shift) & mask);
282 
283 	if (divider->bitrdy == DIV_NO_BIT_RDY) {
284 		return 0;
285 	}
286 
287 	timeout = timeout_init_us(CLKSRC_TIMEOUT);
288 	mask = BIT(divider->bitrdy);
289 
290 	while ((mmio_read_32(address) & mask) == 0U) {
291 		if (timeout_elapsed(timeout)) {
292 			return -ETIMEDOUT;
293 		}
294 	}
295 
296 	return 0;
297 }
298 
299 const char *stm32mp_osc_node_label[NB_OSC] = {
300 	[_LSI] = "clk-lsi",
301 	[_LSE] = "clk-lse",
302 	[_HSI] = "clk-hsi",
303 	[_HSE] = "clk-hse",
304 	[_CSI] = "clk-csi",
305 	[_I2S_CKIN] = "i2s_ckin",
306 };
307 
308 enum stm32mp1_parent_id {
309 /* Oscillators are defined in enum stm32mp_osc_id */
310 
311 /* Other parent source */
312 	_HSI_KER = NB_OSC,
313 	_HSE_KER,
314 	_HSE_KER_DIV2,
315 	_HSE_RTC,
316 	_CSI_KER,
317 	_PLL1_P,
318 	_PLL1_Q,
319 	_PLL1_R,
320 	_PLL2_P,
321 	_PLL2_Q,
322 	_PLL2_R,
323 	_PLL3_P,
324 	_PLL3_Q,
325 	_PLL3_R,
326 	_PLL4_P,
327 	_PLL4_Q,
328 	_PLL4_R,
329 	_ACLK,
330 	_PCLK1,
331 	_PCLK2,
332 	_PCLK3,
333 	_PCLK4,
334 	_PCLK5,
335 	_HCLK6,
336 	_HCLK2,
337 	_CK_PER,
338 	_CK_MPU,
339 	_CK_MCU,
340 	_USB_PHY_48,
341 	_PARENT_NB,
342 	_UNKNOWN_ID = 0xff,
343 };
344 
345 /* Lists only the parent clock we are interested in */
346 enum stm32mp1_parent_sel {
347 	_I2C12_SEL,
348 	_I2C35_SEL,
349 	_STGEN_SEL,
350 	_I2C46_SEL,
351 	_SPI6_SEL,
352 	_UART1_SEL,
353 	_RNG1_SEL,
354 	_UART6_SEL,
355 	_UART24_SEL,
356 	_UART35_SEL,
357 	_UART78_SEL,
358 	_SDMMC12_SEL,
359 	_SDMMC3_SEL,
360 	_QSPI_SEL,
361 	_FMC_SEL,
362 	_AXIS_SEL,
363 	_MCUS_SEL,
364 	_USBPHY_SEL,
365 	_USBO_SEL,
366 	_MPU_SEL,
367 	_CKPER_SEL,
368 	_RTC_SEL,
369 	_PARENT_SEL_NB,
370 	_UNKNOWN_SEL = 0xff,
371 };
372 
373 /* State the parent clock ID straight related to a clock */
374 static const uint8_t parent_id_clock_id[_PARENT_NB] = {
375 	[_HSE] = CK_HSE,
376 	[_HSI] = CK_HSI,
377 	[_CSI] = CK_CSI,
378 	[_LSE] = CK_LSE,
379 	[_LSI] = CK_LSI,
380 	[_I2S_CKIN] = _UNKNOWN_ID,
381 	[_USB_PHY_48] = _UNKNOWN_ID,
382 	[_HSI_KER] = CK_HSI,
383 	[_HSE_KER] = CK_HSE,
384 	[_HSE_KER_DIV2] = CK_HSE_DIV2,
385 	[_HSE_RTC] = _UNKNOWN_ID,
386 	[_CSI_KER] = CK_CSI,
387 	[_PLL1_P] = PLL1_P,
388 	[_PLL1_Q] = PLL1_Q,
389 	[_PLL1_R] = PLL1_R,
390 	[_PLL2_P] = PLL2_P,
391 	[_PLL2_Q] = PLL2_Q,
392 	[_PLL2_R] = PLL2_R,
393 	[_PLL3_P] = PLL3_P,
394 	[_PLL3_Q] = PLL3_Q,
395 	[_PLL3_R] = PLL3_R,
396 	[_PLL4_P] = PLL4_P,
397 	[_PLL4_Q] = PLL4_Q,
398 	[_PLL4_R] = PLL4_R,
399 	[_ACLK] = CK_AXI,
400 	[_PCLK1] = CK_AXI,
401 	[_PCLK2] = CK_AXI,
402 	[_PCLK3] = CK_AXI,
403 	[_PCLK4] = CK_AXI,
404 	[_PCLK5] = CK_AXI,
405 	[_CK_PER] = CK_PER,
406 	[_CK_MPU] = CK_MPU,
407 	[_CK_MCU] = CK_MCU,
408 };
409 
410 static unsigned int clock_id2parent_id(unsigned long id)
411 {
412 	unsigned int n;
413 
414 	for (n = 0U; n < ARRAY_SIZE(parent_id_clock_id); n++) {
415 		if (parent_id_clock_id[n] == id) {
416 			return n;
417 		}
418 	}
419 
420 	return _UNKNOWN_ID;
421 }
422 
423 enum stm32mp1_pll_id {
424 	_PLL1,
425 	_PLL2,
426 	_PLL3,
427 	_PLL4,
428 	_PLL_NB
429 };
430 
431 enum stm32mp1_div_id {
432 	_DIV_P,
433 	_DIV_Q,
434 	_DIV_R,
435 	_DIV_NB,
436 };
437 
438 enum stm32mp1_clksrc_id {
439 	CLKSRC_MPU,
440 	CLKSRC_AXI,
441 	CLKSRC_MCU,
442 	CLKSRC_PLL12,
443 	CLKSRC_PLL3,
444 	CLKSRC_PLL4,
445 	CLKSRC_RTC,
446 	CLKSRC_MCO1,
447 	CLKSRC_MCO2,
448 	CLKSRC_NB
449 };
450 
451 enum stm32mp1_clkdiv_id {
452 	CLKDIV_MPU,
453 	CLKDIV_AXI,
454 	CLKDIV_MCU,
455 	CLKDIV_APB1,
456 	CLKDIV_APB2,
457 	CLKDIV_APB3,
458 	CLKDIV_APB4,
459 	CLKDIV_APB5,
460 	CLKDIV_RTC,
461 	CLKDIV_MCO1,
462 	CLKDIV_MCO2,
463 	CLKDIV_NB
464 };
465 
466 enum stm32mp1_plltype {
467 	PLL_800,
468 	PLL_1600,
469 	PLL_TYPE_NB
470 };
471 
472 struct stm32mp1_pll {
473 	uint8_t refclk_min;
474 	uint8_t refclk_max;
475 };
476 
477 struct stm32mp1_clk_gate {
478 	uint16_t offset;
479 	uint8_t bit;
480 	uint8_t index;
481 	uint8_t set_clr;
482 	uint8_t secure;
483 	uint8_t sel; /* Relates to enum stm32mp1_parent_sel */
484 	uint8_t fixed; /* Relates to enum stm32mp1_parent_id */
485 };
486 
487 struct stm32mp1_clk_sel {
488 	uint16_t offset;
489 	uint8_t src;
490 	uint8_t msk;
491 	uint8_t nb_parent;
492 	const uint8_t *parent;
493 };
494 
495 #define REFCLK_SIZE 4
496 struct stm32mp1_clk_pll {
497 	enum stm32mp1_plltype plltype;
498 	uint16_t rckxselr;
499 	uint16_t pllxcfgr1;
500 	uint16_t pllxcfgr2;
501 	uint16_t pllxfracr;
502 	uint16_t pllxcr;
503 	uint16_t pllxcsgr;
504 	enum stm32mp_osc_id refclk[REFCLK_SIZE];
505 };
506 
507 /* Clocks with selectable source and non set/clr register access */
508 #define _CLK_SELEC(sec, off, b, idx, s)			\
509 	{						\
510 		.offset = (off),			\
511 		.bit = (b),				\
512 		.index = (idx),				\
513 		.set_clr = 0,				\
514 		.secure = (sec),			\
515 		.sel = (s),				\
516 		.fixed = _UNKNOWN_ID,			\
517 	}
518 
519 /* Clocks with fixed source and non set/clr register access */
520 #define _CLK_FIXED(sec, off, b, idx, f)			\
521 	{						\
522 		.offset = (off),			\
523 		.bit = (b),				\
524 		.index = (idx),				\
525 		.set_clr = 0,				\
526 		.secure = (sec),			\
527 		.sel = _UNKNOWN_SEL,			\
528 		.fixed = (f),				\
529 	}
530 
531 /* Clocks with selectable source and set/clr register access */
532 #define _CLK_SC_SELEC(sec, off, b, idx, s)			\
533 	{						\
534 		.offset = (off),			\
535 		.bit = (b),				\
536 		.index = (idx),				\
537 		.set_clr = 1,				\
538 		.secure = (sec),			\
539 		.sel = (s),				\
540 		.fixed = _UNKNOWN_ID,			\
541 	}
542 
543 /* Clocks with fixed source and set/clr register access */
544 #define _CLK_SC_FIXED(sec, off, b, idx, f)			\
545 	{						\
546 		.offset = (off),			\
547 		.bit = (b),				\
548 		.index = (idx),				\
549 		.set_clr = 1,				\
550 		.secure = (sec),			\
551 		.sel = _UNKNOWN_SEL,			\
552 		.fixed = (f),				\
553 	}
554 
555 #define _CLK_PARENT_SEL(_label, _rcc_selr, _parents)		\
556 	[_ ## _label ## _SEL] = {				\
557 		.offset = _rcc_selr,				\
558 		.src = _rcc_selr ## _ ## _label ## SRC_SHIFT,	\
559 		.msk = (_rcc_selr ## _ ## _label ## SRC_MASK) >> \
560 		       (_rcc_selr ## _ ## _label ## SRC_SHIFT), \
561 		.parent = (_parents),				\
562 		.nb_parent = ARRAY_SIZE(_parents)		\
563 	}
564 
565 #define _CLK_PLL(idx, type, off1, off2, off3,		\
566 		 off4, off5, off6,			\
567 		 p1, p2, p3, p4)			\
568 	[(idx)] = {					\
569 		.plltype = (type),			\
570 		.rckxselr = (off1),			\
571 		.pllxcfgr1 = (off2),			\
572 		.pllxcfgr2 = (off3),			\
573 		.pllxfracr = (off4),			\
574 		.pllxcr = (off5),			\
575 		.pllxcsgr = (off6),			\
576 		.refclk[0] = (p1),			\
577 		.refclk[1] = (p2),			\
578 		.refclk[2] = (p3),			\
579 		.refclk[3] = (p4),			\
580 	}
581 
582 #define NB_GATES	ARRAY_SIZE(stm32mp1_clk_gate)
583 
584 #define SEC		1
585 #define N_S		0
586 
587 static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
588 	_CLK_FIXED(SEC, RCC_DDRITFCR, 0, DDRC1, _ACLK),
589 	_CLK_FIXED(SEC, RCC_DDRITFCR, 1, DDRC1LP, _ACLK),
590 	_CLK_FIXED(SEC, RCC_DDRITFCR, 2, DDRC2, _ACLK),
591 	_CLK_FIXED(SEC, RCC_DDRITFCR, 3, DDRC2LP, _ACLK),
592 	_CLK_FIXED(SEC, RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
593 	_CLK_FIXED(SEC, RCC_DDRITFCR, 5, DDRPHYCLP, _PLL2_R),
594 	_CLK_FIXED(SEC, RCC_DDRITFCR, 6, DDRCAPB, _PCLK4),
595 	_CLK_FIXED(SEC, RCC_DDRITFCR, 7, DDRCAPBLP, _PCLK4),
596 	_CLK_FIXED(SEC, RCC_DDRITFCR, 8, AXIDCG, _ACLK),
597 	_CLK_FIXED(SEC, RCC_DDRITFCR, 9, DDRPHYCAPB, _PCLK4),
598 	_CLK_FIXED(SEC, RCC_DDRITFCR, 10, DDRPHYCAPBLP, _PCLK4),
599 
600 #if defined(IMAGE_BL32)
601 	_CLK_SC_FIXED(N_S, RCC_MP_APB1ENSETR, 6, TIM12_K, _PCLK1),
602 #endif
603 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
604 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
605 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
606 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
607 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
608 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
609 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 21, I2C1_K, _I2C12_SEL),
610 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 22, I2C2_K, _I2C12_SEL),
611 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 23, I2C3_K, _I2C35_SEL),
612 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 24, I2C5_K, _I2C35_SEL),
613 
614 #if defined(IMAGE_BL32)
615 	_CLK_SC_FIXED(N_S, RCC_MP_APB2ENSETR, 2, TIM15_K, _PCLK2),
616 #endif
617 	_CLK_SC_SELEC(N_S, RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
618 
619 	_CLK_SC_FIXED(N_S, RCC_MP_APB3ENSETR, 11, SYSCFG, _UNKNOWN_ID),
620 
621 	_CLK_SC_SELEC(N_S, RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
622 	_CLK_SC_SELEC(N_S, RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
623 	_CLK_SC_SELEC(N_S, RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
624 
625 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 0, SPI6_K, _SPI6_SEL),
626 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
627 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 3, I2C6_K, _I2C46_SEL),
628 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 4, USART1_K, _UART1_SEL),
629 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 8, RTCAPB, _PCLK5),
630 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 11, TZC1, _PCLK5),
631 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 12, TZC2, _PCLK5),
632 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 13, TZPC, _PCLK5),
633 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 15, IWDG1, _PCLK5),
634 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 16, BSEC, _PCLK5),
635 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
636 
637 #if defined(IMAGE_BL32)
638 	_CLK_SC_SELEC(N_S, RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
639 	_CLK_SC_SELEC(N_S, RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
640 #endif
641 
642 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
643 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
644 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
645 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
646 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
647 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
648 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
649 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
650 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
651 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
652 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
653 
654 	_CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 0, GPIOZ, _PCLK5),
655 	_CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 4, CRYP1, _PCLK5),
656 	_CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 5, HASH1, _PCLK5),
657 	_CLK_SC_SELEC(SEC, RCC_MP_AHB5ENSETR, 6, RNG1_K, _RNG1_SEL),
658 	_CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 8, BKPSRAM, _PCLK5),
659 
660 #if defined(IMAGE_BL2)
661 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
662 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
663 #endif
664 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
665 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
666 #if defined(IMAGE_BL32)
667 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
668 #endif
669 
670 	_CLK_SELEC(SEC, RCC_BDCR, 20, RTC, _RTC_SEL),
671 	_CLK_SELEC(N_S, RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
672 };
673 
674 static const uint8_t i2c12_parents[] = {
675 	_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
676 };
677 
678 static const uint8_t i2c35_parents[] = {
679 	_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
680 };
681 
682 static const uint8_t stgen_parents[] = {
683 	_HSI_KER, _HSE_KER
684 };
685 
686 static const uint8_t i2c46_parents[] = {
687 	_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER
688 };
689 
690 static const uint8_t spi6_parents[] = {
691 	_PCLK5, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER, _PLL3_Q
692 };
693 
694 static const uint8_t usart1_parents[] = {
695 	_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER, _PLL4_Q, _HSE_KER
696 };
697 
698 static const uint8_t rng1_parents[] = {
699 	_CSI, _PLL4_R, _LSE, _LSI
700 };
701 
702 static const uint8_t uart6_parents[] = {
703 	_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
704 };
705 
706 static const uint8_t uart234578_parents[] = {
707 	_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
708 };
709 
710 static const uint8_t sdmmc12_parents[] = {
711 	_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER
712 };
713 
714 static const uint8_t sdmmc3_parents[] = {
715 	_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER
716 };
717 
718 static const uint8_t qspi_parents[] = {
719 	_ACLK, _PLL3_R, _PLL4_P, _CK_PER
720 };
721 
722 static const uint8_t fmc_parents[] = {
723 	_ACLK, _PLL3_R, _PLL4_P, _CK_PER
724 };
725 
726 static const uint8_t axiss_parents[] = {
727 	_HSI, _HSE, _PLL2_P
728 };
729 
730 static const uint8_t mcuss_parents[] = {
731 	_HSI, _HSE, _CSI, _PLL3_P
732 };
733 
734 static const uint8_t usbphy_parents[] = {
735 	_HSE_KER, _PLL4_R, _HSE_KER_DIV2
736 };
737 
738 static const uint8_t usbo_parents[] = {
739 	_PLL4_R, _USB_PHY_48
740 };
741 
742 static const uint8_t mpu_parents[] = {
743 	_HSI, _HSE, _PLL1_P, _PLL1_P /* specific div */
744 };
745 
746 static const uint8_t per_parents[] = {
747 	_HSI, _HSE, _CSI,
748 };
749 
750 static const uint8_t rtc_parents[] = {
751 	_UNKNOWN_ID, _LSE, _LSI, _HSE_RTC
752 };
753 
754 static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
755 	_CLK_PARENT_SEL(I2C12, RCC_I2C12CKSELR, i2c12_parents),
756 	_CLK_PARENT_SEL(I2C35, RCC_I2C35CKSELR, i2c35_parents),
757 	_CLK_PARENT_SEL(STGEN, RCC_STGENCKSELR, stgen_parents),
758 	_CLK_PARENT_SEL(I2C46, RCC_I2C46CKSELR, i2c46_parents),
759 	_CLK_PARENT_SEL(SPI6, RCC_SPI6CKSELR, spi6_parents),
760 	_CLK_PARENT_SEL(UART1, RCC_UART1CKSELR, usart1_parents),
761 	_CLK_PARENT_SEL(RNG1, RCC_RNG1CKSELR, rng1_parents),
762 	_CLK_PARENT_SEL(MPU, RCC_MPCKSELR, mpu_parents),
763 	_CLK_PARENT_SEL(CKPER, RCC_CPERCKSELR, per_parents),
764 	_CLK_PARENT_SEL(RTC, RCC_BDCR, rtc_parents),
765 	_CLK_PARENT_SEL(UART6, RCC_UART6CKSELR, uart6_parents),
766 	_CLK_PARENT_SEL(UART24, RCC_UART24CKSELR, uart234578_parents),
767 	_CLK_PARENT_SEL(UART35, RCC_UART35CKSELR, uart234578_parents),
768 	_CLK_PARENT_SEL(UART78, RCC_UART78CKSELR, uart234578_parents),
769 	_CLK_PARENT_SEL(SDMMC12, RCC_SDMMC12CKSELR, sdmmc12_parents),
770 	_CLK_PARENT_SEL(SDMMC3, RCC_SDMMC3CKSELR, sdmmc3_parents),
771 	_CLK_PARENT_SEL(QSPI, RCC_QSPICKSELR, qspi_parents),
772 	_CLK_PARENT_SEL(FMC, RCC_FMCCKSELR, fmc_parents),
773 	_CLK_PARENT_SEL(AXIS, RCC_ASSCKSELR, axiss_parents),
774 	_CLK_PARENT_SEL(MCUS, RCC_MSSCKSELR, mcuss_parents),
775 	_CLK_PARENT_SEL(USBPHY, RCC_USBCKSELR, usbphy_parents),
776 	_CLK_PARENT_SEL(USBO, RCC_USBCKSELR, usbo_parents),
777 };
778 
779 /* Define characteristic of PLL according type */
780 #define POST_DIVM_MIN	8000000U
781 #define POST_DIVM_MAX	16000000U
782 #define DIVM_MIN	0U
783 #define DIVM_MAX	63U
784 #define DIVN_MIN	24U
785 #define DIVN_MAX	99U
786 #define DIVP_MIN	0U
787 #define DIVP_MAX	127U
788 #define FRAC_MAX	8192U
789 #define VCO_MIN		800000000U
790 #define VCO_MAX		1600000000U
791 
792 static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
793 	[PLL_800] = {
794 		.refclk_min = 4,
795 		.refclk_max = 16,
796 	},
797 	[PLL_1600] = {
798 		.refclk_min = 8,
799 		.refclk_max = 16,
800 	},
801 };
802 
803 /* PLLNCFGR2 register divider by output */
804 static const uint8_t pllncfgr2[_DIV_NB] = {
805 	[_DIV_P] = RCC_PLLNCFGR2_DIVP_SHIFT,
806 	[_DIV_Q] = RCC_PLLNCFGR2_DIVQ_SHIFT,
807 	[_DIV_R] = RCC_PLLNCFGR2_DIVR_SHIFT,
808 };
809 
810 static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = {
811 	_CLK_PLL(_PLL1, PLL_1600,
812 		 RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
813 		 RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
814 		 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
815 	_CLK_PLL(_PLL2, PLL_1600,
816 		 RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
817 		 RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
818 		 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
819 	_CLK_PLL(_PLL3, PLL_800,
820 		 RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
821 		 RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
822 		 _HSI, _HSE, _CSI, _UNKNOWN_OSC_ID),
823 	_CLK_PLL(_PLL4, PLL_800,
824 		 RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
825 		 RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
826 		 _HSI, _HSE, _CSI, _I2S_CKIN),
827 };
828 
829 /* Prescaler table lookups for clock computation */
830 /* div = /1 /2 /4 /8 / 16 /64 /128 /512 */
831 static const uint8_t stm32mp1_mcu_div[16] = {
832 	0, 1, 2, 3, 4, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9
833 };
834 
835 /* div = /1 /2 /4 /8 /16 : same divider for PMU and APBX */
836 #define stm32mp1_mpu_div stm32mp1_mpu_apbx_div
837 #define stm32mp1_apbx_div stm32mp1_mpu_apbx_div
838 static const uint8_t stm32mp1_mpu_apbx_div[8] = {
839 	0, 1, 2, 3, 4, 4, 4, 4
840 };
841 
842 /* div = /1 /2 /3 /4 */
843 static const uint8_t stm32mp1_axi_div[8] = {
844 	1, 2, 3, 4, 4, 4, 4, 4
845 };
846 
847 static const char * const stm32mp1_clk_parent_name[_PARENT_NB] __unused = {
848 	[_HSI] = "HSI",
849 	[_HSE] = "HSE",
850 	[_CSI] = "CSI",
851 	[_LSI] = "LSI",
852 	[_LSE] = "LSE",
853 	[_I2S_CKIN] = "I2S_CKIN",
854 	[_HSI_KER] = "HSI_KER",
855 	[_HSE_KER] = "HSE_KER",
856 	[_HSE_KER_DIV2] = "HSE_KER_DIV2",
857 	[_HSE_RTC] = "HSE_RTC",
858 	[_CSI_KER] = "CSI_KER",
859 	[_PLL1_P] = "PLL1_P",
860 	[_PLL1_Q] = "PLL1_Q",
861 	[_PLL1_R] = "PLL1_R",
862 	[_PLL2_P] = "PLL2_P",
863 	[_PLL2_Q] = "PLL2_Q",
864 	[_PLL2_R] = "PLL2_R",
865 	[_PLL3_P] = "PLL3_P",
866 	[_PLL3_Q] = "PLL3_Q",
867 	[_PLL3_R] = "PLL3_R",
868 	[_PLL4_P] = "PLL4_P",
869 	[_PLL4_Q] = "PLL4_Q",
870 	[_PLL4_R] = "PLL4_R",
871 	[_ACLK] = "ACLK",
872 	[_PCLK1] = "PCLK1",
873 	[_PCLK2] = "PCLK2",
874 	[_PCLK3] = "PCLK3",
875 	[_PCLK4] = "PCLK4",
876 	[_PCLK5] = "PCLK5",
877 	[_HCLK6] = "KCLK6",
878 	[_HCLK2] = "HCLK2",
879 	[_CK_PER] = "CK_PER",
880 	[_CK_MPU] = "CK_MPU",
881 	[_CK_MCU] = "CK_MCU",
882 	[_USB_PHY_48] = "USB_PHY_48",
883 };
884 
885 /* RCC clock device driver private */
886 static unsigned long stm32mp1_osc[NB_OSC];
887 static struct spinlock reg_lock;
888 static unsigned int gate_refcounts[NB_GATES];
889 static struct spinlock refcount_lock;
890 
891 static const struct stm32mp1_clk_gate *gate_ref(unsigned int idx)
892 {
893 	return &stm32mp1_clk_gate[idx];
894 }
895 
896 #if defined(IMAGE_BL32)
897 static bool gate_is_non_secure(const struct stm32mp1_clk_gate *gate)
898 {
899 	return gate->secure == N_S;
900 }
901 #endif
902 
903 static const struct stm32mp1_clk_sel *clk_sel_ref(unsigned int idx)
904 {
905 	return &stm32mp1_clk_sel[idx];
906 }
907 
908 static const struct stm32mp1_clk_pll *pll_ref(unsigned int idx)
909 {
910 	return &stm32mp1_clk_pll[idx];
911 }
912 
913 static void stm32mp1_clk_lock(struct spinlock *lock)
914 {
915 	if (stm32mp_lock_available()) {
916 		/* Assume interrupts are masked */
917 		spin_lock(lock);
918 	}
919 }
920 
921 static void stm32mp1_clk_unlock(struct spinlock *lock)
922 {
923 	if (stm32mp_lock_available()) {
924 		spin_unlock(lock);
925 	}
926 }
927 
928 bool stm32mp1_rcc_is_secure(void)
929 {
930 	uintptr_t rcc_base = stm32mp_rcc_base();
931 	uint32_t mask = RCC_TZCR_TZEN;
932 
933 	return (mmio_read_32(rcc_base + RCC_TZCR) & mask) == mask;
934 }
935 
936 bool stm32mp1_rcc_is_mckprot(void)
937 {
938 	uintptr_t rcc_base = stm32mp_rcc_base();
939 	uint32_t mask = RCC_TZCR_TZEN | RCC_TZCR_MCKPROT;
940 
941 	return (mmio_read_32(rcc_base + RCC_TZCR) & mask) == mask;
942 }
943 
944 void stm32mp1_clk_rcc_regs_lock(void)
945 {
946 	stm32mp1_clk_lock(&reg_lock);
947 }
948 
949 void stm32mp1_clk_rcc_regs_unlock(void)
950 {
951 	stm32mp1_clk_unlock(&reg_lock);
952 }
953 
954 static unsigned long stm32mp1_clk_get_fixed(enum stm32mp_osc_id idx)
955 {
956 	if (idx >= NB_OSC) {
957 		return 0;
958 	}
959 
960 	return stm32mp1_osc[idx];
961 }
962 
963 static int stm32mp1_clk_get_gated_id(unsigned long id)
964 {
965 	unsigned int i;
966 
967 	for (i = 0U; i < NB_GATES; i++) {
968 		if (gate_ref(i)->index == id) {
969 			return i;
970 		}
971 	}
972 
973 	ERROR("%s: clk id %lu not found\n", __func__, id);
974 
975 	return -EINVAL;
976 }
977 
978 static enum stm32mp1_parent_sel stm32mp1_clk_get_sel(int i)
979 {
980 	return (enum stm32mp1_parent_sel)(gate_ref(i)->sel);
981 }
982 
983 static enum stm32mp1_parent_id stm32mp1_clk_get_fixed_parent(int i)
984 {
985 	return (enum stm32mp1_parent_id)(gate_ref(i)->fixed);
986 }
987 
988 static int stm32mp1_clk_get_parent(unsigned long id)
989 {
990 	const struct stm32mp1_clk_sel *sel;
991 	uint32_t p_sel;
992 	int i;
993 	enum stm32mp1_parent_id p;
994 	enum stm32mp1_parent_sel s;
995 	uintptr_t rcc_base = stm32mp_rcc_base();
996 
997 	/* Few non gateable clock have a static parent ID, find them */
998 	i = (int)clock_id2parent_id(id);
999 	if (i != _UNKNOWN_ID) {
1000 		return i;
1001 	}
1002 
1003 	i = stm32mp1_clk_get_gated_id(id);
1004 	if (i < 0) {
1005 		panic();
1006 	}
1007 
1008 	p = stm32mp1_clk_get_fixed_parent(i);
1009 	if (p < _PARENT_NB) {
1010 		return (int)p;
1011 	}
1012 
1013 	s = stm32mp1_clk_get_sel(i);
1014 	if (s == _UNKNOWN_SEL) {
1015 		return -EINVAL;
1016 	}
1017 	if (s >= _PARENT_SEL_NB) {
1018 		panic();
1019 	}
1020 
1021 	sel = clk_sel_ref(s);
1022 	p_sel = (mmio_read_32(rcc_base + sel->offset) &
1023 		 (sel->msk << sel->src)) >> sel->src;
1024 	if (p_sel < sel->nb_parent) {
1025 		return (int)sel->parent[p_sel];
1026 	}
1027 
1028 	return -EINVAL;
1029 }
1030 
1031 static unsigned long stm32mp1_pll_get_fref(const struct stm32mp1_clk_pll *pll)
1032 {
1033 	uint32_t selr = mmio_read_32(stm32mp_rcc_base() + pll->rckxselr);
1034 	uint32_t src = selr & RCC_SELR_REFCLK_SRC_MASK;
1035 
1036 	return stm32mp1_clk_get_fixed(pll->refclk[src]);
1037 }
1038 
1039 /*
1040  * pll_get_fvco() : return the VCO or (VCO / 2) frequency for the requested PLL
1041  * - PLL1 & PLL2 => return VCO / 2 with Fpll_y_ck = FVCO / 2 * (DIVy + 1)
1042  * - PLL3 & PLL4 => return VCO     with Fpll_y_ck = FVCO / (DIVy + 1)
1043  * => in all cases Fpll_y_ck = pll_get_fvco() / (DIVy + 1)
1044  */
1045 static unsigned long stm32mp1_pll_get_fvco(const struct stm32mp1_clk_pll *pll)
1046 {
1047 	unsigned long refclk, fvco;
1048 	uint32_t cfgr1, fracr, divm, divn;
1049 	uintptr_t rcc_base = stm32mp_rcc_base();
1050 
1051 	cfgr1 = mmio_read_32(rcc_base + pll->pllxcfgr1);
1052 	fracr = mmio_read_32(rcc_base + pll->pllxfracr);
1053 
1054 	divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
1055 	divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
1056 
1057 	refclk = stm32mp1_pll_get_fref(pll);
1058 
1059 	/*
1060 	 * With FRACV :
1061 	 *   Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1)
1062 	 * Without FRACV
1063 	 *   Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1)
1064 	 */
1065 	if ((fracr & RCC_PLLNFRACR_FRACLE) != 0U) {
1066 		uint32_t fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK) >>
1067 				 RCC_PLLNFRACR_FRACV_SHIFT;
1068 		unsigned long long numerator, denominator;
1069 
1070 		numerator = (((unsigned long long)divn + 1U) << 13) + fracv;
1071 		numerator = refclk * numerator;
1072 		denominator = ((unsigned long long)divm + 1U) << 13;
1073 		fvco = (unsigned long)(numerator / denominator);
1074 	} else {
1075 		fvco = (unsigned long)(refclk * (divn + 1U) / (divm + 1U));
1076 	}
1077 
1078 	return fvco;
1079 }
1080 
1081 static unsigned long stm32mp1_read_pll_freq(enum stm32mp1_pll_id pll_id,
1082 					    enum stm32mp1_div_id div_id)
1083 {
1084 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1085 	unsigned long dfout;
1086 	uint32_t cfgr2, divy;
1087 
1088 	if (div_id >= _DIV_NB) {
1089 		return 0;
1090 	}
1091 
1092 	cfgr2 = mmio_read_32(stm32mp_rcc_base() + pll->pllxcfgr2);
1093 	divy = (cfgr2 >> pllncfgr2[div_id]) & RCC_PLLNCFGR2_DIVX_MASK;
1094 
1095 	dfout = stm32mp1_pll_get_fvco(pll) / (divy + 1U);
1096 
1097 	return dfout;
1098 }
1099 
1100 static unsigned long get_clock_rate(int p)
1101 {
1102 	uint32_t reg, clkdiv;
1103 	unsigned long clock = 0;
1104 	uintptr_t rcc_base = stm32mp_rcc_base();
1105 
1106 	switch (p) {
1107 	case _CK_MPU:
1108 	/* MPU sub system */
1109 		reg = mmio_read_32(rcc_base + RCC_MPCKSELR);
1110 		switch (reg & RCC_SELR_SRC_MASK) {
1111 		case RCC_MPCKSELR_HSI:
1112 			clock = stm32mp1_clk_get_fixed(_HSI);
1113 			break;
1114 		case RCC_MPCKSELR_HSE:
1115 			clock = stm32mp1_clk_get_fixed(_HSE);
1116 			break;
1117 		case RCC_MPCKSELR_PLL:
1118 			clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
1119 			break;
1120 		case RCC_MPCKSELR_PLL_MPUDIV:
1121 			clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
1122 
1123 			reg = mmio_read_32(rcc_base + RCC_MPCKDIVR);
1124 			clkdiv = reg & RCC_MPUDIV_MASK;
1125 			clock >>= stm32mp1_mpu_div[clkdiv];
1126 			break;
1127 		default:
1128 			break;
1129 		}
1130 		break;
1131 	/* AXI sub system */
1132 	case _ACLK:
1133 	case _HCLK2:
1134 	case _HCLK6:
1135 	case _PCLK4:
1136 	case _PCLK5:
1137 		reg = mmio_read_32(rcc_base + RCC_ASSCKSELR);
1138 		switch (reg & RCC_SELR_SRC_MASK) {
1139 		case RCC_ASSCKSELR_HSI:
1140 			clock = stm32mp1_clk_get_fixed(_HSI);
1141 			break;
1142 		case RCC_ASSCKSELR_HSE:
1143 			clock = stm32mp1_clk_get_fixed(_HSE);
1144 			break;
1145 		case RCC_ASSCKSELR_PLL:
1146 			clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
1147 			break;
1148 		default:
1149 			break;
1150 		}
1151 
1152 		/* System clock divider */
1153 		reg = mmio_read_32(rcc_base + RCC_AXIDIVR);
1154 		clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK];
1155 
1156 		switch (p) {
1157 		case _PCLK4:
1158 			reg = mmio_read_32(rcc_base + RCC_APB4DIVR);
1159 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1160 			break;
1161 		case _PCLK5:
1162 			reg = mmio_read_32(rcc_base + RCC_APB5DIVR);
1163 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1164 			break;
1165 		default:
1166 			break;
1167 		}
1168 		break;
1169 	/* MCU sub system */
1170 	case _CK_MCU:
1171 	case _PCLK1:
1172 	case _PCLK2:
1173 	case _PCLK3:
1174 		reg = mmio_read_32(rcc_base + RCC_MSSCKSELR);
1175 		switch (reg & RCC_SELR_SRC_MASK) {
1176 		case RCC_MSSCKSELR_HSI:
1177 			clock = stm32mp1_clk_get_fixed(_HSI);
1178 			break;
1179 		case RCC_MSSCKSELR_HSE:
1180 			clock = stm32mp1_clk_get_fixed(_HSE);
1181 			break;
1182 		case RCC_MSSCKSELR_CSI:
1183 			clock = stm32mp1_clk_get_fixed(_CSI);
1184 			break;
1185 		case RCC_MSSCKSELR_PLL:
1186 			clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
1187 			break;
1188 		default:
1189 			break;
1190 		}
1191 
1192 		/* MCU clock divider */
1193 		reg = mmio_read_32(rcc_base + RCC_MCUDIVR);
1194 		clock >>= stm32mp1_mcu_div[reg & RCC_MCUDIV_MASK];
1195 
1196 		switch (p) {
1197 		case _PCLK1:
1198 			reg = mmio_read_32(rcc_base + RCC_APB1DIVR);
1199 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1200 			break;
1201 		case _PCLK2:
1202 			reg = mmio_read_32(rcc_base + RCC_APB2DIVR);
1203 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1204 			break;
1205 		case _PCLK3:
1206 			reg = mmio_read_32(rcc_base + RCC_APB3DIVR);
1207 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1208 			break;
1209 		case _CK_MCU:
1210 		default:
1211 			break;
1212 		}
1213 		break;
1214 	case _CK_PER:
1215 		reg = mmio_read_32(rcc_base + RCC_CPERCKSELR);
1216 		switch (reg & RCC_SELR_SRC_MASK) {
1217 		case RCC_CPERCKSELR_HSI:
1218 			clock = stm32mp1_clk_get_fixed(_HSI);
1219 			break;
1220 		case RCC_CPERCKSELR_HSE:
1221 			clock = stm32mp1_clk_get_fixed(_HSE);
1222 			break;
1223 		case RCC_CPERCKSELR_CSI:
1224 			clock = stm32mp1_clk_get_fixed(_CSI);
1225 			break;
1226 		default:
1227 			break;
1228 		}
1229 		break;
1230 	case _HSI:
1231 	case _HSI_KER:
1232 		clock = stm32mp1_clk_get_fixed(_HSI);
1233 		break;
1234 	case _CSI:
1235 	case _CSI_KER:
1236 		clock = stm32mp1_clk_get_fixed(_CSI);
1237 		break;
1238 	case _HSE:
1239 	case _HSE_KER:
1240 		clock = stm32mp1_clk_get_fixed(_HSE);
1241 		break;
1242 	case _HSE_KER_DIV2:
1243 		clock = stm32mp1_clk_get_fixed(_HSE) >> 1;
1244 		break;
1245 	case _HSE_RTC:
1246 		clock = stm32mp1_clk_get_fixed(_HSE);
1247 		clock /= (mmio_read_32(rcc_base + RCC_RTCDIVR) & RCC_DIVR_DIV_MASK) + 1U;
1248 		break;
1249 	case _LSI:
1250 		clock = stm32mp1_clk_get_fixed(_LSI);
1251 		break;
1252 	case _LSE:
1253 		clock = stm32mp1_clk_get_fixed(_LSE);
1254 		break;
1255 	/* PLL */
1256 	case _PLL1_P:
1257 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
1258 		break;
1259 	case _PLL1_Q:
1260 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_Q);
1261 		break;
1262 	case _PLL1_R:
1263 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_R);
1264 		break;
1265 	case _PLL2_P:
1266 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
1267 		break;
1268 	case _PLL2_Q:
1269 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_Q);
1270 		break;
1271 	case _PLL2_R:
1272 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_R);
1273 		break;
1274 	case _PLL3_P:
1275 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
1276 		break;
1277 	case _PLL3_Q:
1278 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_Q);
1279 		break;
1280 	case _PLL3_R:
1281 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_R);
1282 		break;
1283 	case _PLL4_P:
1284 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_P);
1285 		break;
1286 	case _PLL4_Q:
1287 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_Q);
1288 		break;
1289 	case _PLL4_R:
1290 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_R);
1291 		break;
1292 	/* Other */
1293 	case _USB_PHY_48:
1294 		clock = USB_PHY_48_MHZ;
1295 		break;
1296 	default:
1297 		break;
1298 	}
1299 
1300 	return clock;
1301 }
1302 
1303 static void __clk_enable(struct stm32mp1_clk_gate const *gate)
1304 {
1305 	uintptr_t rcc_base = stm32mp_rcc_base();
1306 
1307 	VERBOSE("Enable clock %u\n", gate->index);
1308 
1309 	if (gate->set_clr != 0U) {
1310 		mmio_write_32(rcc_base + gate->offset, BIT(gate->bit));
1311 	} else {
1312 		mmio_setbits_32(rcc_base + gate->offset, BIT(gate->bit));
1313 	}
1314 }
1315 
1316 static void __clk_disable(struct stm32mp1_clk_gate const *gate)
1317 {
1318 	uintptr_t rcc_base = stm32mp_rcc_base();
1319 
1320 	VERBOSE("Disable clock %u\n", gate->index);
1321 
1322 	if (gate->set_clr != 0U) {
1323 		mmio_write_32(rcc_base + gate->offset + RCC_MP_ENCLRR_OFFSET,
1324 			      BIT(gate->bit));
1325 	} else {
1326 		mmio_clrbits_32(rcc_base + gate->offset, BIT(gate->bit));
1327 	}
1328 }
1329 
1330 static bool __clk_is_enabled(struct stm32mp1_clk_gate const *gate)
1331 {
1332 	uintptr_t rcc_base = stm32mp_rcc_base();
1333 
1334 	return mmio_read_32(rcc_base + gate->offset) & BIT(gate->bit);
1335 }
1336 
1337 /* Oscillators and PLLs are not gated at runtime */
1338 static bool clock_is_always_on(unsigned long id)
1339 {
1340 	switch (id) {
1341 	case CK_HSE:
1342 	case CK_CSI:
1343 	case CK_LSI:
1344 	case CK_LSE:
1345 	case CK_HSI:
1346 	case CK_HSE_DIV2:
1347 	case PLL1_Q:
1348 	case PLL1_R:
1349 	case PLL2_P:
1350 	case PLL2_Q:
1351 	case PLL2_R:
1352 	case PLL3_P:
1353 	case PLL3_Q:
1354 	case PLL3_R:
1355 	case CK_AXI:
1356 	case CK_MPU:
1357 	case CK_MCU:
1358 	case RTC:
1359 		return true;
1360 	default:
1361 		return false;
1362 	}
1363 }
1364 
1365 static void __stm32mp1_clk_enable(unsigned long id, bool with_refcnt)
1366 {
1367 	const struct stm32mp1_clk_gate *gate;
1368 	int i;
1369 
1370 	if (clock_is_always_on(id)) {
1371 		return;
1372 	}
1373 
1374 	i = stm32mp1_clk_get_gated_id(id);
1375 	if (i < 0) {
1376 		ERROR("Clock %lu can't be enabled\n", id);
1377 		panic();
1378 	}
1379 
1380 	gate = gate_ref(i);
1381 
1382 	if (!with_refcnt) {
1383 		__clk_enable(gate);
1384 		return;
1385 	}
1386 
1387 #if defined(IMAGE_BL32)
1388 	if (gate_is_non_secure(gate)) {
1389 		/* Enable non-secure clock w/o any refcounting */
1390 		__clk_enable(gate);
1391 		return;
1392 	}
1393 #endif
1394 
1395 	stm32mp1_clk_lock(&refcount_lock);
1396 
1397 	if (gate_refcounts[i] == 0U) {
1398 		__clk_enable(gate);
1399 	}
1400 
1401 	gate_refcounts[i]++;
1402 	if (gate_refcounts[i] == UINT_MAX) {
1403 		ERROR("Clock %lu refcount reached max value\n", id);
1404 		panic();
1405 	}
1406 
1407 	stm32mp1_clk_unlock(&refcount_lock);
1408 }
1409 
1410 static void __stm32mp1_clk_disable(unsigned long id, bool with_refcnt)
1411 {
1412 	const struct stm32mp1_clk_gate *gate;
1413 	int i;
1414 
1415 	if (clock_is_always_on(id)) {
1416 		return;
1417 	}
1418 
1419 	i = stm32mp1_clk_get_gated_id(id);
1420 	if (i < 0) {
1421 		ERROR("Clock %lu can't be disabled\n", id);
1422 		panic();
1423 	}
1424 
1425 	gate = gate_ref(i);
1426 
1427 	if (!with_refcnt) {
1428 		__clk_disable(gate);
1429 		return;
1430 	}
1431 
1432 #if defined(IMAGE_BL32)
1433 	if (gate_is_non_secure(gate)) {
1434 		/* Don't disable non-secure clocks */
1435 		return;
1436 	}
1437 #endif
1438 
1439 	stm32mp1_clk_lock(&refcount_lock);
1440 
1441 	if (gate_refcounts[i] == 0U) {
1442 		ERROR("Clock %lu refcount reached 0\n", id);
1443 		panic();
1444 	}
1445 	gate_refcounts[i]--;
1446 
1447 	if (gate_refcounts[i] == 0U) {
1448 		__clk_disable(gate);
1449 	}
1450 
1451 	stm32mp1_clk_unlock(&refcount_lock);
1452 }
1453 
1454 static int stm32mp_clk_enable(unsigned long id)
1455 {
1456 	__stm32mp1_clk_enable(id, true);
1457 
1458 	return 0;
1459 }
1460 
1461 static void stm32mp_clk_disable(unsigned long id)
1462 {
1463 	__stm32mp1_clk_disable(id, true);
1464 }
1465 
1466 static bool stm32mp_clk_is_enabled(unsigned long id)
1467 {
1468 	int i;
1469 
1470 	if (clock_is_always_on(id)) {
1471 		return true;
1472 	}
1473 
1474 	i = stm32mp1_clk_get_gated_id(id);
1475 	if (i < 0) {
1476 		panic();
1477 	}
1478 
1479 	return __clk_is_enabled(gate_ref(i));
1480 }
1481 
1482 static unsigned long stm32mp_clk_get_rate(unsigned long id)
1483 {
1484 	uintptr_t rcc_base = stm32mp_rcc_base();
1485 	int p = stm32mp1_clk_get_parent(id);
1486 	uint32_t prescaler, timpre;
1487 	unsigned long parent_rate;
1488 
1489 	if (p < 0) {
1490 		return 0;
1491 	}
1492 
1493 	parent_rate = get_clock_rate(p);
1494 
1495 	switch (id) {
1496 	case TIM2_K:
1497 	case TIM3_K:
1498 	case TIM4_K:
1499 	case TIM5_K:
1500 	case TIM6_K:
1501 	case TIM7_K:
1502 	case TIM12_K:
1503 	case TIM13_K:
1504 	case TIM14_K:
1505 		prescaler = mmio_read_32(rcc_base + RCC_APB1DIVR) &
1506 			    RCC_APBXDIV_MASK;
1507 		timpre = mmio_read_32(rcc_base + RCC_TIMG1PRER) &
1508 			 RCC_TIMGXPRER_TIMGXPRE;
1509 		break;
1510 
1511 	case TIM1_K:
1512 	case TIM8_K:
1513 	case TIM15_K:
1514 	case TIM16_K:
1515 	case TIM17_K:
1516 		prescaler = mmio_read_32(rcc_base + RCC_APB2DIVR) &
1517 			    RCC_APBXDIV_MASK;
1518 		timpre = mmio_read_32(rcc_base + RCC_TIMG2PRER) &
1519 			 RCC_TIMGXPRER_TIMGXPRE;
1520 		break;
1521 
1522 	default:
1523 		return parent_rate;
1524 	}
1525 
1526 	if (prescaler == 0U) {
1527 		return parent_rate;
1528 	}
1529 
1530 	return parent_rate * (timpre + 1U) * 2U;
1531 }
1532 
1533 static void stm32mp1_ls_osc_set(bool enable, uint32_t offset, uint32_t mask_on)
1534 {
1535 	uintptr_t address = stm32mp_rcc_base() + offset;
1536 
1537 	if (enable) {
1538 		mmio_setbits_32(address, mask_on);
1539 	} else {
1540 		mmio_clrbits_32(address, mask_on);
1541 	}
1542 }
1543 
1544 static void stm32mp1_hs_ocs_set(bool enable, uint32_t mask_on)
1545 {
1546 	uint32_t offset = enable ? RCC_OCENSETR : RCC_OCENCLRR;
1547 	uintptr_t address = stm32mp_rcc_base() + offset;
1548 
1549 	mmio_write_32(address, mask_on);
1550 }
1551 
1552 static int stm32mp1_osc_wait(bool enable, uint32_t offset, uint32_t mask_rdy)
1553 {
1554 	uint64_t timeout;
1555 	uint32_t mask_test;
1556 	uintptr_t address = stm32mp_rcc_base() + offset;
1557 
1558 	if (enable) {
1559 		mask_test = mask_rdy;
1560 	} else {
1561 		mask_test = 0;
1562 	}
1563 
1564 	timeout = timeout_init_us(OSCRDY_TIMEOUT);
1565 	while ((mmio_read_32(address) & mask_rdy) != mask_test) {
1566 		if (timeout_elapsed(timeout)) {
1567 			ERROR("OSC %x @ %lx timeout for enable=%d : 0x%x\n",
1568 			      mask_rdy, address, enable, mmio_read_32(address));
1569 			return -ETIMEDOUT;
1570 		}
1571 	}
1572 
1573 	return 0;
1574 }
1575 
1576 static void stm32mp1_lse_enable(bool bypass, bool digbyp, uint32_t lsedrv)
1577 {
1578 	uint32_t value;
1579 	uintptr_t rcc_base = stm32mp_rcc_base();
1580 
1581 	/* Do not reconfigure LSE if it is already ON */
1582 	if ((mmio_read_32(rcc_base + RCC_BDCR) & RCC_BDCR_LSEON) == RCC_BDCR_LSEON) {
1583 		return;
1584 	}
1585 
1586 	if (digbyp) {
1587 		mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_DIGBYP);
1588 	}
1589 
1590 	if (bypass || digbyp) {
1591 		mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_LSEBYP);
1592 	}
1593 
1594 	/*
1595 	 * Warning: not recommended to switch directly from "high drive"
1596 	 * to "medium low drive", and vice-versa.
1597 	 */
1598 	value = (mmio_read_32(rcc_base + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK) >>
1599 		RCC_BDCR_LSEDRV_SHIFT;
1600 
1601 	while (value != lsedrv) {
1602 		if (value > lsedrv) {
1603 			value--;
1604 		} else {
1605 			value++;
1606 		}
1607 
1608 		mmio_clrsetbits_32(rcc_base + RCC_BDCR,
1609 				   RCC_BDCR_LSEDRV_MASK,
1610 				   value << RCC_BDCR_LSEDRV_SHIFT);
1611 	}
1612 
1613 	stm32mp1_ls_osc_set(true, RCC_BDCR, RCC_BDCR_LSEON);
1614 }
1615 
1616 static void stm32mp1_lse_wait(void)
1617 {
1618 	if (stm32mp1_osc_wait(true, RCC_BDCR, RCC_BDCR_LSERDY) != 0) {
1619 		VERBOSE("%s: failed\n", __func__);
1620 	}
1621 }
1622 
1623 static void stm32mp1_lsi_set(bool enable)
1624 {
1625 	stm32mp1_ls_osc_set(enable, RCC_RDLSICR, RCC_RDLSICR_LSION);
1626 
1627 	if (stm32mp1_osc_wait(enable, RCC_RDLSICR, RCC_RDLSICR_LSIRDY) != 0) {
1628 		VERBOSE("%s: failed\n", __func__);
1629 	}
1630 }
1631 
1632 static void stm32mp1_hse_enable(bool bypass, bool digbyp, bool css)
1633 {
1634 	uintptr_t rcc_base = stm32mp_rcc_base();
1635 
1636 	if (digbyp) {
1637 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_DIGBYP);
1638 	}
1639 
1640 	if (bypass || digbyp) {
1641 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSEBYP);
1642 	}
1643 
1644 	stm32mp1_hs_ocs_set(true, RCC_OCENR_HSEON);
1645 	if (stm32mp1_osc_wait(true, RCC_OCRDYR, RCC_OCRDYR_HSERDY) != 0) {
1646 		VERBOSE("%s: failed\n", __func__);
1647 	}
1648 
1649 	if (css) {
1650 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSECSSON);
1651 	}
1652 
1653 #if STM32MP_UART_PROGRAMMER || STM32MP_USB_PROGRAMMER
1654 	if ((mmio_read_32(rcc_base + RCC_OCENSETR) & RCC_OCENR_HSEBYP) &&
1655 	    (!(digbyp || bypass))) {
1656 		panic();
1657 	}
1658 #endif
1659 }
1660 
1661 static void stm32mp1_csi_set(bool enable)
1662 {
1663 	stm32mp1_hs_ocs_set(enable, RCC_OCENR_CSION);
1664 	if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_CSIRDY) != 0) {
1665 		VERBOSE("%s: failed\n", __func__);
1666 	}
1667 }
1668 
1669 static void stm32mp1_hsi_set(bool enable)
1670 {
1671 	stm32mp1_hs_ocs_set(enable, RCC_OCENR_HSION);
1672 	if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_HSIRDY) != 0) {
1673 		VERBOSE("%s: failed\n", __func__);
1674 	}
1675 }
1676 
1677 static int stm32mp1_set_hsidiv(uint8_t hsidiv)
1678 {
1679 	uint64_t timeout;
1680 	uintptr_t rcc_base = stm32mp_rcc_base();
1681 	uintptr_t address = rcc_base + RCC_OCRDYR;
1682 
1683 	mmio_clrsetbits_32(rcc_base + RCC_HSICFGR,
1684 			   RCC_HSICFGR_HSIDIV_MASK,
1685 			   RCC_HSICFGR_HSIDIV_MASK & (uint32_t)hsidiv);
1686 
1687 	timeout = timeout_init_us(HSIDIV_TIMEOUT);
1688 	while ((mmio_read_32(address) & RCC_OCRDYR_HSIDIVRDY) == 0U) {
1689 		if (timeout_elapsed(timeout)) {
1690 			ERROR("HSIDIV failed @ 0x%lx: 0x%x\n",
1691 			      address, mmio_read_32(address));
1692 			return -ETIMEDOUT;
1693 		}
1694 	}
1695 
1696 	return 0;
1697 }
1698 
1699 static int stm32mp1_hsidiv(unsigned long hsifreq)
1700 {
1701 	uint8_t hsidiv;
1702 	uint32_t hsidivfreq = MAX_HSI_HZ;
1703 
1704 	for (hsidiv = 0; hsidiv < 4U; hsidiv++) {
1705 		if (hsidivfreq == hsifreq) {
1706 			break;
1707 		}
1708 
1709 		hsidivfreq /= 2U;
1710 	}
1711 
1712 	if (hsidiv == 4U) {
1713 		ERROR("Invalid clk-hsi frequency\n");
1714 		return -1;
1715 	}
1716 
1717 	if (hsidiv != 0U) {
1718 		return stm32mp1_set_hsidiv(hsidiv);
1719 	}
1720 
1721 	return 0;
1722 }
1723 
1724 static bool stm32mp1_check_pll_conf(enum stm32mp1_pll_id pll_id,
1725 				    unsigned int clksrc,
1726 				    uint32_t *pllcfg, uint32_t fracv)
1727 {
1728 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1729 	uintptr_t rcc_base = stm32mp_rcc_base();
1730 	uintptr_t pllxcr = rcc_base + pll->pllxcr;
1731 	enum stm32mp1_plltype type = pll->plltype;
1732 	uintptr_t clksrc_address = rcc_base + (clksrc >> 4);
1733 	unsigned long refclk;
1734 	uint32_t ifrge = 0U;
1735 	uint32_t src, value;
1736 
1737 	/* Check PLL output */
1738 	if (mmio_read_32(pllxcr) != RCC_PLLNCR_PLLON) {
1739 		return false;
1740 	}
1741 
1742 	/* Check current clksrc */
1743 	src = mmio_read_32(clksrc_address) & RCC_SELR_SRC_MASK;
1744 	if (src != (clksrc & RCC_SELR_SRC_MASK)) {
1745 		return false;
1746 	}
1747 
1748 	/* Check Div */
1749 	src = mmio_read_32(rcc_base + pll->rckxselr) & RCC_SELR_REFCLK_SRC_MASK;
1750 
1751 	refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
1752 		 (pllcfg[PLLCFG_M] + 1U);
1753 
1754 	if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
1755 	    (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
1756 		return false;
1757 	}
1758 
1759 	if ((type == PLL_800) && (refclk >= 8000000U)) {
1760 		ifrge = 1U;
1761 	}
1762 
1763 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
1764 		RCC_PLLNCFGR1_DIVN_MASK;
1765 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
1766 		 RCC_PLLNCFGR1_DIVM_MASK;
1767 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
1768 		 RCC_PLLNCFGR1_IFRGE_MASK;
1769 	if (mmio_read_32(rcc_base + pll->pllxcfgr1) != value) {
1770 		return false;
1771 	}
1772 
1773 	/* Fractional configuration */
1774 	value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
1775 	value |= RCC_PLLNFRACR_FRACLE;
1776 	if (mmio_read_32(rcc_base + pll->pllxfracr) != value) {
1777 		return false;
1778 	}
1779 
1780 	/* Output config */
1781 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
1782 		RCC_PLLNCFGR2_DIVP_MASK;
1783 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
1784 		 RCC_PLLNCFGR2_DIVQ_MASK;
1785 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
1786 		 RCC_PLLNCFGR2_DIVR_MASK;
1787 	if (mmio_read_32(rcc_base + pll->pllxcfgr2) != value) {
1788 		return false;
1789 	}
1790 
1791 	return true;
1792 }
1793 
1794 static void stm32mp1_pll_start(enum stm32mp1_pll_id pll_id)
1795 {
1796 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1797 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1798 
1799 	/* Preserve RCC_PLLNCR_SSCG_CTRL value */
1800 	mmio_clrsetbits_32(pllxcr,
1801 			   RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1802 			   RCC_PLLNCR_DIVREN,
1803 			   RCC_PLLNCR_PLLON);
1804 }
1805 
1806 static int stm32mp1_pll_output(enum stm32mp1_pll_id pll_id, uint32_t output)
1807 {
1808 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1809 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1810 	uint64_t timeout = timeout_init_us(PLLRDY_TIMEOUT);
1811 
1812 	/* Wait PLL lock */
1813 	while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) == 0U) {
1814 		if (timeout_elapsed(timeout)) {
1815 			ERROR("PLL%u start failed @ 0x%lx: 0x%x\n",
1816 			      pll_id, pllxcr, mmio_read_32(pllxcr));
1817 			return -ETIMEDOUT;
1818 		}
1819 	}
1820 
1821 	/* Start the requested output */
1822 	mmio_setbits_32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT);
1823 
1824 	return 0;
1825 }
1826 
1827 static int stm32mp1_pll_stop(enum stm32mp1_pll_id pll_id)
1828 {
1829 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1830 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1831 	uint64_t timeout;
1832 
1833 	/* Stop all output */
1834 	mmio_clrbits_32(pllxcr, RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1835 			RCC_PLLNCR_DIVREN);
1836 
1837 	/* Stop PLL */
1838 	mmio_clrbits_32(pllxcr, RCC_PLLNCR_PLLON);
1839 
1840 	timeout = timeout_init_us(PLLRDY_TIMEOUT);
1841 	/* Wait PLL stopped */
1842 	while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) != 0U) {
1843 		if (timeout_elapsed(timeout)) {
1844 			ERROR("PLL%u stop failed @ 0x%lx: 0x%x\n",
1845 			      pll_id, pllxcr, mmio_read_32(pllxcr));
1846 			return -ETIMEDOUT;
1847 		}
1848 	}
1849 
1850 	return 0;
1851 }
1852 
1853 static void stm32mp1_pll_config_output(enum stm32mp1_pll_id pll_id,
1854 				       uint32_t *pllcfg)
1855 {
1856 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1857 	uintptr_t rcc_base = stm32mp_rcc_base();
1858 	uint32_t value;
1859 
1860 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
1861 		RCC_PLLNCFGR2_DIVP_MASK;
1862 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
1863 		 RCC_PLLNCFGR2_DIVQ_MASK;
1864 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
1865 		 RCC_PLLNCFGR2_DIVR_MASK;
1866 	mmio_write_32(rcc_base + pll->pllxcfgr2, value);
1867 }
1868 
1869 static int stm32mp1_pll_config(enum stm32mp1_pll_id pll_id,
1870 			       uint32_t *pllcfg, uint32_t fracv)
1871 {
1872 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1873 	uintptr_t rcc_base = stm32mp_rcc_base();
1874 	enum stm32mp1_plltype type = pll->plltype;
1875 	unsigned long refclk;
1876 	uint32_t ifrge = 0;
1877 	uint32_t src, value;
1878 
1879 	src = mmio_read_32(rcc_base + pll->rckxselr) &
1880 		RCC_SELR_REFCLK_SRC_MASK;
1881 
1882 	refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
1883 		 (pllcfg[PLLCFG_M] + 1U);
1884 
1885 	if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
1886 	    (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
1887 		return -EINVAL;
1888 	}
1889 
1890 	if ((type == PLL_800) && (refclk >= 8000000U)) {
1891 		ifrge = 1U;
1892 	}
1893 
1894 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
1895 		RCC_PLLNCFGR1_DIVN_MASK;
1896 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
1897 		 RCC_PLLNCFGR1_DIVM_MASK;
1898 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
1899 		 RCC_PLLNCFGR1_IFRGE_MASK;
1900 	mmio_write_32(rcc_base + pll->pllxcfgr1, value);
1901 
1902 	/* Fractional configuration */
1903 	value = 0;
1904 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1905 
1906 	value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
1907 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1908 
1909 	value |= RCC_PLLNFRACR_FRACLE;
1910 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1911 
1912 	stm32mp1_pll_config_output(pll_id, pllcfg);
1913 
1914 	return 0;
1915 }
1916 
1917 static void stm32mp1_pll_csg(enum stm32mp1_pll_id pll_id, uint32_t *csg)
1918 {
1919 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1920 	uint32_t pllxcsg = 0;
1921 
1922 	pllxcsg |= (csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) &
1923 		    RCC_PLLNCSGR_MOD_PER_MASK;
1924 
1925 	pllxcsg |= (csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) &
1926 		    RCC_PLLNCSGR_INC_STEP_MASK;
1927 
1928 	pllxcsg |= (csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) &
1929 		    RCC_PLLNCSGR_SSCG_MODE_MASK;
1930 
1931 	mmio_write_32(stm32mp_rcc_base() + pll->pllxcsgr, pllxcsg);
1932 
1933 	mmio_setbits_32(stm32mp_rcc_base() + pll->pllxcr,
1934 			RCC_PLLNCR_SSCG_CTRL);
1935 }
1936 
1937 static int clk_compute_pll1_settings(unsigned long input_freq,
1938 				     uint32_t freq_khz,
1939 				     uint32_t *pllcfg, uint32_t *fracv)
1940 {
1941 	unsigned long long best_diff = ULLONG_MAX;
1942 	unsigned int divm;
1943 
1944 	/* Following parameters have always the same value */
1945 	pllcfg[PLLCFG_Q] = 0U;
1946 	pllcfg[PLLCFG_R] = 0U;
1947 	pllcfg[PLLCFG_O] = PQR(1, 0, 0);
1948 
1949 	for (divm = (DIVM_MAX + 1U); divm != DIVM_MIN; divm--) {
1950 		unsigned long post_divm = input_freq / divm;
1951 		unsigned int divp;
1952 
1953 		if ((post_divm < POST_DIVM_MIN) || (post_divm > POST_DIVM_MAX)) {
1954 			continue;
1955 		}
1956 
1957 		for (divp = DIVP_MIN; divp <= DIVP_MAX; divp++) {
1958 			unsigned long long output_freq = freq_khz * 1000ULL;
1959 			unsigned long long freq;
1960 			unsigned long long divn;
1961 			unsigned long long frac;
1962 			unsigned int i;
1963 
1964 			freq = output_freq * divm * (divp + 1U);
1965 
1966 			divn = (freq / input_freq) - 1U;
1967 			if ((divn < DIVN_MIN) || (divn > DIVN_MAX)) {
1968 				continue;
1969 			}
1970 
1971 			frac = ((freq * FRAC_MAX) / input_freq) - ((divn + 1U) * FRAC_MAX);
1972 
1973 			/* 2 loops to refine the fractional part */
1974 			for (i = 2U; i != 0U; i--) {
1975 				unsigned long long diff;
1976 				unsigned long long vco;
1977 
1978 				if (frac > FRAC_MAX) {
1979 					break;
1980 				}
1981 
1982 				vco = (post_divm * (divn + 1U)) + ((post_divm * frac) / FRAC_MAX);
1983 
1984 				if ((vco < (VCO_MIN / 2U)) || (vco > (VCO_MAX / 2U))) {
1985 					frac++;
1986 					continue;
1987 				}
1988 
1989 				freq = vco / (divp + 1U);
1990 				if (output_freq < freq) {
1991 					diff = freq - output_freq;
1992 				} else {
1993 					diff = output_freq - freq;
1994 				}
1995 
1996 				if (diff < best_diff)  {
1997 					pllcfg[PLLCFG_M] = divm - 1U;
1998 					pllcfg[PLLCFG_N] = (uint32_t)divn;
1999 					pllcfg[PLLCFG_P] = divp;
2000 					*fracv = (uint32_t)frac;
2001 
2002 					if (diff == 0U) {
2003 						return 0;
2004 					}
2005 
2006 					best_diff = diff;
2007 				}
2008 
2009 				frac++;
2010 			}
2011 		}
2012 	}
2013 
2014 	if (best_diff == ULLONG_MAX) {
2015 		return -EINVAL;
2016 	}
2017 
2018 	return 0;
2019 }
2020 
2021 static int clk_get_pll1_settings(uint32_t clksrc, uint32_t freq_khz,
2022 				 uint32_t *pllcfg, uint32_t *fracv)
2023 {
2024 	unsigned long input_freq = 0UL;
2025 
2026 	assert(pllcfg != NULL);
2027 	assert(fracv != NULL);
2028 
2029 	switch (clksrc) {
2030 	case CLK_PLL12_HSI:
2031 		input_freq = stm32mp_clk_get_rate(CK_HSI);
2032 		break;
2033 	case CLK_PLL12_HSE:
2034 		input_freq = stm32mp_clk_get_rate(CK_HSE);
2035 		break;
2036 	default:
2037 		break;
2038 	}
2039 
2040 	if (input_freq == 0UL) {
2041 		panic();
2042 	}
2043 
2044 	return clk_compute_pll1_settings(input_freq, freq_khz, pllcfg, fracv);
2045 }
2046 
2047 static int stm32_clk_dividers_configure(struct stm32_clk_priv *priv)
2048 {
2049 	struct stm32_clk_platdata *pdata = priv->pdata;
2050 	uint32_t i;
2051 
2052 	for (i = 0U; i < pdata->nclkdiv; i++) {
2053 		uint32_t div_id, div_n;
2054 		uint32_t val;
2055 		int ret;
2056 
2057 		val = pdata->clkdiv[i] & CMD_DATA_MASK;
2058 		div_id = (val & DIV_ID_MASK) >> DIV_ID_SHIFT;
2059 		div_n = (val & DIV_DIVN_MASK) >> DIV_DIVN_SHIFT;
2060 
2061 		ret = clk_stm32_set_div(priv, div_id, div_n);
2062 		if (ret != 0) {
2063 			return ret;
2064 		}
2065 	}
2066 
2067 	return 0;
2068 }
2069 
2070 static int stm32_clk_configure_clk(struct stm32_clk_priv *priv, uint32_t data)
2071 {
2072 	uint32_t sel = (data & CLK_SEL_MASK) >> CLK_SEL_SHIFT;
2073 	uint32_t enable = (data & CLK_ON_MASK) >> CLK_ON_SHIFT;
2074 	unsigned long binding_id = ((unsigned long)data & CLK_ID_MASK) >> CLK_ID_SHIFT;
2075 
2076 	if (binding_id == RTC) {
2077 		uintptr_t address = stm32mp_rcc_base() + RCC_BDCR;
2078 
2079 		if (((mmio_read_32(address) & RCC_BDCR_RTCCKEN) == 0U) || (enable != 0U)) {
2080 			mmio_clrsetbits_32(address, RCC_BDCR_RTCSRC_MASK,
2081 					   (sel & RCC_SELR_SRC_MASK) << RCC_BDCR_RTCSRC_SHIFT);
2082 
2083 			mmio_setbits_32(address, RCC_BDCR_RTCCKEN);
2084 		}
2085 	}
2086 
2087 	return 0;
2088 }
2089 
2090 static int stm32_clk_configure_by_addr_val(struct stm32_clk_priv *priv,
2091 					   uint32_t data)
2092 {
2093 	uint32_t addr = data >> CLK_ADDR_SHIFT;
2094 	uint32_t val = data & CLK_ADDR_VAL_MASK;
2095 
2096 	mmio_setbits_32(priv->base + addr, val);
2097 
2098 	return 0;
2099 }
2100 
2101 static int stm32_clk_source_configure(struct stm32_clk_priv *priv)
2102 {
2103 	struct stm32_clk_platdata *pdata = priv->pdata;
2104 	bool ckper_disabled = false;
2105 	uint32_t i;
2106 
2107 	for (i = 0U; i < pdata->nclksrc; i++) {
2108 		uint32_t val = pdata->clksrc[i];
2109 		uint32_t cmd, cmd_data;
2110 		int ret;
2111 
2112 		if (val & CMD_ADDR_BIT) {
2113 			ret = stm32_clk_configure_by_addr_val(priv, val & ~CMD_ADDR_BIT);
2114 			if (ret != 0) {
2115 				return ret;
2116 			}
2117 
2118 			continue;
2119 		}
2120 
2121 		if (val == (uint32_t)CLK_CKPER_DISABLED) {
2122 			ckper_disabled = true;
2123 			continue;
2124 		}
2125 
2126 		cmd = (val & CMD_MASK) >> CMD_SHIFT;
2127 		cmd_data = val & ~CMD_MASK;
2128 
2129 		switch (cmd) {
2130 		case CMD_MUX:
2131 			ret = stm32_clk_configure_mux(priv, cmd_data);
2132 			break;
2133 
2134 		case CMD_CLK:
2135 			ret = stm32_clk_configure_clk(priv, cmd_data);
2136 			break;
2137 		default:
2138 			ret = -EINVAL;
2139 			break;
2140 		}
2141 
2142 		if (ret != 0) {
2143 			return ret;
2144 		}
2145 	}
2146 
2147 	/*
2148 	 * CKPER is source for some peripheral clocks
2149 	 * (FMC-NAND / QPSI-NOR) and switching source is allowed
2150 	 * only if previous clock is still ON
2151 	 * => deactivate CKPER only after switching clock
2152 	 */
2153 	if (!ckper_disabled) {
2154 		return 0;
2155 	}
2156 
2157 	return stm32_clk_configure_mux(priv, CLK_CKPER_DISABLED);
2158 }
2159 
2160 static int stm32mp1_pll_configure_src(struct stm32_clk_priv *priv, int pll_idx)
2161 {
2162 	struct stm32_clk_platdata *pdata = priv->pdata;
2163 	struct stm32_pll_dt_cfg *pll_conf = &pdata->pll[pll_idx];
2164 
2165 	if (!pll_conf->status) {
2166 		return 0;
2167 	}
2168 
2169 	return stm32_clk_configure_mux(priv, pll_conf->src);
2170 }
2171 
2172 int stm32mp1_clk_init(void)
2173 {
2174 	struct stm32_clk_priv *priv = clk_stm32_get_priv();
2175 	struct stm32_clk_platdata *pdata = priv->pdata;
2176 	struct stm32_pll_dt_cfg *pll_conf = pdata->pll;
2177 	int ret;
2178 	enum stm32mp1_pll_id i;
2179 	bool lse_css = false;
2180 	bool pll3_preserve = false;
2181 	bool pll4_preserve = false;
2182 	bool pll4_bootrom = false;
2183 	int stgen_p = stm32mp1_clk_get_parent(STGEN_K);
2184 	int usbphy_p = stm32mp1_clk_get_parent(USBPHY_K);
2185 	uint32_t usbreg_bootrom = 0U;
2186 
2187 	if (!pll_conf[_PLL1].status) {
2188 		ret = clk_get_pll1_settings(pll_conf[_PLL2].src, PLL1_NOMINAL_FREQ_IN_KHZ,
2189 					    pll_conf[_PLL1].cfg, &pll_conf[_PLL1].frac);
2190 		if (ret != 0) {
2191 			return ret;
2192 		}
2193 
2194 		pll_conf[_PLL1].status = true;
2195 		pll_conf[_PLL1].src = pll_conf[_PLL2].src;
2196 	}
2197 
2198 	/*
2199 	 * Switch ON oscillator found in device-tree.
2200 	 * Note: HSI already ON after BootROM stage.
2201 	 */
2202 	if (stm32mp1_osc[_LSI] != 0U) {
2203 		stm32mp1_lsi_set(true);
2204 	}
2205 	if (stm32mp1_osc[_LSE] != 0U) {
2206 		const char *name = stm32mp_osc_node_label[_LSE];
2207 		bool bypass, digbyp;
2208 		uint32_t lsedrv;
2209 
2210 		bypass = fdt_clk_read_bool(name, "st,bypass");
2211 		digbyp = fdt_clk_read_bool(name, "st,digbypass");
2212 		lse_css = fdt_clk_read_bool(name, "st,css");
2213 		lsedrv = fdt_clk_read_uint32_default(name, "st,drive",
2214 						     LSEDRV_MEDIUM_HIGH);
2215 		stm32mp1_lse_enable(bypass, digbyp, lsedrv);
2216 	}
2217 	if (stm32mp1_osc[_HSE] != 0U) {
2218 		const char *name = stm32mp_osc_node_label[_HSE];
2219 		bool bypass, digbyp, css;
2220 
2221 		bypass = fdt_clk_read_bool(name, "st,bypass");
2222 		digbyp = fdt_clk_read_bool(name, "st,digbypass");
2223 		css = fdt_clk_read_bool(name, "st,css");
2224 		stm32mp1_hse_enable(bypass, digbyp, css);
2225 	}
2226 	/*
2227 	 * CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR)
2228 	 * => switch on CSI even if node is not present in device tree
2229 	 */
2230 	stm32mp1_csi_set(true);
2231 
2232 	/* Come back to HSI */
2233 	ret = stm32_clk_configure_mux(priv, CLK_MPU_HSI);
2234 	if (ret != 0) {
2235 		return ret;
2236 	}
2237 	ret = stm32_clk_configure_mux(priv, CLK_AXI_HSI);
2238 	if (ret != 0) {
2239 		return ret;
2240 	}
2241 	ret = stm32_clk_configure_mux(priv, CLK_MCU_HSI);
2242 	if (ret != 0) {
2243 		return ret;
2244 	}
2245 	if ((mmio_read_32(priv->base + RCC_MP_RSTSCLRR) &
2246 	     RCC_MP_RSTSCLRR_MPUP0RSTF) != 0) {
2247 		pll3_preserve = stm32mp1_check_pll_conf(_PLL3,
2248 							pll_conf[_PLL3].src,
2249 							pll_conf[_PLL3].cfg,
2250 							pll_conf[_PLL3].frac);
2251 		pll4_preserve = stm32mp1_check_pll_conf(_PLL4,
2252 							pll_conf[_PLL4].src,
2253 							pll_conf[_PLL4].cfg,
2254 							pll_conf[_PLL4].frac);
2255 	}
2256 	/* Don't initialize PLL4, when used by BOOTROM */
2257 	if ((stm32mp_get_boot_itf_selected() ==
2258 	     BOOT_API_CTX_BOOT_INTERFACE_SEL_SERIAL_USB) &&
2259 	    ((stgen_p == (int)_PLL4_R) || (usbphy_p == (int)_PLL4_R))) {
2260 		pll4_bootrom = true;
2261 		pll4_preserve = true;
2262 	}
2263 
2264 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
2265 		if (((i == _PLL3) && pll3_preserve) ||
2266 		    ((i == _PLL4) && pll4_preserve)) {
2267 			continue;
2268 		}
2269 
2270 		ret = stm32mp1_pll_stop(i);
2271 		if (ret != 0) {
2272 			return ret;
2273 		}
2274 	}
2275 
2276 	/* Configure HSIDIV */
2277 	if (stm32mp1_osc[_HSI] != 0U) {
2278 		ret = stm32mp1_hsidiv(stm32mp1_osc[_HSI]);
2279 		if (ret != 0) {
2280 			return ret;
2281 		}
2282 
2283 		stm32mp_stgen_config(stm32mp_clk_get_rate(STGEN_K));
2284 	}
2285 
2286 	/* Configure dividers */
2287 	ret = stm32_clk_dividers_configure(priv);
2288 	if (ret != 0) {
2289 		return ret;
2290 	}
2291 
2292 	/* Configure PLLs source */
2293 	ret = stm32mp1_pll_configure_src(priv, _PLL1);
2294 	if (ret != 0) {
2295 		return ret;
2296 	}
2297 
2298 	if (!pll3_preserve) {
2299 		ret = stm32mp1_pll_configure_src(priv, _PLL3);
2300 		if (ret != 0) {
2301 			return ret;
2302 		}
2303 	}
2304 
2305 	if (!pll4_preserve) {
2306 		ret = stm32mp1_pll_configure_src(priv, _PLL4);
2307 		if (ret != 0) {
2308 			return ret;
2309 		}
2310 	}
2311 
2312 	/* Configure and start PLLs */
2313 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
2314 		if (((i == _PLL3) && pll3_preserve) ||
2315 		    ((i == _PLL4) && pll4_preserve && !pll4_bootrom)) {
2316 			continue;
2317 		}
2318 
2319 		if (!pll_conf[i].status) {
2320 			continue;
2321 		}
2322 
2323 		if ((i == _PLL4) && pll4_bootrom) {
2324 			/* Set output divider if not done by the Bootrom */
2325 			stm32mp1_pll_config_output(i, pll_conf[i].cfg);
2326 			continue;
2327 		}
2328 
2329 		ret = stm32mp1_pll_config(i, pll_conf[i].cfg, pll_conf[i].frac);
2330 		if (ret != 0) {
2331 			return ret;
2332 		}
2333 
2334 		if (pll_conf[i].csg_enabled) {
2335 			stm32mp1_pll_csg(i, pll_conf[i].csg);
2336 		}
2337 
2338 		stm32mp1_pll_start(i);
2339 	}
2340 	/* Wait and start PLLs output when ready */
2341 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
2342 		if (!pll_conf[i].status) {
2343 			continue;
2344 		}
2345 
2346 		ret = stm32mp1_pll_output(i, pll_conf[i].cfg[PLLCFG_O]);
2347 		if (ret != 0) {
2348 			return ret;
2349 		}
2350 	}
2351 	/* Wait LSE ready before to use it */
2352 	if (stm32mp1_osc[_LSE] != 0U) {
2353 		stm32mp1_lse_wait();
2354 	}
2355 
2356 	if (pll4_bootrom) {
2357 		usbreg_bootrom = mmio_read_32(priv->base + RCC_USBCKSELR);
2358 	}
2359 
2360 	/* Configure with expected clock source */
2361 	ret = stm32_clk_source_configure(priv);
2362 	if (ret != 0) {
2363 		panic();
2364 	}
2365 
2366 	if (pll4_bootrom) {
2367 		uint32_t usbreg_value, usbreg_mask;
2368 		const struct stm32mp1_clk_sel *sel;
2369 
2370 		sel = clk_sel_ref(_USBPHY_SEL);
2371 		usbreg_mask = (uint32_t)sel->msk << sel->src;
2372 		sel = clk_sel_ref(_USBO_SEL);
2373 		usbreg_mask |= (uint32_t)sel->msk << sel->src;
2374 
2375 		usbreg_value = mmio_read_32(priv->base + RCC_USBCKSELR) &
2376 			       usbreg_mask;
2377 		usbreg_bootrom &= usbreg_mask;
2378 		if (usbreg_bootrom != usbreg_value) {
2379 			VERBOSE("forbidden new USB clk path\n");
2380 			VERBOSE("vs bootrom on USB boot\n");
2381 			return -FDT_ERR_BADVALUE;
2382 		}
2383 	}
2384 
2385 	if (lse_css) {
2386 		mmio_setbits_32(priv->base + RCC_BDCR, RCC_BDCR_LSECSSON);
2387 	}
2388 
2389 	/* Switch OFF HSI if not found in device-tree */
2390 	if (stm32mp1_osc[_HSI] == 0U) {
2391 		stm32mp1_hsi_set(false);
2392 	}
2393 
2394 	stm32mp_stgen_config(stm32mp_clk_get_rate(STGEN_K));
2395 
2396 	/* Software Self-Refresh mode (SSR) during DDR initilialization */
2397 	mmio_clrsetbits_32(priv->base + RCC_DDRITFCR,
2398 			   RCC_DDRITFCR_DDRCKMOD_MASK,
2399 			   RCC_DDRITFCR_DDRCKMOD_SSR <<
2400 			   RCC_DDRITFCR_DDRCKMOD_SHIFT);
2401 
2402 	return 0;
2403 }
2404 
2405 static void stm32mp1_osc_clk_init(const char *name,
2406 				  enum stm32mp_osc_id index)
2407 {
2408 	uint32_t frequency;
2409 
2410 	if (fdt_osc_read_freq(name, &frequency) == 0) {
2411 		stm32mp1_osc[index] = frequency;
2412 	}
2413 }
2414 
2415 static void stm32mp1_osc_init(void)
2416 {
2417 	enum stm32mp_osc_id i;
2418 
2419 	for (i = (enum stm32mp_osc_id)0 ; i < NB_OSC; i++) {
2420 		stm32mp1_osc_clk_init(stm32mp_osc_node_label[i], i);
2421 	}
2422 }
2423 
2424 #ifdef STM32MP_SHARED_RESOURCES
2425 /*
2426  * Get the parent ID of the target parent clock, for tagging as secure
2427  * shared clock dependencies.
2428  */
2429 static int get_parent_id_parent(unsigned int parent_id)
2430 {
2431 	enum stm32mp1_parent_sel s = _UNKNOWN_SEL;
2432 	enum stm32mp1_pll_id pll_id;
2433 	uint32_t p_sel;
2434 	uintptr_t rcc_base = stm32mp_rcc_base();
2435 
2436 	switch (parent_id) {
2437 	case _ACLK:
2438 	case _PCLK4:
2439 	case _PCLK5:
2440 		s = _AXIS_SEL;
2441 		break;
2442 	case _PLL1_P:
2443 	case _PLL1_Q:
2444 	case _PLL1_R:
2445 		pll_id = _PLL1;
2446 		break;
2447 	case _PLL2_P:
2448 	case _PLL2_Q:
2449 	case _PLL2_R:
2450 		pll_id = _PLL2;
2451 		break;
2452 	case _PLL3_P:
2453 	case _PLL3_Q:
2454 	case _PLL3_R:
2455 		pll_id = _PLL3;
2456 		break;
2457 	case _PLL4_P:
2458 	case _PLL4_Q:
2459 	case _PLL4_R:
2460 		pll_id = _PLL4;
2461 		break;
2462 	case _PCLK1:
2463 	case _PCLK2:
2464 	case _HCLK2:
2465 	case _HCLK6:
2466 	case _CK_PER:
2467 	case _CK_MPU:
2468 	case _CK_MCU:
2469 	case _USB_PHY_48:
2470 		/* We do not expect to access these */
2471 		panic();
2472 		break;
2473 	default:
2474 		/* Other parents have no parent */
2475 		return -1;
2476 	}
2477 
2478 	if (s != _UNKNOWN_SEL) {
2479 		const struct stm32mp1_clk_sel *sel = clk_sel_ref(s);
2480 
2481 		p_sel = (mmio_read_32(rcc_base + sel->offset) >> sel->src) &
2482 			sel->msk;
2483 
2484 		if (p_sel < sel->nb_parent) {
2485 			return (int)sel->parent[p_sel];
2486 		}
2487 	} else {
2488 		const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
2489 
2490 		p_sel = mmio_read_32(rcc_base + pll->rckxselr) &
2491 			RCC_SELR_REFCLK_SRC_MASK;
2492 
2493 		if (pll->refclk[p_sel] != _UNKNOWN_OSC_ID) {
2494 			return (int)pll->refclk[p_sel];
2495 		}
2496 	}
2497 
2498 	VERBOSE("No parent selected for %s\n",
2499 		stm32mp1_clk_parent_name[parent_id]);
2500 
2501 	return -1;
2502 }
2503 
2504 static void secure_parent_clocks(unsigned long parent_id)
2505 {
2506 	int grandparent_id;
2507 
2508 	switch (parent_id) {
2509 	case _PLL3_P:
2510 	case _PLL3_Q:
2511 	case _PLL3_R:
2512 		stm32mp_register_secure_periph(STM32MP1_SHRES_PLL3);
2513 		break;
2514 
2515 	/* These clocks are always secure when RCC is secure */
2516 	case _ACLK:
2517 	case _HCLK2:
2518 	case _HCLK6:
2519 	case _PCLK4:
2520 	case _PCLK5:
2521 	case _PLL1_P:
2522 	case _PLL1_Q:
2523 	case _PLL1_R:
2524 	case _PLL2_P:
2525 	case _PLL2_Q:
2526 	case _PLL2_R:
2527 	case _HSI:
2528 	case _HSI_KER:
2529 	case _LSI:
2530 	case _CSI:
2531 	case _CSI_KER:
2532 	case _HSE:
2533 	case _HSE_KER:
2534 	case _HSE_KER_DIV2:
2535 	case _HSE_RTC:
2536 	case _LSE:
2537 		break;
2538 
2539 	default:
2540 		VERBOSE("Cannot secure parent clock %s\n",
2541 			stm32mp1_clk_parent_name[parent_id]);
2542 		panic();
2543 	}
2544 
2545 	grandparent_id = get_parent_id_parent(parent_id);
2546 	if (grandparent_id >= 0) {
2547 		secure_parent_clocks(grandparent_id);
2548 	}
2549 }
2550 
2551 void stm32mp1_register_clock_parents_secure(unsigned long clock_id)
2552 {
2553 	int parent_id;
2554 
2555 	if (!stm32mp1_rcc_is_secure()) {
2556 		return;
2557 	}
2558 
2559 	switch (clock_id) {
2560 	case PLL1:
2561 	case PLL2:
2562 		/* PLL1/PLL2 are always secure: nothing to do */
2563 		break;
2564 	case PLL3:
2565 		stm32mp_register_secure_periph(STM32MP1_SHRES_PLL3);
2566 		break;
2567 	case PLL4:
2568 		ERROR("PLL4 cannot be secured\n");
2569 		panic();
2570 		break;
2571 	default:
2572 		/* Others are expected gateable clock */
2573 		parent_id = stm32mp1_clk_get_parent(clock_id);
2574 		if (parent_id < 0) {
2575 			INFO("No parent found for clock %lu\n", clock_id);
2576 		} else {
2577 			secure_parent_clocks(parent_id);
2578 		}
2579 		break;
2580 	}
2581 }
2582 #endif /* STM32MP_SHARED_RESOURCES */
2583 
2584 void stm32mp1_clk_mcuss_protect(bool enable)
2585 {
2586 	uintptr_t rcc_base = stm32mp_rcc_base();
2587 
2588 	if (enable) {
2589 		mmio_setbits_32(rcc_base + RCC_TZCR, RCC_TZCR_MCKPROT);
2590 	} else {
2591 		mmio_clrbits_32(rcc_base + RCC_TZCR, RCC_TZCR_MCKPROT);
2592 	}
2593 }
2594 
2595 static void sync_earlyboot_clocks_state(void)
2596 {
2597 	unsigned int idx;
2598 	const unsigned long secure_enable[] = {
2599 		AXIDCG,
2600 		BSEC,
2601 		DDRC1, DDRC1LP,
2602 		DDRC2, DDRC2LP,
2603 		DDRCAPB, DDRPHYCAPB, DDRPHYCAPBLP,
2604 		DDRPHYC, DDRPHYCLP,
2605 		RTCAPB,
2606 		TZC1, TZC2,
2607 		TZPC,
2608 		STGEN_K,
2609 	};
2610 
2611 	for (idx = 0U; idx < ARRAY_SIZE(secure_enable); idx++) {
2612 		stm32mp_clk_enable(secure_enable[idx]);
2613 	}
2614 }
2615 
2616 static const struct clk_ops stm32mp_clk_ops = {
2617 	.enable		= stm32mp_clk_enable,
2618 	.disable	= stm32mp_clk_disable,
2619 	.is_enabled	= stm32mp_clk_is_enabled,
2620 	.get_rate	= stm32mp_clk_get_rate,
2621 	.get_parent	= stm32mp1_clk_get_parent,
2622 };
2623 
2624 struct stm32_pll_dt_cfg mp15_pll[_PLL_NB];
2625 uint32_t mp15_clksrc[MUX_NB];
2626 uint32_t mp15_clkdiv[DIV_NB];
2627 
2628 struct stm32_clk_platdata stm32mp15_clock_pdata = {
2629 	.pll		= mp15_pll,
2630 	.npll		= _PLL_NB,
2631 	.clksrc		= mp15_clksrc,
2632 	.nclksrc	= MUX_NB,
2633 	.clkdiv		= mp15_clkdiv,
2634 	.nclkdiv	= DIV_NB,
2635 };
2636 
2637 static struct stm32_clk_priv stm32mp15_clock_data = {
2638 	.base		= RCC_BASE,
2639 	.parents	= parent_mp15,
2640 	.nb_parents	= ARRAY_SIZE(parent_mp15),
2641 	.div		= dividers_mp15,
2642 	.nb_div		= ARRAY_SIZE(dividers_mp15),
2643 	.pdata		= &stm32mp15_clock_pdata,
2644 };
2645 
2646 static int stm32_clk_parse_fdt_by_name(void *fdt, int node, const char *name,
2647 				       uint32_t *tab, uint32_t *nb)
2648 {
2649 	const fdt32_t *cell;
2650 	int len = 0;
2651 	uint32_t i;
2652 
2653 	cell = fdt_getprop(fdt, node, name, &len);
2654 	if (cell == NULL) {
2655 		*nb = 0U;
2656 		return 0;
2657 	}
2658 
2659 	for (i = 0U; i < ((uint32_t)len / sizeof(uint32_t)); i++) {
2660 		tab[i] = fdt32_to_cpu(cell[i]);
2661 	}
2662 
2663 	*nb = (uint32_t)len / sizeof(uint32_t);
2664 
2665 	return 0;
2666 }
2667 
2668 #define RCC_PLL_NAME_SIZE 12
2669 
2670 static int clk_stm32_load_vco_config(void *fdt, int subnode, struct stm32_pll_dt_cfg *pll)
2671 {
2672 	int err;
2673 
2674 	err = fdt_read_uint32_array(fdt, subnode, "divmn", (int)PLL_DIV_MN_NB, &pll->cfg[PLLCFG_M]);
2675 	if (err != 0) {
2676 		return err;
2677 	}
2678 
2679 	err = fdt_read_uint32_array(fdt, subnode, "csg", (int)PLLCSG_NB, pll->csg);
2680 	if (err == 0) {
2681 		pll->csg_enabled = true;
2682 	} else if (err == -FDT_ERR_NOTFOUND) {
2683 		pll->csg_enabled = false;
2684 	} else {
2685 		return err;
2686 	}
2687 
2688 	pll->status = true;
2689 
2690 	pll->frac = fdt_read_uint32_default(fdt, subnode, "frac", 0);
2691 
2692 	pll->src = fdt_read_uint32_default(fdt, subnode, "src", UINT32_MAX);
2693 
2694 	return 0;
2695 }
2696 
2697 static int clk_stm32_load_output_config(void *fdt, int subnode, struct stm32_pll_dt_cfg *pll)
2698 {
2699 	int err;
2700 
2701 	err = fdt_read_uint32_array(fdt, subnode, "st,pll_div_pqr", (int)PLL_DIV_PQR_NB,
2702 				    &pll->cfg[PLLCFG_P]);
2703 	if (err != 0) {
2704 		return err;
2705 	}
2706 
2707 	pll->cfg[PLLCFG_O] = PQR(1, 1, 1);
2708 
2709 	return 0;
2710 }
2711 
2712 static int clk_stm32_parse_pll_fdt(void *fdt, int subnode, struct stm32_pll_dt_cfg *pll)
2713 {
2714 	const fdt32_t *cuint;
2715 	int subnode_pll;
2716 	int subnode_vco;
2717 	int err;
2718 
2719 	cuint = fdt_getprop(fdt, subnode, "st,pll", NULL);
2720 	if (cuint == NULL) {
2721 		/* Case of no pll is defined */
2722 		return 0;
2723 	}
2724 
2725 	subnode_pll = fdt_node_offset_by_phandle(fdt, fdt32_to_cpu(*cuint));
2726 	if (subnode_pll < 0) {
2727 		return -FDT_ERR_NOTFOUND;
2728 	}
2729 
2730 	cuint = fdt_getprop(fdt, subnode_pll, "st,pll_vco", NULL);
2731 	if (cuint == NULL) {
2732 		return -FDT_ERR_NOTFOUND;
2733 	}
2734 
2735 	subnode_vco = fdt_node_offset_by_phandle(fdt, fdt32_to_cpu(*cuint));
2736 	if (subnode_vco < 0) {
2737 		return -FDT_ERR_NOTFOUND;
2738 	}
2739 
2740 	err = clk_stm32_load_vco_config(fdt, subnode_vco, pll);
2741 	if (err != 0) {
2742 		return err;
2743 	}
2744 
2745 	err = clk_stm32_load_output_config(fdt, subnode_pll, pll);
2746 	if (err != 0) {
2747 		return err;
2748 	}
2749 
2750 	return 0;
2751 }
2752 
2753 static int stm32_clk_parse_fdt_all_pll(void *fdt, int node, struct stm32_clk_platdata *pdata)
2754 {
2755 	size_t i = 0U;
2756 
2757 	for (i = _PLL1; i < pdata->npll; i++) {
2758 		struct stm32_pll_dt_cfg *pll = pdata->pll + i;
2759 		char name[RCC_PLL_NAME_SIZE];
2760 		int subnode;
2761 		int err;
2762 
2763 		snprintf(name, sizeof(name), "st,pll@%u", i);
2764 
2765 		subnode = fdt_subnode_offset(fdt, node, name);
2766 		if (!fdt_check_node(subnode)) {
2767 			continue;
2768 		}
2769 
2770 		err = clk_stm32_parse_pll_fdt(fdt, subnode, pll);
2771 		if (err != 0) {
2772 			panic();
2773 		}
2774 	}
2775 
2776 	return 0;
2777 }
2778 
2779 static int stm32_clk_parse_fdt(struct stm32_clk_platdata *pdata)
2780 {
2781 	void *fdt = NULL;
2782 	int node;
2783 	uint32_t err;
2784 
2785 	if (fdt_get_address(&fdt) == 0) {
2786 		return -ENOENT;
2787 	}
2788 
2789 	node = fdt_node_offset_by_compatible(fdt, -1, DT_RCC_CLK_COMPAT);
2790 	if (node < 0) {
2791 		panic();
2792 	}
2793 
2794 	err = stm32_clk_parse_fdt_all_pll(fdt, node, pdata);
2795 	if (err != 0) {
2796 		return err;
2797 	}
2798 
2799 	err = stm32_clk_parse_fdt_by_name(fdt, node, "st,clkdiv", pdata->clkdiv, &pdata->nclkdiv);
2800 	if (err != 0) {
2801 		return err;
2802 	}
2803 
2804 	err = stm32_clk_parse_fdt_by_name(fdt, node, "st,clksrc", pdata->clksrc, &pdata->nclksrc);
2805 	if (err != 0) {
2806 		return err;
2807 	}
2808 
2809 	return 0;
2810 }
2811 
2812 int stm32mp1_clk_probe(void)
2813 {
2814 	uintptr_t base = RCC_BASE;
2815 	int ret;
2816 
2817 #if defined(IMAGE_BL32)
2818 	if (!fdt_get_rcc_secure_state()) {
2819 		mmio_write_32(stm32mp_rcc_base() + RCC_TZCR, 0U);
2820 	}
2821 #endif
2822 
2823 	stm32mp1_osc_init();
2824 
2825 	ret = stm32_clk_parse_fdt(&stm32mp15_clock_pdata);
2826 	if (ret != 0) {
2827 		return ret;
2828 	}
2829 
2830 	ret = clk_stm32_init(&stm32mp15_clock_data, base);
2831 	if (ret != 0) {
2832 		return ret;
2833 	}
2834 
2835 	sync_earlyboot_clocks_state();
2836 
2837 	clk_register(&stm32mp_clk_ops);
2838 
2839 	return 0;
2840 }
2841