xref: /rk3399_ARM-atf/drivers/st/clk/stm32mp1_clk.c (revision aaa09b713c6f539fb5b2ee7e2dfd75f2d46875f5)
1 /*
2  * Copyright (C) 2018-2022, STMicroelectronics - All Rights Reserved
3  *
4  * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdio.h>
11 
12 #include <arch.h>
13 #include <arch_helpers.h>
14 #include <common/debug.h>
15 #include <common/fdt_wrappers.h>
16 #include <drivers/clk.h>
17 #include <drivers/delay_timer.h>
18 #include <drivers/generic_delay_timer.h>
19 #include <drivers/st/stm32mp_clkfunc.h>
20 #include <drivers/st/stm32mp1_clk.h>
21 #include <drivers/st/stm32mp1_rcc.h>
22 #include <dt-bindings/clock/stm32mp1-clksrc.h>
23 #include <lib/mmio.h>
24 #include <lib/spinlock.h>
25 #include <lib/utils_def.h>
26 #include <libfdt.h>
27 #include <plat/common/platform.h>
28 
29 #include <platform_def.h>
30 
31 #define MAX_HSI_HZ		64000000
32 #define USB_PHY_48_MHZ		48000000
33 
34 #define TIMEOUT_US_200MS	U(200000)
35 #define TIMEOUT_US_1S		U(1000000)
36 
37 #define PLLRDY_TIMEOUT		TIMEOUT_US_200MS
38 #define CLKSRC_TIMEOUT		TIMEOUT_US_200MS
39 #define CLKDIV_TIMEOUT		TIMEOUT_US_200MS
40 #define HSIDIV_TIMEOUT		TIMEOUT_US_200MS
41 #define OSCRDY_TIMEOUT		TIMEOUT_US_1S
42 
43 const char *stm32mp_osc_node_label[NB_OSC] = {
44 	[_LSI] = "clk-lsi",
45 	[_LSE] = "clk-lse",
46 	[_HSI] = "clk-hsi",
47 	[_HSE] = "clk-hse",
48 	[_CSI] = "clk-csi",
49 	[_I2S_CKIN] = "i2s_ckin",
50 };
51 
52 enum stm32mp1_parent_id {
53 /* Oscillators are defined in enum stm32mp_osc_id */
54 
55 /* Other parent source */
56 	_HSI_KER = NB_OSC,
57 	_HSE_KER,
58 	_HSE_KER_DIV2,
59 	_HSE_RTC,
60 	_CSI_KER,
61 	_PLL1_P,
62 	_PLL1_Q,
63 	_PLL1_R,
64 	_PLL2_P,
65 	_PLL2_Q,
66 	_PLL2_R,
67 	_PLL3_P,
68 	_PLL3_Q,
69 	_PLL3_R,
70 	_PLL4_P,
71 	_PLL4_Q,
72 	_PLL4_R,
73 	_ACLK,
74 	_PCLK1,
75 	_PCLK2,
76 	_PCLK3,
77 	_PCLK4,
78 	_PCLK5,
79 	_HCLK6,
80 	_HCLK2,
81 	_CK_PER,
82 	_CK_MPU,
83 	_CK_MCU,
84 	_USB_PHY_48,
85 	_PARENT_NB,
86 	_UNKNOWN_ID = 0xff,
87 };
88 
89 /* Lists only the parent clock we are interested in */
90 enum stm32mp1_parent_sel {
91 	_I2C12_SEL,
92 	_I2C35_SEL,
93 	_STGEN_SEL,
94 	_I2C46_SEL,
95 	_SPI6_SEL,
96 	_UART1_SEL,
97 	_RNG1_SEL,
98 	_UART6_SEL,
99 	_UART24_SEL,
100 	_UART35_SEL,
101 	_UART78_SEL,
102 	_SDMMC12_SEL,
103 	_SDMMC3_SEL,
104 	_QSPI_SEL,
105 	_FMC_SEL,
106 	_AXIS_SEL,
107 	_MCUS_SEL,
108 	_USBPHY_SEL,
109 	_USBO_SEL,
110 	_MPU_SEL,
111 	_CKPER_SEL,
112 	_RTC_SEL,
113 	_PARENT_SEL_NB,
114 	_UNKNOWN_SEL = 0xff,
115 };
116 
117 /* State the parent clock ID straight related to a clock */
118 static const uint8_t parent_id_clock_id[_PARENT_NB] = {
119 	[_HSE] = CK_HSE,
120 	[_HSI] = CK_HSI,
121 	[_CSI] = CK_CSI,
122 	[_LSE] = CK_LSE,
123 	[_LSI] = CK_LSI,
124 	[_I2S_CKIN] = _UNKNOWN_ID,
125 	[_USB_PHY_48] = _UNKNOWN_ID,
126 	[_HSI_KER] = CK_HSI,
127 	[_HSE_KER] = CK_HSE,
128 	[_HSE_KER_DIV2] = CK_HSE_DIV2,
129 	[_HSE_RTC] = _UNKNOWN_ID,
130 	[_CSI_KER] = CK_CSI,
131 	[_PLL1_P] = PLL1_P,
132 	[_PLL1_Q] = PLL1_Q,
133 	[_PLL1_R] = PLL1_R,
134 	[_PLL2_P] = PLL2_P,
135 	[_PLL2_Q] = PLL2_Q,
136 	[_PLL2_R] = PLL2_R,
137 	[_PLL3_P] = PLL3_P,
138 	[_PLL3_Q] = PLL3_Q,
139 	[_PLL3_R] = PLL3_R,
140 	[_PLL4_P] = PLL4_P,
141 	[_PLL4_Q] = PLL4_Q,
142 	[_PLL4_R] = PLL4_R,
143 	[_ACLK] = CK_AXI,
144 	[_PCLK1] = CK_AXI,
145 	[_PCLK2] = CK_AXI,
146 	[_PCLK3] = CK_AXI,
147 	[_PCLK4] = CK_AXI,
148 	[_PCLK5] = CK_AXI,
149 	[_CK_PER] = CK_PER,
150 	[_CK_MPU] = CK_MPU,
151 	[_CK_MCU] = CK_MCU,
152 };
153 
154 static unsigned int clock_id2parent_id(unsigned long id)
155 {
156 	unsigned int n;
157 
158 	for (n = 0U; n < ARRAY_SIZE(parent_id_clock_id); n++) {
159 		if (parent_id_clock_id[n] == id) {
160 			return n;
161 		}
162 	}
163 
164 	return _UNKNOWN_ID;
165 }
166 
167 enum stm32mp1_pll_id {
168 	_PLL1,
169 	_PLL2,
170 	_PLL3,
171 	_PLL4,
172 	_PLL_NB
173 };
174 
175 enum stm32mp1_div_id {
176 	_DIV_P,
177 	_DIV_Q,
178 	_DIV_R,
179 	_DIV_NB,
180 };
181 
182 enum stm32mp1_clksrc_id {
183 	CLKSRC_MPU,
184 	CLKSRC_AXI,
185 	CLKSRC_MCU,
186 	CLKSRC_PLL12,
187 	CLKSRC_PLL3,
188 	CLKSRC_PLL4,
189 	CLKSRC_RTC,
190 	CLKSRC_MCO1,
191 	CLKSRC_MCO2,
192 	CLKSRC_NB
193 };
194 
195 enum stm32mp1_clkdiv_id {
196 	CLKDIV_MPU,
197 	CLKDIV_AXI,
198 	CLKDIV_MCU,
199 	CLKDIV_APB1,
200 	CLKDIV_APB2,
201 	CLKDIV_APB3,
202 	CLKDIV_APB4,
203 	CLKDIV_APB5,
204 	CLKDIV_RTC,
205 	CLKDIV_MCO1,
206 	CLKDIV_MCO2,
207 	CLKDIV_NB
208 };
209 
210 enum stm32mp1_pllcfg {
211 	PLLCFG_M,
212 	PLLCFG_N,
213 	PLLCFG_P,
214 	PLLCFG_Q,
215 	PLLCFG_R,
216 	PLLCFG_O,
217 	PLLCFG_NB
218 };
219 
220 enum stm32mp1_pllcsg {
221 	PLLCSG_MOD_PER,
222 	PLLCSG_INC_STEP,
223 	PLLCSG_SSCG_MODE,
224 	PLLCSG_NB
225 };
226 
227 enum stm32mp1_plltype {
228 	PLL_800,
229 	PLL_1600,
230 	PLL_TYPE_NB
231 };
232 
233 struct stm32mp1_pll {
234 	uint8_t refclk_min;
235 	uint8_t refclk_max;
236 	uint8_t divn_max;
237 };
238 
239 struct stm32mp1_clk_gate {
240 	uint16_t offset;
241 	uint8_t bit;
242 	uint8_t index;
243 	uint8_t set_clr;
244 	uint8_t secure;
245 	uint8_t sel; /* Relates to enum stm32mp1_parent_sel */
246 	uint8_t fixed; /* Relates to enum stm32mp1_parent_id */
247 };
248 
249 struct stm32mp1_clk_sel {
250 	uint16_t offset;
251 	uint8_t src;
252 	uint8_t msk;
253 	uint8_t nb_parent;
254 	const uint8_t *parent;
255 };
256 
257 #define REFCLK_SIZE 4
258 struct stm32mp1_clk_pll {
259 	enum stm32mp1_plltype plltype;
260 	uint16_t rckxselr;
261 	uint16_t pllxcfgr1;
262 	uint16_t pllxcfgr2;
263 	uint16_t pllxfracr;
264 	uint16_t pllxcr;
265 	uint16_t pllxcsgr;
266 	enum stm32mp_osc_id refclk[REFCLK_SIZE];
267 };
268 
269 /* Clocks with selectable source and non set/clr register access */
270 #define _CLK_SELEC(sec, off, b, idx, s)			\
271 	{						\
272 		.offset = (off),			\
273 		.bit = (b),				\
274 		.index = (idx),				\
275 		.set_clr = 0,				\
276 		.secure = (sec),			\
277 		.sel = (s),				\
278 		.fixed = _UNKNOWN_ID,			\
279 	}
280 
281 /* Clocks with fixed source and non set/clr register access */
282 #define _CLK_FIXED(sec, off, b, idx, f)			\
283 	{						\
284 		.offset = (off),			\
285 		.bit = (b),				\
286 		.index = (idx),				\
287 		.set_clr = 0,				\
288 		.secure = (sec),			\
289 		.sel = _UNKNOWN_SEL,			\
290 		.fixed = (f),				\
291 	}
292 
293 /* Clocks with selectable source and set/clr register access */
294 #define _CLK_SC_SELEC(sec, off, b, idx, s)			\
295 	{						\
296 		.offset = (off),			\
297 		.bit = (b),				\
298 		.index = (idx),				\
299 		.set_clr = 1,				\
300 		.secure = (sec),			\
301 		.sel = (s),				\
302 		.fixed = _UNKNOWN_ID,			\
303 	}
304 
305 /* Clocks with fixed source and set/clr register access */
306 #define _CLK_SC_FIXED(sec, off, b, idx, f)			\
307 	{						\
308 		.offset = (off),			\
309 		.bit = (b),				\
310 		.index = (idx),				\
311 		.set_clr = 1,				\
312 		.secure = (sec),			\
313 		.sel = _UNKNOWN_SEL,			\
314 		.fixed = (f),				\
315 	}
316 
317 #define _CLK_PARENT_SEL(_label, _rcc_selr, _parents)		\
318 	[_ ## _label ## _SEL] = {				\
319 		.offset = _rcc_selr,				\
320 		.src = _rcc_selr ## _ ## _label ## SRC_SHIFT,	\
321 		.msk = (_rcc_selr ## _ ## _label ## SRC_MASK) >> \
322 		       (_rcc_selr ## _ ## _label ## SRC_SHIFT), \
323 		.parent = (_parents),				\
324 		.nb_parent = ARRAY_SIZE(_parents)		\
325 	}
326 
327 #define _CLK_PLL(idx, type, off1, off2, off3,		\
328 		 off4, off5, off6,			\
329 		 p1, p2, p3, p4)			\
330 	[(idx)] = {					\
331 		.plltype = (type),			\
332 		.rckxselr = (off1),			\
333 		.pllxcfgr1 = (off2),			\
334 		.pllxcfgr2 = (off3),			\
335 		.pllxfracr = (off4),			\
336 		.pllxcr = (off5),			\
337 		.pllxcsgr = (off6),			\
338 		.refclk[0] = (p1),			\
339 		.refclk[1] = (p2),			\
340 		.refclk[2] = (p3),			\
341 		.refclk[3] = (p4),			\
342 	}
343 
344 #define NB_GATES	ARRAY_SIZE(stm32mp1_clk_gate)
345 
346 #define SEC		1
347 #define N_S		0
348 
349 static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
350 	_CLK_FIXED(SEC, RCC_DDRITFCR, 0, DDRC1, _ACLK),
351 	_CLK_FIXED(SEC, RCC_DDRITFCR, 1, DDRC1LP, _ACLK),
352 	_CLK_FIXED(SEC, RCC_DDRITFCR, 2, DDRC2, _ACLK),
353 	_CLK_FIXED(SEC, RCC_DDRITFCR, 3, DDRC2LP, _ACLK),
354 	_CLK_FIXED(SEC, RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
355 	_CLK_FIXED(SEC, RCC_DDRITFCR, 5, DDRPHYCLP, _PLL2_R),
356 	_CLK_FIXED(SEC, RCC_DDRITFCR, 6, DDRCAPB, _PCLK4),
357 	_CLK_FIXED(SEC, RCC_DDRITFCR, 7, DDRCAPBLP, _PCLK4),
358 	_CLK_FIXED(SEC, RCC_DDRITFCR, 8, AXIDCG, _ACLK),
359 	_CLK_FIXED(SEC, RCC_DDRITFCR, 9, DDRPHYCAPB, _PCLK4),
360 	_CLK_FIXED(SEC, RCC_DDRITFCR, 10, DDRPHYCAPBLP, _PCLK4),
361 
362 	_CLK_SC_FIXED(N_S, RCC_MP_APB1ENSETR, 6, TIM12_K, _PCLK1),
363 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
364 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
365 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
366 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
367 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
368 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
369 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 21, I2C1_K, _I2C12_SEL),
370 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 22, I2C2_K, _I2C12_SEL),
371 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 23, I2C3_K, _I2C35_SEL),
372 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 24, I2C5_K, _I2C35_SEL),
373 
374 	_CLK_SC_FIXED(N_S, RCC_MP_APB2ENSETR, 2, TIM15_K, _PCLK2),
375 	_CLK_SC_SELEC(N_S, RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
376 
377 	_CLK_SC_FIXED(N_S, RCC_MP_APB3ENSETR, 11, SYSCFG, _UNKNOWN_ID),
378 
379 	_CLK_SC_SELEC(N_S, RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
380 	_CLK_SC_SELEC(N_S, RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
381 	_CLK_SC_SELEC(N_S, RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
382 
383 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 0, SPI6_K, _SPI6_SEL),
384 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
385 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 3, I2C6_K, _I2C46_SEL),
386 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 4, USART1_K, _UART1_SEL),
387 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 8, RTCAPB, _PCLK5),
388 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 11, TZC1, _PCLK5),
389 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 12, TZC2, _PCLK5),
390 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 13, TZPC, _PCLK5),
391 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 15, IWDG1, _PCLK5),
392 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 16, BSEC, _PCLK5),
393 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
394 
395 	_CLK_SC_SELEC(N_S, RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
396 	_CLK_SC_SELEC(N_S, RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
397 
398 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
399 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
400 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
401 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
402 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
403 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
404 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
405 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
406 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
407 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
408 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
409 
410 	_CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 0, GPIOZ, _PCLK5),
411 	_CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 4, CRYP1, _PCLK5),
412 	_CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 5, HASH1, _PCLK5),
413 	_CLK_SC_SELEC(SEC, RCC_MP_AHB5ENSETR, 6, RNG1_K, _RNG1_SEL),
414 	_CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 8, BKPSRAM, _PCLK5),
415 
416 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
417 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
418 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
419 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
420 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
421 
422 	_CLK_SELEC(SEC, RCC_BDCR, 20, RTC, _RTC_SEL),
423 	_CLK_SELEC(N_S, RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
424 };
425 
426 static const uint8_t i2c12_parents[] = {
427 	_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
428 };
429 
430 static const uint8_t i2c35_parents[] = {
431 	_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
432 };
433 
434 static const uint8_t stgen_parents[] = {
435 	_HSI_KER, _HSE_KER
436 };
437 
438 static const uint8_t i2c46_parents[] = {
439 	_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER
440 };
441 
442 static const uint8_t spi6_parents[] = {
443 	_PCLK5, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER, _PLL3_Q
444 };
445 
446 static const uint8_t usart1_parents[] = {
447 	_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER, _PLL4_Q, _HSE_KER
448 };
449 
450 static const uint8_t rng1_parents[] = {
451 	_CSI, _PLL4_R, _LSE, _LSI
452 };
453 
454 static const uint8_t uart6_parents[] = {
455 	_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
456 };
457 
458 static const uint8_t uart234578_parents[] = {
459 	_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
460 };
461 
462 static const uint8_t sdmmc12_parents[] = {
463 	_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER
464 };
465 
466 static const uint8_t sdmmc3_parents[] = {
467 	_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER
468 };
469 
470 static const uint8_t qspi_parents[] = {
471 	_ACLK, _PLL3_R, _PLL4_P, _CK_PER
472 };
473 
474 static const uint8_t fmc_parents[] = {
475 	_ACLK, _PLL3_R, _PLL4_P, _CK_PER
476 };
477 
478 static const uint8_t axiss_parents[] = {
479 	_HSI, _HSE, _PLL2_P
480 };
481 
482 static const uint8_t mcuss_parents[] = {
483 	_HSI, _HSE, _CSI, _PLL3_P
484 };
485 
486 static const uint8_t usbphy_parents[] = {
487 	_HSE_KER, _PLL4_R, _HSE_KER_DIV2
488 };
489 
490 static const uint8_t usbo_parents[] = {
491 	_PLL4_R, _USB_PHY_48
492 };
493 
494 static const uint8_t mpu_parents[] = {
495 	_HSI, _HSE, _PLL1_P, _PLL1_P /* specific div */
496 };
497 
498 static const uint8_t per_parents[] = {
499 	_HSI, _HSE, _CSI,
500 };
501 
502 static const uint8_t rtc_parents[] = {
503 	_UNKNOWN_ID, _LSE, _LSI, _HSE_RTC
504 };
505 
506 static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
507 	_CLK_PARENT_SEL(I2C12, RCC_I2C12CKSELR, i2c12_parents),
508 	_CLK_PARENT_SEL(I2C35, RCC_I2C35CKSELR, i2c35_parents),
509 	_CLK_PARENT_SEL(STGEN, RCC_STGENCKSELR, stgen_parents),
510 	_CLK_PARENT_SEL(I2C46, RCC_I2C46CKSELR, i2c46_parents),
511 	_CLK_PARENT_SEL(SPI6, RCC_SPI6CKSELR, spi6_parents),
512 	_CLK_PARENT_SEL(UART1, RCC_UART1CKSELR, usart1_parents),
513 	_CLK_PARENT_SEL(RNG1, RCC_RNG1CKSELR, rng1_parents),
514 	_CLK_PARENT_SEL(MPU, RCC_MPCKSELR, mpu_parents),
515 	_CLK_PARENT_SEL(CKPER, RCC_CPERCKSELR, per_parents),
516 	_CLK_PARENT_SEL(RTC, RCC_BDCR, rtc_parents),
517 	_CLK_PARENT_SEL(UART6, RCC_UART6CKSELR, uart6_parents),
518 	_CLK_PARENT_SEL(UART24, RCC_UART24CKSELR, uart234578_parents),
519 	_CLK_PARENT_SEL(UART35, RCC_UART35CKSELR, uart234578_parents),
520 	_CLK_PARENT_SEL(UART78, RCC_UART78CKSELR, uart234578_parents),
521 	_CLK_PARENT_SEL(SDMMC12, RCC_SDMMC12CKSELR, sdmmc12_parents),
522 	_CLK_PARENT_SEL(SDMMC3, RCC_SDMMC3CKSELR, sdmmc3_parents),
523 	_CLK_PARENT_SEL(QSPI, RCC_QSPICKSELR, qspi_parents),
524 	_CLK_PARENT_SEL(FMC, RCC_FMCCKSELR, fmc_parents),
525 	_CLK_PARENT_SEL(AXIS, RCC_ASSCKSELR, axiss_parents),
526 	_CLK_PARENT_SEL(MCUS, RCC_MSSCKSELR, mcuss_parents),
527 	_CLK_PARENT_SEL(USBPHY, RCC_USBCKSELR, usbphy_parents),
528 	_CLK_PARENT_SEL(USBO, RCC_USBCKSELR, usbo_parents),
529 };
530 
531 /* Define characteristic of PLL according type */
532 #define DIVN_MIN	24
533 static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
534 	[PLL_800] = {
535 		.refclk_min = 4,
536 		.refclk_max = 16,
537 		.divn_max = 99,
538 	},
539 	[PLL_1600] = {
540 		.refclk_min = 8,
541 		.refclk_max = 16,
542 		.divn_max = 199,
543 	},
544 };
545 
546 /* PLLNCFGR2 register divider by output */
547 static const uint8_t pllncfgr2[_DIV_NB] = {
548 	[_DIV_P] = RCC_PLLNCFGR2_DIVP_SHIFT,
549 	[_DIV_Q] = RCC_PLLNCFGR2_DIVQ_SHIFT,
550 	[_DIV_R] = RCC_PLLNCFGR2_DIVR_SHIFT,
551 };
552 
553 static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = {
554 	_CLK_PLL(_PLL1, PLL_1600,
555 		 RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
556 		 RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
557 		 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
558 	_CLK_PLL(_PLL2, PLL_1600,
559 		 RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
560 		 RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
561 		 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
562 	_CLK_PLL(_PLL3, PLL_800,
563 		 RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
564 		 RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
565 		 _HSI, _HSE, _CSI, _UNKNOWN_OSC_ID),
566 	_CLK_PLL(_PLL4, PLL_800,
567 		 RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
568 		 RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
569 		 _HSI, _HSE, _CSI, _I2S_CKIN),
570 };
571 
572 /* Prescaler table lookups for clock computation */
573 /* div = /1 /2 /4 /8 / 16 /64 /128 /512 */
574 static const uint8_t stm32mp1_mcu_div[16] = {
575 	0, 1, 2, 3, 4, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9
576 };
577 
578 /* div = /1 /2 /4 /8 /16 : same divider for PMU and APBX */
579 #define stm32mp1_mpu_div stm32mp1_mpu_apbx_div
580 #define stm32mp1_apbx_div stm32mp1_mpu_apbx_div
581 static const uint8_t stm32mp1_mpu_apbx_div[8] = {
582 	0, 1, 2, 3, 4, 4, 4, 4
583 };
584 
585 /* div = /1 /2 /3 /4 */
586 static const uint8_t stm32mp1_axi_div[8] = {
587 	1, 2, 3, 4, 4, 4, 4, 4
588 };
589 
590 static const char * const stm32mp1_clk_parent_name[_PARENT_NB] __unused = {
591 	[_HSI] = "HSI",
592 	[_HSE] = "HSE",
593 	[_CSI] = "CSI",
594 	[_LSI] = "LSI",
595 	[_LSE] = "LSE",
596 	[_I2S_CKIN] = "I2S_CKIN",
597 	[_HSI_KER] = "HSI_KER",
598 	[_HSE_KER] = "HSE_KER",
599 	[_HSE_KER_DIV2] = "HSE_KER_DIV2",
600 	[_HSE_RTC] = "HSE_RTC",
601 	[_CSI_KER] = "CSI_KER",
602 	[_PLL1_P] = "PLL1_P",
603 	[_PLL1_Q] = "PLL1_Q",
604 	[_PLL1_R] = "PLL1_R",
605 	[_PLL2_P] = "PLL2_P",
606 	[_PLL2_Q] = "PLL2_Q",
607 	[_PLL2_R] = "PLL2_R",
608 	[_PLL3_P] = "PLL3_P",
609 	[_PLL3_Q] = "PLL3_Q",
610 	[_PLL3_R] = "PLL3_R",
611 	[_PLL4_P] = "PLL4_P",
612 	[_PLL4_Q] = "PLL4_Q",
613 	[_PLL4_R] = "PLL4_R",
614 	[_ACLK] = "ACLK",
615 	[_PCLK1] = "PCLK1",
616 	[_PCLK2] = "PCLK2",
617 	[_PCLK3] = "PCLK3",
618 	[_PCLK4] = "PCLK4",
619 	[_PCLK5] = "PCLK5",
620 	[_HCLK6] = "KCLK6",
621 	[_HCLK2] = "HCLK2",
622 	[_CK_PER] = "CK_PER",
623 	[_CK_MPU] = "CK_MPU",
624 	[_CK_MCU] = "CK_MCU",
625 	[_USB_PHY_48] = "USB_PHY_48",
626 };
627 
628 /* RCC clock device driver private */
629 static unsigned long stm32mp1_osc[NB_OSC];
630 static struct spinlock reg_lock;
631 static unsigned int gate_refcounts[NB_GATES];
632 static struct spinlock refcount_lock;
633 
634 static const struct stm32mp1_clk_gate *gate_ref(unsigned int idx)
635 {
636 	return &stm32mp1_clk_gate[idx];
637 }
638 
639 static const struct stm32mp1_clk_sel *clk_sel_ref(unsigned int idx)
640 {
641 	return &stm32mp1_clk_sel[idx];
642 }
643 
644 static const struct stm32mp1_clk_pll *pll_ref(unsigned int idx)
645 {
646 	return &stm32mp1_clk_pll[idx];
647 }
648 
649 static void stm32mp1_clk_lock(struct spinlock *lock)
650 {
651 	if (stm32mp_lock_available()) {
652 		/* Assume interrupts are masked */
653 		spin_lock(lock);
654 	}
655 }
656 
657 static void stm32mp1_clk_unlock(struct spinlock *lock)
658 {
659 	if (stm32mp_lock_available()) {
660 		spin_unlock(lock);
661 	}
662 }
663 
664 bool stm32mp1_rcc_is_secure(void)
665 {
666 	uintptr_t rcc_base = stm32mp_rcc_base();
667 	uint32_t mask = RCC_TZCR_TZEN;
668 
669 	return (mmio_read_32(rcc_base + RCC_TZCR) & mask) == mask;
670 }
671 
672 bool stm32mp1_rcc_is_mckprot(void)
673 {
674 	uintptr_t rcc_base = stm32mp_rcc_base();
675 	uint32_t mask = RCC_TZCR_TZEN | RCC_TZCR_MCKPROT;
676 
677 	return (mmio_read_32(rcc_base + RCC_TZCR) & mask) == mask;
678 }
679 
680 void stm32mp1_clk_rcc_regs_lock(void)
681 {
682 	stm32mp1_clk_lock(&reg_lock);
683 }
684 
685 void stm32mp1_clk_rcc_regs_unlock(void)
686 {
687 	stm32mp1_clk_unlock(&reg_lock);
688 }
689 
690 static unsigned long stm32mp1_clk_get_fixed(enum stm32mp_osc_id idx)
691 {
692 	if (idx >= NB_OSC) {
693 		return 0;
694 	}
695 
696 	return stm32mp1_osc[idx];
697 }
698 
699 static int stm32mp1_clk_get_gated_id(unsigned long id)
700 {
701 	unsigned int i;
702 
703 	for (i = 0U; i < NB_GATES; i++) {
704 		if (gate_ref(i)->index == id) {
705 			return i;
706 		}
707 	}
708 
709 	ERROR("%s: clk id %lu not found\n", __func__, id);
710 
711 	return -EINVAL;
712 }
713 
714 static enum stm32mp1_parent_sel stm32mp1_clk_get_sel(int i)
715 {
716 	return (enum stm32mp1_parent_sel)(gate_ref(i)->sel);
717 }
718 
719 static enum stm32mp1_parent_id stm32mp1_clk_get_fixed_parent(int i)
720 {
721 	return (enum stm32mp1_parent_id)(gate_ref(i)->fixed);
722 }
723 
724 static int stm32mp1_clk_get_parent(unsigned long id)
725 {
726 	const struct stm32mp1_clk_sel *sel;
727 	uint32_t p_sel;
728 	int i;
729 	enum stm32mp1_parent_id p;
730 	enum stm32mp1_parent_sel s;
731 	uintptr_t rcc_base = stm32mp_rcc_base();
732 
733 	/* Few non gateable clock have a static parent ID, find them */
734 	i = (int)clock_id2parent_id(id);
735 	if (i != _UNKNOWN_ID) {
736 		return i;
737 	}
738 
739 	i = stm32mp1_clk_get_gated_id(id);
740 	if (i < 0) {
741 		panic();
742 	}
743 
744 	p = stm32mp1_clk_get_fixed_parent(i);
745 	if (p < _PARENT_NB) {
746 		return (int)p;
747 	}
748 
749 	s = stm32mp1_clk_get_sel(i);
750 	if (s == _UNKNOWN_SEL) {
751 		return -EINVAL;
752 	}
753 	if (s >= _PARENT_SEL_NB) {
754 		panic();
755 	}
756 
757 	sel = clk_sel_ref(s);
758 	p_sel = (mmio_read_32(rcc_base + sel->offset) &
759 		 (sel->msk << sel->src)) >> sel->src;
760 	if (p_sel < sel->nb_parent) {
761 		return (int)sel->parent[p_sel];
762 	}
763 
764 	return -EINVAL;
765 }
766 
767 static unsigned long stm32mp1_pll_get_fref(const struct stm32mp1_clk_pll *pll)
768 {
769 	uint32_t selr = mmio_read_32(stm32mp_rcc_base() + pll->rckxselr);
770 	uint32_t src = selr & RCC_SELR_REFCLK_SRC_MASK;
771 
772 	return stm32mp1_clk_get_fixed(pll->refclk[src]);
773 }
774 
775 /*
776  * pll_get_fvco() : return the VCO or (VCO / 2) frequency for the requested PLL
777  * - PLL1 & PLL2 => return VCO / 2 with Fpll_y_ck = FVCO / 2 * (DIVy + 1)
778  * - PLL3 & PLL4 => return VCO     with Fpll_y_ck = FVCO / (DIVy + 1)
779  * => in all cases Fpll_y_ck = pll_get_fvco() / (DIVy + 1)
780  */
781 static unsigned long stm32mp1_pll_get_fvco(const struct stm32mp1_clk_pll *pll)
782 {
783 	unsigned long refclk, fvco;
784 	uint32_t cfgr1, fracr, divm, divn;
785 	uintptr_t rcc_base = stm32mp_rcc_base();
786 
787 	cfgr1 = mmio_read_32(rcc_base + pll->pllxcfgr1);
788 	fracr = mmio_read_32(rcc_base + pll->pllxfracr);
789 
790 	divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
791 	divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
792 
793 	refclk = stm32mp1_pll_get_fref(pll);
794 
795 	/*
796 	 * With FRACV :
797 	 *   Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1)
798 	 * Without FRACV
799 	 *   Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1)
800 	 */
801 	if ((fracr & RCC_PLLNFRACR_FRACLE) != 0U) {
802 		uint32_t fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK) >>
803 				 RCC_PLLNFRACR_FRACV_SHIFT;
804 		unsigned long long numerator, denominator;
805 
806 		numerator = (((unsigned long long)divn + 1U) << 13) + fracv;
807 		numerator = refclk * numerator;
808 		denominator = ((unsigned long long)divm + 1U) << 13;
809 		fvco = (unsigned long)(numerator / denominator);
810 	} else {
811 		fvco = (unsigned long)(refclk * (divn + 1U) / (divm + 1U));
812 	}
813 
814 	return fvco;
815 }
816 
817 static unsigned long stm32mp1_read_pll_freq(enum stm32mp1_pll_id pll_id,
818 					    enum stm32mp1_div_id div_id)
819 {
820 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
821 	unsigned long dfout;
822 	uint32_t cfgr2, divy;
823 
824 	if (div_id >= _DIV_NB) {
825 		return 0;
826 	}
827 
828 	cfgr2 = mmio_read_32(stm32mp_rcc_base() + pll->pllxcfgr2);
829 	divy = (cfgr2 >> pllncfgr2[div_id]) & RCC_PLLNCFGR2_DIVX_MASK;
830 
831 	dfout = stm32mp1_pll_get_fvco(pll) / (divy + 1U);
832 
833 	return dfout;
834 }
835 
836 static unsigned long get_clock_rate(int p)
837 {
838 	uint32_t reg, clkdiv;
839 	unsigned long clock = 0;
840 	uintptr_t rcc_base = stm32mp_rcc_base();
841 
842 	switch (p) {
843 	case _CK_MPU:
844 	/* MPU sub system */
845 		reg = mmio_read_32(rcc_base + RCC_MPCKSELR);
846 		switch (reg & RCC_SELR_SRC_MASK) {
847 		case RCC_MPCKSELR_HSI:
848 			clock = stm32mp1_clk_get_fixed(_HSI);
849 			break;
850 		case RCC_MPCKSELR_HSE:
851 			clock = stm32mp1_clk_get_fixed(_HSE);
852 			break;
853 		case RCC_MPCKSELR_PLL:
854 			clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
855 			break;
856 		case RCC_MPCKSELR_PLL_MPUDIV:
857 			clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
858 
859 			reg = mmio_read_32(rcc_base + RCC_MPCKDIVR);
860 			clkdiv = reg & RCC_MPUDIV_MASK;
861 			clock >>= stm32mp1_mpu_div[clkdiv];
862 			break;
863 		default:
864 			break;
865 		}
866 		break;
867 	/* AXI sub system */
868 	case _ACLK:
869 	case _HCLK2:
870 	case _HCLK6:
871 	case _PCLK4:
872 	case _PCLK5:
873 		reg = mmio_read_32(rcc_base + RCC_ASSCKSELR);
874 		switch (reg & RCC_SELR_SRC_MASK) {
875 		case RCC_ASSCKSELR_HSI:
876 			clock = stm32mp1_clk_get_fixed(_HSI);
877 			break;
878 		case RCC_ASSCKSELR_HSE:
879 			clock = stm32mp1_clk_get_fixed(_HSE);
880 			break;
881 		case RCC_ASSCKSELR_PLL:
882 			clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
883 			break;
884 		default:
885 			break;
886 		}
887 
888 		/* System clock divider */
889 		reg = mmio_read_32(rcc_base + RCC_AXIDIVR);
890 		clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK];
891 
892 		switch (p) {
893 		case _PCLK4:
894 			reg = mmio_read_32(rcc_base + RCC_APB4DIVR);
895 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
896 			break;
897 		case _PCLK5:
898 			reg = mmio_read_32(rcc_base + RCC_APB5DIVR);
899 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
900 			break;
901 		default:
902 			break;
903 		}
904 		break;
905 	/* MCU sub system */
906 	case _CK_MCU:
907 	case _PCLK1:
908 	case _PCLK2:
909 	case _PCLK3:
910 		reg = mmio_read_32(rcc_base + RCC_MSSCKSELR);
911 		switch (reg & RCC_SELR_SRC_MASK) {
912 		case RCC_MSSCKSELR_HSI:
913 			clock = stm32mp1_clk_get_fixed(_HSI);
914 			break;
915 		case RCC_MSSCKSELR_HSE:
916 			clock = stm32mp1_clk_get_fixed(_HSE);
917 			break;
918 		case RCC_MSSCKSELR_CSI:
919 			clock = stm32mp1_clk_get_fixed(_CSI);
920 			break;
921 		case RCC_MSSCKSELR_PLL:
922 			clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
923 			break;
924 		default:
925 			break;
926 		}
927 
928 		/* MCU clock divider */
929 		reg = mmio_read_32(rcc_base + RCC_MCUDIVR);
930 		clock >>= stm32mp1_mcu_div[reg & RCC_MCUDIV_MASK];
931 
932 		switch (p) {
933 		case _PCLK1:
934 			reg = mmio_read_32(rcc_base + RCC_APB1DIVR);
935 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
936 			break;
937 		case _PCLK2:
938 			reg = mmio_read_32(rcc_base + RCC_APB2DIVR);
939 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
940 			break;
941 		case _PCLK3:
942 			reg = mmio_read_32(rcc_base + RCC_APB3DIVR);
943 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
944 			break;
945 		case _CK_MCU:
946 		default:
947 			break;
948 		}
949 		break;
950 	case _CK_PER:
951 		reg = mmio_read_32(rcc_base + RCC_CPERCKSELR);
952 		switch (reg & RCC_SELR_SRC_MASK) {
953 		case RCC_CPERCKSELR_HSI:
954 			clock = stm32mp1_clk_get_fixed(_HSI);
955 			break;
956 		case RCC_CPERCKSELR_HSE:
957 			clock = stm32mp1_clk_get_fixed(_HSE);
958 			break;
959 		case RCC_CPERCKSELR_CSI:
960 			clock = stm32mp1_clk_get_fixed(_CSI);
961 			break;
962 		default:
963 			break;
964 		}
965 		break;
966 	case _HSI:
967 	case _HSI_KER:
968 		clock = stm32mp1_clk_get_fixed(_HSI);
969 		break;
970 	case _CSI:
971 	case _CSI_KER:
972 		clock = stm32mp1_clk_get_fixed(_CSI);
973 		break;
974 	case _HSE:
975 	case _HSE_KER:
976 		clock = stm32mp1_clk_get_fixed(_HSE);
977 		break;
978 	case _HSE_KER_DIV2:
979 		clock = stm32mp1_clk_get_fixed(_HSE) >> 1;
980 		break;
981 	case _HSE_RTC:
982 		clock = stm32mp1_clk_get_fixed(_HSE);
983 		clock /= (mmio_read_32(rcc_base + RCC_RTCDIVR) & RCC_DIVR_DIV_MASK) + 1U;
984 		break;
985 	case _LSI:
986 		clock = stm32mp1_clk_get_fixed(_LSI);
987 		break;
988 	case _LSE:
989 		clock = stm32mp1_clk_get_fixed(_LSE);
990 		break;
991 	/* PLL */
992 	case _PLL1_P:
993 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
994 		break;
995 	case _PLL1_Q:
996 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_Q);
997 		break;
998 	case _PLL1_R:
999 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_R);
1000 		break;
1001 	case _PLL2_P:
1002 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
1003 		break;
1004 	case _PLL2_Q:
1005 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_Q);
1006 		break;
1007 	case _PLL2_R:
1008 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_R);
1009 		break;
1010 	case _PLL3_P:
1011 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
1012 		break;
1013 	case _PLL3_Q:
1014 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_Q);
1015 		break;
1016 	case _PLL3_R:
1017 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_R);
1018 		break;
1019 	case _PLL4_P:
1020 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_P);
1021 		break;
1022 	case _PLL4_Q:
1023 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_Q);
1024 		break;
1025 	case _PLL4_R:
1026 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_R);
1027 		break;
1028 	/* Other */
1029 	case _USB_PHY_48:
1030 		clock = USB_PHY_48_MHZ;
1031 		break;
1032 	default:
1033 		break;
1034 	}
1035 
1036 	return clock;
1037 }
1038 
1039 static void __clk_enable(struct stm32mp1_clk_gate const *gate)
1040 {
1041 	uintptr_t rcc_base = stm32mp_rcc_base();
1042 
1043 	VERBOSE("Enable clock %u\n", gate->index);
1044 
1045 	if (gate->set_clr != 0U) {
1046 		mmio_write_32(rcc_base + gate->offset, BIT(gate->bit));
1047 	} else {
1048 		mmio_setbits_32(rcc_base + gate->offset, BIT(gate->bit));
1049 	}
1050 }
1051 
1052 static void __clk_disable(struct stm32mp1_clk_gate const *gate)
1053 {
1054 	uintptr_t rcc_base = stm32mp_rcc_base();
1055 
1056 	VERBOSE("Disable clock %u\n", gate->index);
1057 
1058 	if (gate->set_clr != 0U) {
1059 		mmio_write_32(rcc_base + gate->offset + RCC_MP_ENCLRR_OFFSET,
1060 			      BIT(gate->bit));
1061 	} else {
1062 		mmio_clrbits_32(rcc_base + gate->offset, BIT(gate->bit));
1063 	}
1064 }
1065 
1066 static bool __clk_is_enabled(struct stm32mp1_clk_gate const *gate)
1067 {
1068 	uintptr_t rcc_base = stm32mp_rcc_base();
1069 
1070 	return mmio_read_32(rcc_base + gate->offset) & BIT(gate->bit);
1071 }
1072 
1073 /* Oscillators and PLLs are not gated at runtime */
1074 static bool clock_is_always_on(unsigned long id)
1075 {
1076 	switch (id) {
1077 	case CK_HSE:
1078 	case CK_CSI:
1079 	case CK_LSI:
1080 	case CK_LSE:
1081 	case CK_HSI:
1082 	case CK_HSE_DIV2:
1083 	case PLL1_Q:
1084 	case PLL1_R:
1085 	case PLL2_P:
1086 	case PLL2_Q:
1087 	case PLL2_R:
1088 	case PLL3_P:
1089 	case PLL3_Q:
1090 	case PLL3_R:
1091 	case CK_AXI:
1092 	case CK_MPU:
1093 	case CK_MCU:
1094 	case RTC:
1095 		return true;
1096 	default:
1097 		return false;
1098 	}
1099 }
1100 
1101 static void __stm32mp1_clk_enable(unsigned long id, bool with_refcnt)
1102 {
1103 	const struct stm32mp1_clk_gate *gate;
1104 	int i;
1105 
1106 	if (clock_is_always_on(id)) {
1107 		return;
1108 	}
1109 
1110 	i = stm32mp1_clk_get_gated_id(id);
1111 	if (i < 0) {
1112 		ERROR("Clock %lu can't be enabled\n", id);
1113 		panic();
1114 	}
1115 
1116 	gate = gate_ref(i);
1117 
1118 	if (!with_refcnt) {
1119 		__clk_enable(gate);
1120 		return;
1121 	}
1122 
1123 	stm32mp1_clk_lock(&refcount_lock);
1124 
1125 	if (gate_refcounts[i] == 0U) {
1126 		__clk_enable(gate);
1127 	}
1128 
1129 	gate_refcounts[i]++;
1130 	if (gate_refcounts[i] == UINT_MAX) {
1131 		ERROR("Clock %lu refcount reached max value\n", id);
1132 		panic();
1133 	}
1134 
1135 	stm32mp1_clk_unlock(&refcount_lock);
1136 }
1137 
1138 static void __stm32mp1_clk_disable(unsigned long id, bool with_refcnt)
1139 {
1140 	const struct stm32mp1_clk_gate *gate;
1141 	int i;
1142 
1143 	if (clock_is_always_on(id)) {
1144 		return;
1145 	}
1146 
1147 	i = stm32mp1_clk_get_gated_id(id);
1148 	if (i < 0) {
1149 		ERROR("Clock %lu can't be disabled\n", id);
1150 		panic();
1151 	}
1152 
1153 	gate = gate_ref(i);
1154 
1155 	if (!with_refcnt) {
1156 		__clk_disable(gate);
1157 		return;
1158 	}
1159 
1160 	stm32mp1_clk_lock(&refcount_lock);
1161 
1162 	if (gate_refcounts[i] == 0U) {
1163 		ERROR("Clock %lu refcount reached 0\n", id);
1164 		panic();
1165 	}
1166 	gate_refcounts[i]--;
1167 
1168 	if (gate_refcounts[i] == 0U) {
1169 		__clk_disable(gate);
1170 	}
1171 
1172 	stm32mp1_clk_unlock(&refcount_lock);
1173 }
1174 
1175 static int stm32mp_clk_enable(unsigned long id)
1176 {
1177 	__stm32mp1_clk_enable(id, true);
1178 
1179 	return 0;
1180 }
1181 
1182 static void stm32mp_clk_disable(unsigned long id)
1183 {
1184 	__stm32mp1_clk_disable(id, true);
1185 }
1186 
1187 static bool stm32mp_clk_is_enabled(unsigned long id)
1188 {
1189 	int i;
1190 
1191 	if (clock_is_always_on(id)) {
1192 		return true;
1193 	}
1194 
1195 	i = stm32mp1_clk_get_gated_id(id);
1196 	if (i < 0) {
1197 		panic();
1198 	}
1199 
1200 	return __clk_is_enabled(gate_ref(i));
1201 }
1202 
1203 static unsigned long stm32mp_clk_get_rate(unsigned long id)
1204 {
1205 	uintptr_t rcc_base = stm32mp_rcc_base();
1206 	int p = stm32mp1_clk_get_parent(id);
1207 	uint32_t prescaler, timpre;
1208 	unsigned long parent_rate;
1209 
1210 	if (p < 0) {
1211 		return 0;
1212 	}
1213 
1214 	parent_rate = get_clock_rate(p);
1215 
1216 	switch (id) {
1217 	case TIM2_K:
1218 	case TIM3_K:
1219 	case TIM4_K:
1220 	case TIM5_K:
1221 	case TIM6_K:
1222 	case TIM7_K:
1223 	case TIM12_K:
1224 	case TIM13_K:
1225 	case TIM14_K:
1226 		prescaler = mmio_read_32(rcc_base + RCC_APB1DIVR) &
1227 			    RCC_APBXDIV_MASK;
1228 		timpre = mmio_read_32(rcc_base + RCC_TIMG1PRER) &
1229 			 RCC_TIMGXPRER_TIMGXPRE;
1230 		break;
1231 
1232 	case TIM1_K:
1233 	case TIM8_K:
1234 	case TIM15_K:
1235 	case TIM16_K:
1236 	case TIM17_K:
1237 		prescaler = mmio_read_32(rcc_base + RCC_APB2DIVR) &
1238 			    RCC_APBXDIV_MASK;
1239 		timpre = mmio_read_32(rcc_base + RCC_TIMG2PRER) &
1240 			 RCC_TIMGXPRER_TIMGXPRE;
1241 		break;
1242 
1243 	default:
1244 		return parent_rate;
1245 	}
1246 
1247 	if (prescaler == 0U) {
1248 		return parent_rate;
1249 	}
1250 
1251 	return parent_rate * (timpre + 1U) * 2U;
1252 }
1253 
1254 static void stm32mp1_ls_osc_set(bool enable, uint32_t offset, uint32_t mask_on)
1255 {
1256 	uintptr_t address = stm32mp_rcc_base() + offset;
1257 
1258 	if (enable) {
1259 		mmio_setbits_32(address, mask_on);
1260 	} else {
1261 		mmio_clrbits_32(address, mask_on);
1262 	}
1263 }
1264 
1265 static void stm32mp1_hs_ocs_set(bool enable, uint32_t mask_on)
1266 {
1267 	uint32_t offset = enable ? RCC_OCENSETR : RCC_OCENCLRR;
1268 	uintptr_t address = stm32mp_rcc_base() + offset;
1269 
1270 	mmio_write_32(address, mask_on);
1271 }
1272 
1273 static int stm32mp1_osc_wait(bool enable, uint32_t offset, uint32_t mask_rdy)
1274 {
1275 	uint64_t timeout;
1276 	uint32_t mask_test;
1277 	uintptr_t address = stm32mp_rcc_base() + offset;
1278 
1279 	if (enable) {
1280 		mask_test = mask_rdy;
1281 	} else {
1282 		mask_test = 0;
1283 	}
1284 
1285 	timeout = timeout_init_us(OSCRDY_TIMEOUT);
1286 	while ((mmio_read_32(address) & mask_rdy) != mask_test) {
1287 		if (timeout_elapsed(timeout)) {
1288 			ERROR("OSC %x @ %lx timeout for enable=%d : 0x%x\n",
1289 			      mask_rdy, address, enable, mmio_read_32(address));
1290 			return -ETIMEDOUT;
1291 		}
1292 	}
1293 
1294 	return 0;
1295 }
1296 
1297 static void stm32mp1_lse_enable(bool bypass, bool digbyp, uint32_t lsedrv)
1298 {
1299 	uint32_t value;
1300 	uintptr_t rcc_base = stm32mp_rcc_base();
1301 
1302 	if (digbyp) {
1303 		mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_DIGBYP);
1304 	}
1305 
1306 	if (bypass || digbyp) {
1307 		mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_LSEBYP);
1308 	}
1309 
1310 	/*
1311 	 * Warning: not recommended to switch directly from "high drive"
1312 	 * to "medium low drive", and vice-versa.
1313 	 */
1314 	value = (mmio_read_32(rcc_base + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK) >>
1315 		RCC_BDCR_LSEDRV_SHIFT;
1316 
1317 	while (value != lsedrv) {
1318 		if (value > lsedrv) {
1319 			value--;
1320 		} else {
1321 			value++;
1322 		}
1323 
1324 		mmio_clrsetbits_32(rcc_base + RCC_BDCR,
1325 				   RCC_BDCR_LSEDRV_MASK,
1326 				   value << RCC_BDCR_LSEDRV_SHIFT);
1327 	}
1328 
1329 	stm32mp1_ls_osc_set(true, RCC_BDCR, RCC_BDCR_LSEON);
1330 }
1331 
1332 static void stm32mp1_lse_wait(void)
1333 {
1334 	if (stm32mp1_osc_wait(true, RCC_BDCR, RCC_BDCR_LSERDY) != 0) {
1335 		VERBOSE("%s: failed\n", __func__);
1336 	}
1337 }
1338 
1339 static void stm32mp1_lsi_set(bool enable)
1340 {
1341 	stm32mp1_ls_osc_set(enable, RCC_RDLSICR, RCC_RDLSICR_LSION);
1342 
1343 	if (stm32mp1_osc_wait(enable, RCC_RDLSICR, RCC_RDLSICR_LSIRDY) != 0) {
1344 		VERBOSE("%s: failed\n", __func__);
1345 	}
1346 }
1347 
1348 static void stm32mp1_hse_enable(bool bypass, bool digbyp, bool css)
1349 {
1350 	uintptr_t rcc_base = stm32mp_rcc_base();
1351 
1352 	if (digbyp) {
1353 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_DIGBYP);
1354 	}
1355 
1356 	if (bypass || digbyp) {
1357 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSEBYP);
1358 	}
1359 
1360 	stm32mp1_hs_ocs_set(true, RCC_OCENR_HSEON);
1361 	if (stm32mp1_osc_wait(true, RCC_OCRDYR, RCC_OCRDYR_HSERDY) != 0) {
1362 		VERBOSE("%s: failed\n", __func__);
1363 	}
1364 
1365 	if (css) {
1366 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSECSSON);
1367 	}
1368 
1369 #if STM32MP_UART_PROGRAMMER || STM32MP_USB_PROGRAMMER
1370 	if ((mmio_read_32(rcc_base + RCC_OCENSETR) & RCC_OCENR_HSEBYP) &&
1371 	    (!(digbyp || bypass))) {
1372 		panic();
1373 	}
1374 #endif
1375 }
1376 
1377 static void stm32mp1_csi_set(bool enable)
1378 {
1379 	stm32mp1_hs_ocs_set(enable, RCC_OCENR_CSION);
1380 	if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_CSIRDY) != 0) {
1381 		VERBOSE("%s: failed\n", __func__);
1382 	}
1383 }
1384 
1385 static void stm32mp1_hsi_set(bool enable)
1386 {
1387 	stm32mp1_hs_ocs_set(enable, RCC_OCENR_HSION);
1388 	if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_HSIRDY) != 0) {
1389 		VERBOSE("%s: failed\n", __func__);
1390 	}
1391 }
1392 
1393 static int stm32mp1_set_hsidiv(uint8_t hsidiv)
1394 {
1395 	uint64_t timeout;
1396 	uintptr_t rcc_base = stm32mp_rcc_base();
1397 	uintptr_t address = rcc_base + RCC_OCRDYR;
1398 
1399 	mmio_clrsetbits_32(rcc_base + RCC_HSICFGR,
1400 			   RCC_HSICFGR_HSIDIV_MASK,
1401 			   RCC_HSICFGR_HSIDIV_MASK & (uint32_t)hsidiv);
1402 
1403 	timeout = timeout_init_us(HSIDIV_TIMEOUT);
1404 	while ((mmio_read_32(address) & RCC_OCRDYR_HSIDIVRDY) == 0U) {
1405 		if (timeout_elapsed(timeout)) {
1406 			ERROR("HSIDIV failed @ 0x%lx: 0x%x\n",
1407 			      address, mmio_read_32(address));
1408 			return -ETIMEDOUT;
1409 		}
1410 	}
1411 
1412 	return 0;
1413 }
1414 
1415 static int stm32mp1_hsidiv(unsigned long hsifreq)
1416 {
1417 	uint8_t hsidiv;
1418 	uint32_t hsidivfreq = MAX_HSI_HZ;
1419 
1420 	for (hsidiv = 0; hsidiv < 4U; hsidiv++) {
1421 		if (hsidivfreq == hsifreq) {
1422 			break;
1423 		}
1424 
1425 		hsidivfreq /= 2U;
1426 	}
1427 
1428 	if (hsidiv == 4U) {
1429 		ERROR("Invalid clk-hsi frequency\n");
1430 		return -1;
1431 	}
1432 
1433 	if (hsidiv != 0U) {
1434 		return stm32mp1_set_hsidiv(hsidiv);
1435 	}
1436 
1437 	return 0;
1438 }
1439 
1440 static bool stm32mp1_check_pll_conf(enum stm32mp1_pll_id pll_id,
1441 				    unsigned int clksrc,
1442 				    uint32_t *pllcfg, int plloff)
1443 {
1444 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1445 	uintptr_t rcc_base = stm32mp_rcc_base();
1446 	uintptr_t pllxcr = rcc_base + pll->pllxcr;
1447 	enum stm32mp1_plltype type = pll->plltype;
1448 	uintptr_t clksrc_address = rcc_base + (clksrc >> 4);
1449 	unsigned long refclk;
1450 	uint32_t ifrge = 0U;
1451 	uint32_t src, value, fracv = 0;
1452 	void *fdt;
1453 
1454 	/* Check PLL output */
1455 	if (mmio_read_32(pllxcr) != RCC_PLLNCR_PLLON) {
1456 		return false;
1457 	}
1458 
1459 	/* Check current clksrc */
1460 	src = mmio_read_32(clksrc_address) & RCC_SELR_SRC_MASK;
1461 	if (src != (clksrc & RCC_SELR_SRC_MASK)) {
1462 		return false;
1463 	}
1464 
1465 	/* Check Div */
1466 	src = mmio_read_32(rcc_base + pll->rckxselr) & RCC_SELR_REFCLK_SRC_MASK;
1467 
1468 	refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
1469 		 (pllcfg[PLLCFG_M] + 1U);
1470 
1471 	if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
1472 	    (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
1473 		return false;
1474 	}
1475 
1476 	if ((type == PLL_800) && (refclk >= 8000000U)) {
1477 		ifrge = 1U;
1478 	}
1479 
1480 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
1481 		RCC_PLLNCFGR1_DIVN_MASK;
1482 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
1483 		 RCC_PLLNCFGR1_DIVM_MASK;
1484 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
1485 		 RCC_PLLNCFGR1_IFRGE_MASK;
1486 	if (mmio_read_32(rcc_base + pll->pllxcfgr1) != value) {
1487 		return false;
1488 	}
1489 
1490 	/* Fractional configuration */
1491 	if (fdt_get_address(&fdt) == 1) {
1492 		fracv = fdt_read_uint32_default(fdt, plloff, "frac", 0);
1493 	}
1494 
1495 	value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
1496 	value |= RCC_PLLNFRACR_FRACLE;
1497 	if (mmio_read_32(rcc_base + pll->pllxfracr) != value) {
1498 		return false;
1499 	}
1500 
1501 	/* Output config */
1502 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
1503 		RCC_PLLNCFGR2_DIVP_MASK;
1504 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
1505 		 RCC_PLLNCFGR2_DIVQ_MASK;
1506 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
1507 		 RCC_PLLNCFGR2_DIVR_MASK;
1508 	if (mmio_read_32(rcc_base + pll->pllxcfgr2) != value) {
1509 		return false;
1510 	}
1511 
1512 	return true;
1513 }
1514 
1515 static void stm32mp1_pll_start(enum stm32mp1_pll_id pll_id)
1516 {
1517 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1518 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1519 
1520 	/* Preserve RCC_PLLNCR_SSCG_CTRL value */
1521 	mmio_clrsetbits_32(pllxcr,
1522 			   RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1523 			   RCC_PLLNCR_DIVREN,
1524 			   RCC_PLLNCR_PLLON);
1525 }
1526 
1527 static int stm32mp1_pll_output(enum stm32mp1_pll_id pll_id, uint32_t output)
1528 {
1529 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1530 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1531 	uint64_t timeout = timeout_init_us(PLLRDY_TIMEOUT);
1532 
1533 	/* Wait PLL lock */
1534 	while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) == 0U) {
1535 		if (timeout_elapsed(timeout)) {
1536 			ERROR("PLL%d start failed @ 0x%lx: 0x%x\n",
1537 			      pll_id, pllxcr, mmio_read_32(pllxcr));
1538 			return -ETIMEDOUT;
1539 		}
1540 	}
1541 
1542 	/* Start the requested output */
1543 	mmio_setbits_32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT);
1544 
1545 	return 0;
1546 }
1547 
1548 static int stm32mp1_pll_stop(enum stm32mp1_pll_id pll_id)
1549 {
1550 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1551 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1552 	uint64_t timeout;
1553 
1554 	/* Stop all output */
1555 	mmio_clrbits_32(pllxcr, RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1556 			RCC_PLLNCR_DIVREN);
1557 
1558 	/* Stop PLL */
1559 	mmio_clrbits_32(pllxcr, RCC_PLLNCR_PLLON);
1560 
1561 	timeout = timeout_init_us(PLLRDY_TIMEOUT);
1562 	/* Wait PLL stopped */
1563 	while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) != 0U) {
1564 		if (timeout_elapsed(timeout)) {
1565 			ERROR("PLL%d stop failed @ 0x%lx: 0x%x\n",
1566 			      pll_id, pllxcr, mmio_read_32(pllxcr));
1567 			return -ETIMEDOUT;
1568 		}
1569 	}
1570 
1571 	return 0;
1572 }
1573 
1574 static void stm32mp1_pll_config_output(enum stm32mp1_pll_id pll_id,
1575 				       uint32_t *pllcfg)
1576 {
1577 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1578 	uintptr_t rcc_base = stm32mp_rcc_base();
1579 	uint32_t value;
1580 
1581 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
1582 		RCC_PLLNCFGR2_DIVP_MASK;
1583 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
1584 		 RCC_PLLNCFGR2_DIVQ_MASK;
1585 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
1586 		 RCC_PLLNCFGR2_DIVR_MASK;
1587 	mmio_write_32(rcc_base + pll->pllxcfgr2, value);
1588 }
1589 
1590 static int stm32mp1_pll_config(enum stm32mp1_pll_id pll_id,
1591 			       uint32_t *pllcfg, uint32_t fracv)
1592 {
1593 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1594 	uintptr_t rcc_base = stm32mp_rcc_base();
1595 	enum stm32mp1_plltype type = pll->plltype;
1596 	unsigned long refclk;
1597 	uint32_t ifrge = 0;
1598 	uint32_t src, value;
1599 
1600 	src = mmio_read_32(rcc_base + pll->rckxselr) &
1601 		RCC_SELR_REFCLK_SRC_MASK;
1602 
1603 	refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
1604 		 (pllcfg[PLLCFG_M] + 1U);
1605 
1606 	if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
1607 	    (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
1608 		return -EINVAL;
1609 	}
1610 
1611 	if ((type == PLL_800) && (refclk >= 8000000U)) {
1612 		ifrge = 1U;
1613 	}
1614 
1615 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
1616 		RCC_PLLNCFGR1_DIVN_MASK;
1617 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
1618 		 RCC_PLLNCFGR1_DIVM_MASK;
1619 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
1620 		 RCC_PLLNCFGR1_IFRGE_MASK;
1621 	mmio_write_32(rcc_base + pll->pllxcfgr1, value);
1622 
1623 	/* Fractional configuration */
1624 	value = 0;
1625 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1626 
1627 	value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
1628 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1629 
1630 	value |= RCC_PLLNFRACR_FRACLE;
1631 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1632 
1633 	stm32mp1_pll_config_output(pll_id, pllcfg);
1634 
1635 	return 0;
1636 }
1637 
1638 static void stm32mp1_pll_csg(enum stm32mp1_pll_id pll_id, uint32_t *csg)
1639 {
1640 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1641 	uint32_t pllxcsg = 0;
1642 
1643 	pllxcsg |= (csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) &
1644 		    RCC_PLLNCSGR_MOD_PER_MASK;
1645 
1646 	pllxcsg |= (csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) &
1647 		    RCC_PLLNCSGR_INC_STEP_MASK;
1648 
1649 	pllxcsg |= (csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) &
1650 		    RCC_PLLNCSGR_SSCG_MODE_MASK;
1651 
1652 	mmio_write_32(stm32mp_rcc_base() + pll->pllxcsgr, pllxcsg);
1653 
1654 	mmio_setbits_32(stm32mp_rcc_base() + pll->pllxcr,
1655 			RCC_PLLNCR_SSCG_CTRL);
1656 }
1657 
1658 static int stm32mp1_set_clksrc(unsigned int clksrc)
1659 {
1660 	uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4);
1661 	uint64_t timeout;
1662 
1663 	mmio_clrsetbits_32(clksrc_address, RCC_SELR_SRC_MASK,
1664 			   clksrc & RCC_SELR_SRC_MASK);
1665 
1666 	timeout = timeout_init_us(CLKSRC_TIMEOUT);
1667 	while ((mmio_read_32(clksrc_address) & RCC_SELR_SRCRDY) == 0U) {
1668 		if (timeout_elapsed(timeout)) {
1669 			ERROR("CLKSRC %x start failed @ 0x%lx: 0x%x\n", clksrc,
1670 			      clksrc_address, mmio_read_32(clksrc_address));
1671 			return -ETIMEDOUT;
1672 		}
1673 	}
1674 
1675 	return 0;
1676 }
1677 
1678 static int stm32mp1_set_clkdiv(unsigned int clkdiv, uintptr_t address)
1679 {
1680 	uint64_t timeout;
1681 
1682 	mmio_clrsetbits_32(address, RCC_DIVR_DIV_MASK,
1683 			   clkdiv & RCC_DIVR_DIV_MASK);
1684 
1685 	timeout = timeout_init_us(CLKDIV_TIMEOUT);
1686 	while ((mmio_read_32(address) & RCC_DIVR_DIVRDY) == 0U) {
1687 		if (timeout_elapsed(timeout)) {
1688 			ERROR("CLKDIV %x start failed @ 0x%lx: 0x%x\n",
1689 			      clkdiv, address, mmio_read_32(address));
1690 			return -ETIMEDOUT;
1691 		}
1692 	}
1693 
1694 	return 0;
1695 }
1696 
1697 static void stm32mp1_mco_csg(uint32_t clksrc, uint32_t clkdiv)
1698 {
1699 	uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4);
1700 
1701 	/*
1702 	 * Binding clksrc :
1703 	 *      bit15-4 offset
1704 	 *      bit3:   disable
1705 	 *      bit2-0: MCOSEL[2:0]
1706 	 */
1707 	if ((clksrc & 0x8U) != 0U) {
1708 		mmio_clrbits_32(clksrc_address, RCC_MCOCFG_MCOON);
1709 	} else {
1710 		mmio_clrsetbits_32(clksrc_address,
1711 				   RCC_MCOCFG_MCOSRC_MASK,
1712 				   clksrc & RCC_MCOCFG_MCOSRC_MASK);
1713 		mmio_clrsetbits_32(clksrc_address,
1714 				   RCC_MCOCFG_MCODIV_MASK,
1715 				   clkdiv << RCC_MCOCFG_MCODIV_SHIFT);
1716 		mmio_setbits_32(clksrc_address, RCC_MCOCFG_MCOON);
1717 	}
1718 }
1719 
1720 static void stm32mp1_set_rtcsrc(unsigned int clksrc, bool lse_css)
1721 {
1722 	uintptr_t address = stm32mp_rcc_base() + RCC_BDCR;
1723 
1724 	if (((mmio_read_32(address) & RCC_BDCR_RTCCKEN) == 0U) ||
1725 	    (clksrc != (uint32_t)CLK_RTC_DISABLED)) {
1726 		mmio_clrsetbits_32(address,
1727 				   RCC_BDCR_RTCSRC_MASK,
1728 				   (clksrc & RCC_SELR_SRC_MASK) << RCC_BDCR_RTCSRC_SHIFT);
1729 
1730 		mmio_setbits_32(address, RCC_BDCR_RTCCKEN);
1731 	}
1732 
1733 	if (lse_css) {
1734 		mmio_setbits_32(address, RCC_BDCR_LSECSSON);
1735 	}
1736 }
1737 
1738 static void stm32mp1_stgen_config(void)
1739 {
1740 	uint32_t cntfid0;
1741 	unsigned long rate;
1742 	unsigned long long counter;
1743 
1744 	cntfid0 = mmio_read_32(STGEN_BASE + CNTFID_OFF);
1745 	rate = get_clock_rate(stm32mp1_clk_get_parent(STGEN_K));
1746 
1747 	if (cntfid0 == rate) {
1748 		return;
1749 	}
1750 
1751 	mmio_clrbits_32(STGEN_BASE + CNTCR_OFF, CNTCR_EN);
1752 	counter = (unsigned long long)mmio_read_32(STGEN_BASE + CNTCVL_OFF);
1753 	counter |= ((unsigned long long)mmio_read_32(STGEN_BASE + CNTCVU_OFF)) << 32;
1754 	counter = (counter * rate / cntfid0);
1755 
1756 	mmio_write_32(STGEN_BASE + CNTCVL_OFF, (uint32_t)counter);
1757 	mmio_write_32(STGEN_BASE + CNTCVU_OFF, (uint32_t)(counter >> 32));
1758 	mmio_write_32(STGEN_BASE + CNTFID_OFF, rate);
1759 	mmio_setbits_32(STGEN_BASE + CNTCR_OFF, CNTCR_EN);
1760 
1761 	write_cntfrq((u_register_t)rate);
1762 
1763 	/* Need to update timer with new frequency */
1764 	generic_delay_timer_init();
1765 }
1766 
1767 void stm32mp1_stgen_increment(unsigned long long offset_in_ms)
1768 {
1769 	unsigned long long cnt;
1770 
1771 	cnt = ((unsigned long long)mmio_read_32(STGEN_BASE + CNTCVU_OFF) << 32) |
1772 		mmio_read_32(STGEN_BASE + CNTCVL_OFF);
1773 
1774 	cnt += (offset_in_ms * mmio_read_32(STGEN_BASE + CNTFID_OFF)) / 1000U;
1775 
1776 	mmio_clrbits_32(STGEN_BASE + CNTCR_OFF, CNTCR_EN);
1777 	mmio_write_32(STGEN_BASE + CNTCVL_OFF, (uint32_t)cnt);
1778 	mmio_write_32(STGEN_BASE + CNTCVU_OFF, (uint32_t)(cnt >> 32));
1779 	mmio_setbits_32(STGEN_BASE + CNTCR_OFF, CNTCR_EN);
1780 }
1781 
1782 static void stm32mp1_pkcs_config(uint32_t pkcs)
1783 {
1784 	uintptr_t address = stm32mp_rcc_base() + ((pkcs >> 4) & 0xFFFU);
1785 	uint32_t value = pkcs & 0xFU;
1786 	uint32_t mask = 0xFU;
1787 
1788 	if ((pkcs & BIT(31)) != 0U) {
1789 		mask <<= 4;
1790 		value <<= 4;
1791 	}
1792 
1793 	mmio_clrsetbits_32(address, mask, value);
1794 }
1795 
1796 static int clk_get_pll_settings_from_dt(int plloff, unsigned int *pllcfg,
1797 					uint32_t *fracv, uint32_t *csg,
1798 					bool *csg_set)
1799 {
1800 	void *fdt;
1801 	int ret;
1802 
1803 	if (fdt_get_address(&fdt) == 0) {
1804 		return -FDT_ERR_NOTFOUND;
1805 	}
1806 
1807 	ret = fdt_read_uint32_array(fdt, plloff, "cfg", (uint32_t)PLLCFG_NB,
1808 				    pllcfg);
1809 	if (ret < 0) {
1810 		return -FDT_ERR_NOTFOUND;
1811 	}
1812 
1813 	*fracv = fdt_read_uint32_default(fdt, plloff, "frac", 0);
1814 
1815 	ret = fdt_read_uint32_array(fdt, plloff, "csg", (uint32_t)PLLCSG_NB,
1816 				    csg);
1817 
1818 	*csg_set = (ret == 0);
1819 
1820 	if (ret == -FDT_ERR_NOTFOUND) {
1821 		ret = 0;
1822 	}
1823 
1824 	return ret;
1825 }
1826 
1827 int stm32mp1_clk_init(void)
1828 {
1829 	uintptr_t rcc_base = stm32mp_rcc_base();
1830 	uint32_t pllfracv[_PLL_NB];
1831 	uint32_t pllcsg[_PLL_NB][PLLCSG_NB];
1832 	unsigned int clksrc[CLKSRC_NB];
1833 	unsigned int clkdiv[CLKDIV_NB];
1834 	unsigned int pllcfg[_PLL_NB][PLLCFG_NB];
1835 	int plloff[_PLL_NB];
1836 	int ret, len;
1837 	enum stm32mp1_pll_id i;
1838 	bool pllcsg_set[_PLL_NB];
1839 	bool pllcfg_valid[_PLL_NB];
1840 	bool lse_css = false;
1841 	bool pll3_preserve = false;
1842 	bool pll4_preserve = false;
1843 	bool pll4_bootrom = false;
1844 	const fdt32_t *pkcs_cell;
1845 	void *fdt;
1846 	int stgen_p = stm32mp1_clk_get_parent(STGEN_K);
1847 	int usbphy_p = stm32mp1_clk_get_parent(USBPHY_K);
1848 
1849 	if (fdt_get_address(&fdt) == 0) {
1850 		return -FDT_ERR_NOTFOUND;
1851 	}
1852 
1853 	/* Check status field to disable security */
1854 	if (!fdt_get_rcc_secure_status()) {
1855 		mmio_write_32(rcc_base + RCC_TZCR, 0);
1856 	}
1857 
1858 	ret = fdt_rcc_read_uint32_array("st,clksrc", (uint32_t)CLKSRC_NB,
1859 					clksrc);
1860 	if (ret < 0) {
1861 		return -FDT_ERR_NOTFOUND;
1862 	}
1863 
1864 	ret = fdt_rcc_read_uint32_array("st,clkdiv", (uint32_t)CLKDIV_NB,
1865 					clkdiv);
1866 	if (ret < 0) {
1867 		return -FDT_ERR_NOTFOUND;
1868 	}
1869 
1870 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1871 		char name[12];
1872 
1873 		snprintf(name, sizeof(name), "st,pll@%d", i);
1874 		plloff[i] = fdt_rcc_subnode_offset(name);
1875 
1876 		pllcfg_valid[i] = fdt_check_node(plloff[i]);
1877 		if (!pllcfg_valid[i]) {
1878 			continue;
1879 		}
1880 
1881 		ret = clk_get_pll_settings_from_dt(plloff[i], pllcfg[i],
1882 						   &pllfracv[i], pllcsg[i],
1883 						   &pllcsg_set[i]);
1884 		if (ret != 0) {
1885 			return ret;
1886 		}
1887 	}
1888 
1889 	stm32mp1_mco_csg(clksrc[CLKSRC_MCO1], clkdiv[CLKDIV_MCO1]);
1890 	stm32mp1_mco_csg(clksrc[CLKSRC_MCO2], clkdiv[CLKDIV_MCO2]);
1891 
1892 	/*
1893 	 * Switch ON oscillator found in device-tree.
1894 	 * Note: HSI already ON after BootROM stage.
1895 	 */
1896 	if (stm32mp1_osc[_LSI] != 0U) {
1897 		stm32mp1_lsi_set(true);
1898 	}
1899 	if (stm32mp1_osc[_LSE] != 0U) {
1900 		const char *name = stm32mp_osc_node_label[_LSE];
1901 		bool bypass, digbyp;
1902 		uint32_t lsedrv;
1903 
1904 		bypass = fdt_clk_read_bool(name, "st,bypass");
1905 		digbyp = fdt_clk_read_bool(name, "st,digbypass");
1906 		lse_css = fdt_clk_read_bool(name, "st,css");
1907 		lsedrv = fdt_clk_read_uint32_default(name, "st,drive",
1908 						     LSEDRV_MEDIUM_HIGH);
1909 		stm32mp1_lse_enable(bypass, digbyp, lsedrv);
1910 	}
1911 	if (stm32mp1_osc[_HSE] != 0U) {
1912 		const char *name = stm32mp_osc_node_label[_HSE];
1913 		bool bypass, digbyp, css;
1914 
1915 		bypass = fdt_clk_read_bool(name, "st,bypass");
1916 		digbyp = fdt_clk_read_bool(name, "st,digbypass");
1917 		css = fdt_clk_read_bool(name, "st,css");
1918 		stm32mp1_hse_enable(bypass, digbyp, css);
1919 	}
1920 	/*
1921 	 * CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR)
1922 	 * => switch on CSI even if node is not present in device tree
1923 	 */
1924 	stm32mp1_csi_set(true);
1925 
1926 	/* Come back to HSI */
1927 	ret = stm32mp1_set_clksrc(CLK_MPU_HSI);
1928 	if (ret != 0) {
1929 		return ret;
1930 	}
1931 	ret = stm32mp1_set_clksrc(CLK_AXI_HSI);
1932 	if (ret != 0) {
1933 		return ret;
1934 	}
1935 	ret = stm32mp1_set_clksrc(CLK_MCU_HSI);
1936 	if (ret != 0) {
1937 		return ret;
1938 	}
1939 
1940 	if ((mmio_read_32(rcc_base + RCC_MP_RSTSCLRR) &
1941 	     RCC_MP_RSTSCLRR_MPUP0RSTF) != 0) {
1942 		pll3_preserve = stm32mp1_check_pll_conf(_PLL3,
1943 							clksrc[CLKSRC_PLL3],
1944 							pllcfg[_PLL3],
1945 							plloff[_PLL3]);
1946 		pll4_preserve = stm32mp1_check_pll_conf(_PLL4,
1947 							clksrc[CLKSRC_PLL4],
1948 							pllcfg[_PLL4],
1949 							plloff[_PLL4]);
1950 	}
1951 	/* Don't initialize PLL4, when used by BOOTROM */
1952 	if ((stm32mp_get_boot_itf_selected() ==
1953 	     BOOT_API_CTX_BOOT_INTERFACE_SEL_SERIAL_USB) &&
1954 	    ((stgen_p == (int)_PLL4_R) || (usbphy_p == (int)_PLL4_R))) {
1955 		pll4_bootrom = true;
1956 		pll4_preserve = true;
1957 	}
1958 
1959 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1960 		if (((i == _PLL3) && pll3_preserve) ||
1961 		    ((i == _PLL4) && pll4_preserve)) {
1962 			continue;
1963 		}
1964 
1965 		ret = stm32mp1_pll_stop(i);
1966 		if (ret != 0) {
1967 			return ret;
1968 		}
1969 	}
1970 
1971 	/* Configure HSIDIV */
1972 	if (stm32mp1_osc[_HSI] != 0U) {
1973 		ret = stm32mp1_hsidiv(stm32mp1_osc[_HSI]);
1974 		if (ret != 0) {
1975 			return ret;
1976 		}
1977 		stm32mp1_stgen_config();
1978 	}
1979 
1980 	/* Select DIV */
1981 	/* No ready bit when MPUSRC != CLK_MPU_PLL1P_DIV, MPUDIV is disabled */
1982 	mmio_write_32(rcc_base + RCC_MPCKDIVR,
1983 		      clkdiv[CLKDIV_MPU] & RCC_DIVR_DIV_MASK);
1984 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_AXI], rcc_base + RCC_AXIDIVR);
1985 	if (ret != 0) {
1986 		return ret;
1987 	}
1988 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB4], rcc_base + RCC_APB4DIVR);
1989 	if (ret != 0) {
1990 		return ret;
1991 	}
1992 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB5], rcc_base + RCC_APB5DIVR);
1993 	if (ret != 0) {
1994 		return ret;
1995 	}
1996 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_MCU], rcc_base + RCC_MCUDIVR);
1997 	if (ret != 0) {
1998 		return ret;
1999 	}
2000 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB1], rcc_base + RCC_APB1DIVR);
2001 	if (ret != 0) {
2002 		return ret;
2003 	}
2004 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB2], rcc_base + RCC_APB2DIVR);
2005 	if (ret != 0) {
2006 		return ret;
2007 	}
2008 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB3], rcc_base + RCC_APB3DIVR);
2009 	if (ret != 0) {
2010 		return ret;
2011 	}
2012 
2013 	/* No ready bit for RTC */
2014 	mmio_write_32(rcc_base + RCC_RTCDIVR,
2015 		      clkdiv[CLKDIV_RTC] & RCC_DIVR_DIV_MASK);
2016 
2017 	/* Configure PLLs source */
2018 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL12]);
2019 	if (ret != 0) {
2020 		return ret;
2021 	}
2022 
2023 	if (!pll3_preserve) {
2024 		ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL3]);
2025 		if (ret != 0) {
2026 			return ret;
2027 		}
2028 	}
2029 
2030 	if (!pll4_preserve) {
2031 		ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL4]);
2032 		if (ret != 0) {
2033 			return ret;
2034 		}
2035 	}
2036 
2037 	/* Configure and start PLLs */
2038 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
2039 		if (((i == _PLL3) && pll3_preserve) ||
2040 		    ((i == _PLL4) && pll4_preserve && !pll4_bootrom)) {
2041 			continue;
2042 		}
2043 
2044 		if (!pllcfg_valid[i]) {
2045 			continue;
2046 		}
2047 
2048 		if ((i == _PLL4) && pll4_bootrom) {
2049 			/* Set output divider if not done by the Bootrom */
2050 			stm32mp1_pll_config_output(i, pllcfg[i]);
2051 			continue;
2052 		}
2053 
2054 		ret = stm32mp1_pll_config(i, pllcfg[i], pllfracv[i]);
2055 		if (ret != 0) {
2056 			return ret;
2057 		}
2058 
2059 		if (pllcsg_set[i]) {
2060 			stm32mp1_pll_csg(i, pllcsg[i]);
2061 		}
2062 
2063 		stm32mp1_pll_start(i);
2064 	}
2065 	/* Wait and start PLLs ouptut when ready */
2066 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
2067 		if (!pllcfg_valid[i]) {
2068 			continue;
2069 		}
2070 
2071 		ret = stm32mp1_pll_output(i, pllcfg[i][PLLCFG_O]);
2072 		if (ret != 0) {
2073 			return ret;
2074 		}
2075 	}
2076 	/* Wait LSE ready before to use it */
2077 	if (stm32mp1_osc[_LSE] != 0U) {
2078 		stm32mp1_lse_wait();
2079 	}
2080 
2081 	/* Configure with expected clock source */
2082 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_MPU]);
2083 	if (ret != 0) {
2084 		return ret;
2085 	}
2086 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_AXI]);
2087 	if (ret != 0) {
2088 		return ret;
2089 	}
2090 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_MCU]);
2091 	if (ret != 0) {
2092 		return ret;
2093 	}
2094 	stm32mp1_set_rtcsrc(clksrc[CLKSRC_RTC], lse_css);
2095 
2096 	/* Configure PKCK */
2097 	pkcs_cell = fdt_rcc_read_prop("st,pkcs", &len);
2098 	if (pkcs_cell != NULL) {
2099 		bool ckper_disabled = false;
2100 		uint32_t j;
2101 		uint32_t usbreg_bootrom = 0U;
2102 
2103 		if (pll4_bootrom) {
2104 			usbreg_bootrom = mmio_read_32(rcc_base + RCC_USBCKSELR);
2105 		}
2106 
2107 		for (j = 0; j < ((uint32_t)len / sizeof(uint32_t)); j++) {
2108 			uint32_t pkcs = fdt32_to_cpu(pkcs_cell[j]);
2109 
2110 			if (pkcs == (uint32_t)CLK_CKPER_DISABLED) {
2111 				ckper_disabled = true;
2112 				continue;
2113 			}
2114 			stm32mp1_pkcs_config(pkcs);
2115 		}
2116 
2117 		/*
2118 		 * CKPER is source for some peripheral clocks
2119 		 * (FMC-NAND / QPSI-NOR) and switching source is allowed
2120 		 * only if previous clock is still ON
2121 		 * => deactivated CKPER only after switching clock
2122 		 */
2123 		if (ckper_disabled) {
2124 			stm32mp1_pkcs_config(CLK_CKPER_DISABLED);
2125 		}
2126 
2127 		if (pll4_bootrom) {
2128 			uint32_t usbreg_value, usbreg_mask;
2129 			const struct stm32mp1_clk_sel *sel;
2130 
2131 			sel = clk_sel_ref(_USBPHY_SEL);
2132 			usbreg_mask = (uint32_t)sel->msk << sel->src;
2133 			sel = clk_sel_ref(_USBO_SEL);
2134 			usbreg_mask |= (uint32_t)sel->msk << sel->src;
2135 
2136 			usbreg_value = mmio_read_32(rcc_base + RCC_USBCKSELR) &
2137 				       usbreg_mask;
2138 			usbreg_bootrom &= usbreg_mask;
2139 			if (usbreg_bootrom != usbreg_value) {
2140 				VERBOSE("forbidden new USB clk path\n");
2141 				VERBOSE("vs bootrom on USB boot\n");
2142 				return -FDT_ERR_BADVALUE;
2143 			}
2144 		}
2145 	}
2146 
2147 	/* Switch OFF HSI if not found in device-tree */
2148 	if (stm32mp1_osc[_HSI] == 0U) {
2149 		stm32mp1_hsi_set(false);
2150 	}
2151 	stm32mp1_stgen_config();
2152 
2153 	/* Software Self-Refresh mode (SSR) during DDR initilialization */
2154 	mmio_clrsetbits_32(rcc_base + RCC_DDRITFCR,
2155 			   RCC_DDRITFCR_DDRCKMOD_MASK,
2156 			   RCC_DDRITFCR_DDRCKMOD_SSR <<
2157 			   RCC_DDRITFCR_DDRCKMOD_SHIFT);
2158 
2159 	return 0;
2160 }
2161 
2162 static void stm32mp1_osc_clk_init(const char *name,
2163 				  enum stm32mp_osc_id index)
2164 {
2165 	uint32_t frequency;
2166 
2167 	if (fdt_osc_read_freq(name, &frequency) == 0) {
2168 		stm32mp1_osc[index] = frequency;
2169 	}
2170 }
2171 
2172 static void stm32mp1_osc_init(void)
2173 {
2174 	enum stm32mp_osc_id i;
2175 
2176 	for (i = (enum stm32mp_osc_id)0 ; i < NB_OSC; i++) {
2177 		stm32mp1_osc_clk_init(stm32mp_osc_node_label[i], i);
2178 	}
2179 }
2180 
2181 #ifdef STM32MP_SHARED_RESOURCES
2182 /*
2183  * Get the parent ID of the target parent clock, for tagging as secure
2184  * shared clock dependencies.
2185  */
2186 static int get_parent_id_parent(unsigned int parent_id)
2187 {
2188 	enum stm32mp1_parent_sel s = _UNKNOWN_SEL;
2189 	enum stm32mp1_pll_id pll_id;
2190 	uint32_t p_sel;
2191 	uintptr_t rcc_base = stm32mp_rcc_base();
2192 
2193 	switch (parent_id) {
2194 	case _ACLK:
2195 	case _PCLK4:
2196 	case _PCLK5:
2197 		s = _AXIS_SEL;
2198 		break;
2199 	case _PLL1_P:
2200 	case _PLL1_Q:
2201 	case _PLL1_R:
2202 		pll_id = _PLL1;
2203 		break;
2204 	case _PLL2_P:
2205 	case _PLL2_Q:
2206 	case _PLL2_R:
2207 		pll_id = _PLL2;
2208 		break;
2209 	case _PLL3_P:
2210 	case _PLL3_Q:
2211 	case _PLL3_R:
2212 		pll_id = _PLL3;
2213 		break;
2214 	case _PLL4_P:
2215 	case _PLL4_Q:
2216 	case _PLL4_R:
2217 		pll_id = _PLL4;
2218 		break;
2219 	case _PCLK1:
2220 	case _PCLK2:
2221 	case _HCLK2:
2222 	case _HCLK6:
2223 	case _CK_PER:
2224 	case _CK_MPU:
2225 	case _CK_MCU:
2226 	case _USB_PHY_48:
2227 		/* We do not expect to access these */
2228 		panic();
2229 		break;
2230 	default:
2231 		/* Other parents have no parent */
2232 		return -1;
2233 	}
2234 
2235 	if (s != _UNKNOWN_SEL) {
2236 		const struct stm32mp1_clk_sel *sel = clk_sel_ref(s);
2237 
2238 		p_sel = (mmio_read_32(rcc_base + sel->offset) >> sel->src) &
2239 			sel->msk;
2240 
2241 		if (p_sel < sel->nb_parent) {
2242 			return (int)sel->parent[p_sel];
2243 		}
2244 	} else {
2245 		const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
2246 
2247 		p_sel = mmio_read_32(rcc_base + pll->rckxselr) &
2248 			RCC_SELR_REFCLK_SRC_MASK;
2249 
2250 		if (pll->refclk[p_sel] != _UNKNOWN_OSC_ID) {
2251 			return (int)pll->refclk[p_sel];
2252 		}
2253 	}
2254 
2255 	VERBOSE("No parent selected for %s\n",
2256 		stm32mp1_clk_parent_name[parent_id]);
2257 
2258 	return -1;
2259 }
2260 
2261 static void secure_parent_clocks(unsigned long parent_id)
2262 {
2263 	int grandparent_id;
2264 
2265 	switch (parent_id) {
2266 	case _PLL3_P:
2267 	case _PLL3_Q:
2268 	case _PLL3_R:
2269 		stm32mp_register_secure_periph(STM32MP1_SHRES_PLL3);
2270 		break;
2271 
2272 	/* These clocks are always secure when RCC is secure */
2273 	case _ACLK:
2274 	case _HCLK2:
2275 	case _HCLK6:
2276 	case _PCLK4:
2277 	case _PCLK5:
2278 	case _PLL1_P:
2279 	case _PLL1_Q:
2280 	case _PLL1_R:
2281 	case _PLL2_P:
2282 	case _PLL2_Q:
2283 	case _PLL2_R:
2284 	case _HSI:
2285 	case _HSI_KER:
2286 	case _LSI:
2287 	case _CSI:
2288 	case _CSI_KER:
2289 	case _HSE:
2290 	case _HSE_KER:
2291 	case _HSE_KER_DIV2:
2292 	case _HSE_RTC:
2293 	case _LSE:
2294 		break;
2295 
2296 	default:
2297 		VERBOSE("Cannot secure parent clock %s\n",
2298 			stm32mp1_clk_parent_name[parent_id]);
2299 		panic();
2300 	}
2301 
2302 	grandparent_id = get_parent_id_parent(parent_id);
2303 	if (grandparent_id >= 0) {
2304 		secure_parent_clocks(grandparent_id);
2305 	}
2306 }
2307 
2308 void stm32mp1_register_clock_parents_secure(unsigned long clock_id)
2309 {
2310 	int parent_id;
2311 
2312 	if (!stm32mp1_rcc_is_secure()) {
2313 		return;
2314 	}
2315 
2316 	switch (clock_id) {
2317 	case PLL1:
2318 	case PLL2:
2319 		/* PLL1/PLL2 are always secure: nothing to do */
2320 		break;
2321 	case PLL3:
2322 		stm32mp_register_secure_periph(STM32MP1_SHRES_PLL3);
2323 		break;
2324 	case PLL4:
2325 		ERROR("PLL4 cannot be secured\n");
2326 		panic();
2327 		break;
2328 	default:
2329 		/* Others are expected gateable clock */
2330 		parent_id = stm32mp1_clk_get_parent(clock_id);
2331 		if (parent_id < 0) {
2332 			INFO("No parent found for clock %lu\n", clock_id);
2333 		} else {
2334 			secure_parent_clocks(parent_id);
2335 		}
2336 		break;
2337 	}
2338 }
2339 #endif /* STM32MP_SHARED_RESOURCES */
2340 
2341 static void sync_earlyboot_clocks_state(void)
2342 {
2343 	unsigned int idx;
2344 	const unsigned long secure_enable[] = {
2345 		AXIDCG,
2346 		BSEC,
2347 		DDRC1, DDRC1LP,
2348 		DDRC2, DDRC2LP,
2349 		DDRCAPB, DDRPHYCAPB, DDRPHYCAPBLP,
2350 		DDRPHYC, DDRPHYCLP,
2351 		RTCAPB,
2352 		TZC1, TZC2,
2353 		TZPC,
2354 		STGEN_K,
2355 	};
2356 
2357 	for (idx = 0U; idx < ARRAY_SIZE(secure_enable); idx++) {
2358 		stm32mp_clk_enable(secure_enable[idx]);
2359 	}
2360 }
2361 
2362 static const struct clk_ops stm32mp_clk_ops = {
2363 	.enable		= stm32mp_clk_enable,
2364 	.disable	= stm32mp_clk_disable,
2365 	.is_enabled	= stm32mp_clk_is_enabled,
2366 	.get_rate	= stm32mp_clk_get_rate,
2367 	.get_parent	= stm32mp1_clk_get_parent,
2368 };
2369 
2370 int stm32mp1_clk_probe(void)
2371 {
2372 	stm32mp1_osc_init();
2373 
2374 	sync_earlyboot_clocks_state();
2375 
2376 	clk_register(&stm32mp_clk_ops);
2377 
2378 	return 0;
2379 }
2380