xref: /rk3399_ARM-atf/drivers/st/clk/stm32mp1_clk.c (revision 812daf916c9c977a4f6d7d745d22b90c8492fc71)
1 /*
2  * Copyright (C) 2018-2022, STMicroelectronics - All Rights Reserved
3  *
4  * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdio.h>
11 
12 #include <arch.h>
13 #include <arch_helpers.h>
14 #include <common/debug.h>
15 #include <common/fdt_wrappers.h>
16 #include <drivers/clk.h>
17 #include <drivers/delay_timer.h>
18 #include <drivers/st/stm32mp_clkfunc.h>
19 #include <drivers/st/stm32mp1_clk.h>
20 #include <drivers/st/stm32mp1_rcc.h>
21 #include <dt-bindings/clock/stm32mp1-clksrc.h>
22 #include <lib/mmio.h>
23 #include <lib/spinlock.h>
24 #include <lib/utils_def.h>
25 #include <libfdt.h>
26 #include <plat/common/platform.h>
27 
28 #include <platform_def.h>
29 
30 #define MAX_HSI_HZ		64000000
31 #define USB_PHY_48_MHZ		48000000
32 
33 #define TIMEOUT_US_200MS	U(200000)
34 #define TIMEOUT_US_1S		U(1000000)
35 
36 #define PLLRDY_TIMEOUT		TIMEOUT_US_200MS
37 #define CLKSRC_TIMEOUT		TIMEOUT_US_200MS
38 #define CLKDIV_TIMEOUT		TIMEOUT_US_200MS
39 #define HSIDIV_TIMEOUT		TIMEOUT_US_200MS
40 #define OSCRDY_TIMEOUT		TIMEOUT_US_1S
41 
42 const char *stm32mp_osc_node_label[NB_OSC] = {
43 	[_LSI] = "clk-lsi",
44 	[_LSE] = "clk-lse",
45 	[_HSI] = "clk-hsi",
46 	[_HSE] = "clk-hse",
47 	[_CSI] = "clk-csi",
48 	[_I2S_CKIN] = "i2s_ckin",
49 };
50 
51 enum stm32mp1_parent_id {
52 /* Oscillators are defined in enum stm32mp_osc_id */
53 
54 /* Other parent source */
55 	_HSI_KER = NB_OSC,
56 	_HSE_KER,
57 	_HSE_KER_DIV2,
58 	_HSE_RTC,
59 	_CSI_KER,
60 	_PLL1_P,
61 	_PLL1_Q,
62 	_PLL1_R,
63 	_PLL2_P,
64 	_PLL2_Q,
65 	_PLL2_R,
66 	_PLL3_P,
67 	_PLL3_Q,
68 	_PLL3_R,
69 	_PLL4_P,
70 	_PLL4_Q,
71 	_PLL4_R,
72 	_ACLK,
73 	_PCLK1,
74 	_PCLK2,
75 	_PCLK3,
76 	_PCLK4,
77 	_PCLK5,
78 	_HCLK6,
79 	_HCLK2,
80 	_CK_PER,
81 	_CK_MPU,
82 	_CK_MCU,
83 	_USB_PHY_48,
84 	_PARENT_NB,
85 	_UNKNOWN_ID = 0xff,
86 };
87 
88 /* Lists only the parent clock we are interested in */
89 enum stm32mp1_parent_sel {
90 	_I2C12_SEL,
91 	_I2C35_SEL,
92 	_STGEN_SEL,
93 	_I2C46_SEL,
94 	_SPI6_SEL,
95 	_UART1_SEL,
96 	_RNG1_SEL,
97 	_UART6_SEL,
98 	_UART24_SEL,
99 	_UART35_SEL,
100 	_UART78_SEL,
101 	_SDMMC12_SEL,
102 	_SDMMC3_SEL,
103 	_QSPI_SEL,
104 	_FMC_SEL,
105 	_AXIS_SEL,
106 	_MCUS_SEL,
107 	_USBPHY_SEL,
108 	_USBO_SEL,
109 	_MPU_SEL,
110 	_CKPER_SEL,
111 	_RTC_SEL,
112 	_PARENT_SEL_NB,
113 	_UNKNOWN_SEL = 0xff,
114 };
115 
116 /* State the parent clock ID straight related to a clock */
117 static const uint8_t parent_id_clock_id[_PARENT_NB] = {
118 	[_HSE] = CK_HSE,
119 	[_HSI] = CK_HSI,
120 	[_CSI] = CK_CSI,
121 	[_LSE] = CK_LSE,
122 	[_LSI] = CK_LSI,
123 	[_I2S_CKIN] = _UNKNOWN_ID,
124 	[_USB_PHY_48] = _UNKNOWN_ID,
125 	[_HSI_KER] = CK_HSI,
126 	[_HSE_KER] = CK_HSE,
127 	[_HSE_KER_DIV2] = CK_HSE_DIV2,
128 	[_HSE_RTC] = _UNKNOWN_ID,
129 	[_CSI_KER] = CK_CSI,
130 	[_PLL1_P] = PLL1_P,
131 	[_PLL1_Q] = PLL1_Q,
132 	[_PLL1_R] = PLL1_R,
133 	[_PLL2_P] = PLL2_P,
134 	[_PLL2_Q] = PLL2_Q,
135 	[_PLL2_R] = PLL2_R,
136 	[_PLL3_P] = PLL3_P,
137 	[_PLL3_Q] = PLL3_Q,
138 	[_PLL3_R] = PLL3_R,
139 	[_PLL4_P] = PLL4_P,
140 	[_PLL4_Q] = PLL4_Q,
141 	[_PLL4_R] = PLL4_R,
142 	[_ACLK] = CK_AXI,
143 	[_PCLK1] = CK_AXI,
144 	[_PCLK2] = CK_AXI,
145 	[_PCLK3] = CK_AXI,
146 	[_PCLK4] = CK_AXI,
147 	[_PCLK5] = CK_AXI,
148 	[_CK_PER] = CK_PER,
149 	[_CK_MPU] = CK_MPU,
150 	[_CK_MCU] = CK_MCU,
151 };
152 
153 static unsigned int clock_id2parent_id(unsigned long id)
154 {
155 	unsigned int n;
156 
157 	for (n = 0U; n < ARRAY_SIZE(parent_id_clock_id); n++) {
158 		if (parent_id_clock_id[n] == id) {
159 			return n;
160 		}
161 	}
162 
163 	return _UNKNOWN_ID;
164 }
165 
166 enum stm32mp1_pll_id {
167 	_PLL1,
168 	_PLL2,
169 	_PLL3,
170 	_PLL4,
171 	_PLL_NB
172 };
173 
174 enum stm32mp1_div_id {
175 	_DIV_P,
176 	_DIV_Q,
177 	_DIV_R,
178 	_DIV_NB,
179 };
180 
181 enum stm32mp1_clksrc_id {
182 	CLKSRC_MPU,
183 	CLKSRC_AXI,
184 	CLKSRC_MCU,
185 	CLKSRC_PLL12,
186 	CLKSRC_PLL3,
187 	CLKSRC_PLL4,
188 	CLKSRC_RTC,
189 	CLKSRC_MCO1,
190 	CLKSRC_MCO2,
191 	CLKSRC_NB
192 };
193 
194 enum stm32mp1_clkdiv_id {
195 	CLKDIV_MPU,
196 	CLKDIV_AXI,
197 	CLKDIV_MCU,
198 	CLKDIV_APB1,
199 	CLKDIV_APB2,
200 	CLKDIV_APB3,
201 	CLKDIV_APB4,
202 	CLKDIV_APB5,
203 	CLKDIV_RTC,
204 	CLKDIV_MCO1,
205 	CLKDIV_MCO2,
206 	CLKDIV_NB
207 };
208 
209 enum stm32mp1_pllcfg {
210 	PLLCFG_M,
211 	PLLCFG_N,
212 	PLLCFG_P,
213 	PLLCFG_Q,
214 	PLLCFG_R,
215 	PLLCFG_O,
216 	PLLCFG_NB
217 };
218 
219 enum stm32mp1_pllcsg {
220 	PLLCSG_MOD_PER,
221 	PLLCSG_INC_STEP,
222 	PLLCSG_SSCG_MODE,
223 	PLLCSG_NB
224 };
225 
226 enum stm32mp1_plltype {
227 	PLL_800,
228 	PLL_1600,
229 	PLL_TYPE_NB
230 };
231 
232 struct stm32mp1_pll {
233 	uint8_t refclk_min;
234 	uint8_t refclk_max;
235 	uint8_t divn_max;
236 };
237 
238 struct stm32mp1_clk_gate {
239 	uint16_t offset;
240 	uint8_t bit;
241 	uint8_t index;
242 	uint8_t set_clr;
243 	uint8_t secure;
244 	uint8_t sel; /* Relates to enum stm32mp1_parent_sel */
245 	uint8_t fixed; /* Relates to enum stm32mp1_parent_id */
246 };
247 
248 struct stm32mp1_clk_sel {
249 	uint16_t offset;
250 	uint8_t src;
251 	uint8_t msk;
252 	uint8_t nb_parent;
253 	const uint8_t *parent;
254 };
255 
256 #define REFCLK_SIZE 4
257 struct stm32mp1_clk_pll {
258 	enum stm32mp1_plltype plltype;
259 	uint16_t rckxselr;
260 	uint16_t pllxcfgr1;
261 	uint16_t pllxcfgr2;
262 	uint16_t pllxfracr;
263 	uint16_t pllxcr;
264 	uint16_t pllxcsgr;
265 	enum stm32mp_osc_id refclk[REFCLK_SIZE];
266 };
267 
268 /* Clocks with selectable source and non set/clr register access */
269 #define _CLK_SELEC(sec, off, b, idx, s)			\
270 	{						\
271 		.offset = (off),			\
272 		.bit = (b),				\
273 		.index = (idx),				\
274 		.set_clr = 0,				\
275 		.secure = (sec),			\
276 		.sel = (s),				\
277 		.fixed = _UNKNOWN_ID,			\
278 	}
279 
280 /* Clocks with fixed source and non set/clr register access */
281 #define _CLK_FIXED(sec, off, b, idx, f)			\
282 	{						\
283 		.offset = (off),			\
284 		.bit = (b),				\
285 		.index = (idx),				\
286 		.set_clr = 0,				\
287 		.secure = (sec),			\
288 		.sel = _UNKNOWN_SEL,			\
289 		.fixed = (f),				\
290 	}
291 
292 /* Clocks with selectable source and set/clr register access */
293 #define _CLK_SC_SELEC(sec, off, b, idx, s)			\
294 	{						\
295 		.offset = (off),			\
296 		.bit = (b),				\
297 		.index = (idx),				\
298 		.set_clr = 1,				\
299 		.secure = (sec),			\
300 		.sel = (s),				\
301 		.fixed = _UNKNOWN_ID,			\
302 	}
303 
304 /* Clocks with fixed source and set/clr register access */
305 #define _CLK_SC_FIXED(sec, off, b, idx, f)			\
306 	{						\
307 		.offset = (off),			\
308 		.bit = (b),				\
309 		.index = (idx),				\
310 		.set_clr = 1,				\
311 		.secure = (sec),			\
312 		.sel = _UNKNOWN_SEL,			\
313 		.fixed = (f),				\
314 	}
315 
316 #define _CLK_PARENT_SEL(_label, _rcc_selr, _parents)		\
317 	[_ ## _label ## _SEL] = {				\
318 		.offset = _rcc_selr,				\
319 		.src = _rcc_selr ## _ ## _label ## SRC_SHIFT,	\
320 		.msk = (_rcc_selr ## _ ## _label ## SRC_MASK) >> \
321 		       (_rcc_selr ## _ ## _label ## SRC_SHIFT), \
322 		.parent = (_parents),				\
323 		.nb_parent = ARRAY_SIZE(_parents)		\
324 	}
325 
326 #define _CLK_PLL(idx, type, off1, off2, off3,		\
327 		 off4, off5, off6,			\
328 		 p1, p2, p3, p4)			\
329 	[(idx)] = {					\
330 		.plltype = (type),			\
331 		.rckxselr = (off1),			\
332 		.pllxcfgr1 = (off2),			\
333 		.pllxcfgr2 = (off3),			\
334 		.pllxfracr = (off4),			\
335 		.pllxcr = (off5),			\
336 		.pllxcsgr = (off6),			\
337 		.refclk[0] = (p1),			\
338 		.refclk[1] = (p2),			\
339 		.refclk[2] = (p3),			\
340 		.refclk[3] = (p4),			\
341 	}
342 
343 #define NB_GATES	ARRAY_SIZE(stm32mp1_clk_gate)
344 
345 #define SEC		1
346 #define N_S		0
347 
348 static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
349 	_CLK_FIXED(SEC, RCC_DDRITFCR, 0, DDRC1, _ACLK),
350 	_CLK_FIXED(SEC, RCC_DDRITFCR, 1, DDRC1LP, _ACLK),
351 	_CLK_FIXED(SEC, RCC_DDRITFCR, 2, DDRC2, _ACLK),
352 	_CLK_FIXED(SEC, RCC_DDRITFCR, 3, DDRC2LP, _ACLK),
353 	_CLK_FIXED(SEC, RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
354 	_CLK_FIXED(SEC, RCC_DDRITFCR, 5, DDRPHYCLP, _PLL2_R),
355 	_CLK_FIXED(SEC, RCC_DDRITFCR, 6, DDRCAPB, _PCLK4),
356 	_CLK_FIXED(SEC, RCC_DDRITFCR, 7, DDRCAPBLP, _PCLK4),
357 	_CLK_FIXED(SEC, RCC_DDRITFCR, 8, AXIDCG, _ACLK),
358 	_CLK_FIXED(SEC, RCC_DDRITFCR, 9, DDRPHYCAPB, _PCLK4),
359 	_CLK_FIXED(SEC, RCC_DDRITFCR, 10, DDRPHYCAPBLP, _PCLK4),
360 
361 #if defined(IMAGE_BL32)
362 	_CLK_SC_FIXED(N_S, RCC_MP_APB1ENSETR, 6, TIM12_K, _PCLK1),
363 #endif
364 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
365 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
366 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
367 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
368 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
369 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
370 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 21, I2C1_K, _I2C12_SEL),
371 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 22, I2C2_K, _I2C12_SEL),
372 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 23, I2C3_K, _I2C35_SEL),
373 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 24, I2C5_K, _I2C35_SEL),
374 
375 #if defined(IMAGE_BL32)
376 	_CLK_SC_FIXED(N_S, RCC_MP_APB2ENSETR, 2, TIM15_K, _PCLK2),
377 #endif
378 	_CLK_SC_SELEC(N_S, RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
379 
380 	_CLK_SC_FIXED(N_S, RCC_MP_APB3ENSETR, 11, SYSCFG, _UNKNOWN_ID),
381 
382 	_CLK_SC_SELEC(N_S, RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
383 	_CLK_SC_SELEC(N_S, RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
384 	_CLK_SC_SELEC(N_S, RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
385 
386 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 0, SPI6_K, _SPI6_SEL),
387 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
388 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 3, I2C6_K, _I2C46_SEL),
389 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 4, USART1_K, _UART1_SEL),
390 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 8, RTCAPB, _PCLK5),
391 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 11, TZC1, _PCLK5),
392 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 12, TZC2, _PCLK5),
393 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 13, TZPC, _PCLK5),
394 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 15, IWDG1, _PCLK5),
395 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 16, BSEC, _PCLK5),
396 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
397 
398 #if defined(IMAGE_BL32)
399 	_CLK_SC_SELEC(N_S, RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
400 	_CLK_SC_SELEC(N_S, RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
401 #endif
402 
403 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
404 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
405 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
406 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
407 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
408 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
409 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
410 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
411 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
412 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
413 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
414 
415 	_CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 0, GPIOZ, _PCLK5),
416 	_CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 4, CRYP1, _PCLK5),
417 	_CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 5, HASH1, _PCLK5),
418 	_CLK_SC_SELEC(SEC, RCC_MP_AHB5ENSETR, 6, RNG1_K, _RNG1_SEL),
419 	_CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 8, BKPSRAM, _PCLK5),
420 
421 #if defined(IMAGE_BL2)
422 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
423 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
424 #endif
425 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
426 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
427 #if defined(IMAGE_BL32)
428 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
429 #endif
430 
431 	_CLK_SELEC(SEC, RCC_BDCR, 20, RTC, _RTC_SEL),
432 	_CLK_SELEC(N_S, RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
433 };
434 
435 static const uint8_t i2c12_parents[] = {
436 	_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
437 };
438 
439 static const uint8_t i2c35_parents[] = {
440 	_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
441 };
442 
443 static const uint8_t stgen_parents[] = {
444 	_HSI_KER, _HSE_KER
445 };
446 
447 static const uint8_t i2c46_parents[] = {
448 	_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER
449 };
450 
451 static const uint8_t spi6_parents[] = {
452 	_PCLK5, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER, _PLL3_Q
453 };
454 
455 static const uint8_t usart1_parents[] = {
456 	_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER, _PLL4_Q, _HSE_KER
457 };
458 
459 static const uint8_t rng1_parents[] = {
460 	_CSI, _PLL4_R, _LSE, _LSI
461 };
462 
463 static const uint8_t uart6_parents[] = {
464 	_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
465 };
466 
467 static const uint8_t uart234578_parents[] = {
468 	_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
469 };
470 
471 static const uint8_t sdmmc12_parents[] = {
472 	_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER
473 };
474 
475 static const uint8_t sdmmc3_parents[] = {
476 	_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER
477 };
478 
479 static const uint8_t qspi_parents[] = {
480 	_ACLK, _PLL3_R, _PLL4_P, _CK_PER
481 };
482 
483 static const uint8_t fmc_parents[] = {
484 	_ACLK, _PLL3_R, _PLL4_P, _CK_PER
485 };
486 
487 static const uint8_t axiss_parents[] = {
488 	_HSI, _HSE, _PLL2_P
489 };
490 
491 static const uint8_t mcuss_parents[] = {
492 	_HSI, _HSE, _CSI, _PLL3_P
493 };
494 
495 static const uint8_t usbphy_parents[] = {
496 	_HSE_KER, _PLL4_R, _HSE_KER_DIV2
497 };
498 
499 static const uint8_t usbo_parents[] = {
500 	_PLL4_R, _USB_PHY_48
501 };
502 
503 static const uint8_t mpu_parents[] = {
504 	_HSI, _HSE, _PLL1_P, _PLL1_P /* specific div */
505 };
506 
507 static const uint8_t per_parents[] = {
508 	_HSI, _HSE, _CSI,
509 };
510 
511 static const uint8_t rtc_parents[] = {
512 	_UNKNOWN_ID, _LSE, _LSI, _HSE_RTC
513 };
514 
515 static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
516 	_CLK_PARENT_SEL(I2C12, RCC_I2C12CKSELR, i2c12_parents),
517 	_CLK_PARENT_SEL(I2C35, RCC_I2C35CKSELR, i2c35_parents),
518 	_CLK_PARENT_SEL(STGEN, RCC_STGENCKSELR, stgen_parents),
519 	_CLK_PARENT_SEL(I2C46, RCC_I2C46CKSELR, i2c46_parents),
520 	_CLK_PARENT_SEL(SPI6, RCC_SPI6CKSELR, spi6_parents),
521 	_CLK_PARENT_SEL(UART1, RCC_UART1CKSELR, usart1_parents),
522 	_CLK_PARENT_SEL(RNG1, RCC_RNG1CKSELR, rng1_parents),
523 	_CLK_PARENT_SEL(MPU, RCC_MPCKSELR, mpu_parents),
524 	_CLK_PARENT_SEL(CKPER, RCC_CPERCKSELR, per_parents),
525 	_CLK_PARENT_SEL(RTC, RCC_BDCR, rtc_parents),
526 	_CLK_PARENT_SEL(UART6, RCC_UART6CKSELR, uart6_parents),
527 	_CLK_PARENT_SEL(UART24, RCC_UART24CKSELR, uart234578_parents),
528 	_CLK_PARENT_SEL(UART35, RCC_UART35CKSELR, uart234578_parents),
529 	_CLK_PARENT_SEL(UART78, RCC_UART78CKSELR, uart234578_parents),
530 	_CLK_PARENT_SEL(SDMMC12, RCC_SDMMC12CKSELR, sdmmc12_parents),
531 	_CLK_PARENT_SEL(SDMMC3, RCC_SDMMC3CKSELR, sdmmc3_parents),
532 	_CLK_PARENT_SEL(QSPI, RCC_QSPICKSELR, qspi_parents),
533 	_CLK_PARENT_SEL(FMC, RCC_FMCCKSELR, fmc_parents),
534 	_CLK_PARENT_SEL(AXIS, RCC_ASSCKSELR, axiss_parents),
535 	_CLK_PARENT_SEL(MCUS, RCC_MSSCKSELR, mcuss_parents),
536 	_CLK_PARENT_SEL(USBPHY, RCC_USBCKSELR, usbphy_parents),
537 	_CLK_PARENT_SEL(USBO, RCC_USBCKSELR, usbo_parents),
538 };
539 
540 /* Define characteristic of PLL according type */
541 #define DIVN_MIN	24
542 static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
543 	[PLL_800] = {
544 		.refclk_min = 4,
545 		.refclk_max = 16,
546 		.divn_max = 99,
547 	},
548 	[PLL_1600] = {
549 		.refclk_min = 8,
550 		.refclk_max = 16,
551 		.divn_max = 199,
552 	},
553 };
554 
555 /* PLLNCFGR2 register divider by output */
556 static const uint8_t pllncfgr2[_DIV_NB] = {
557 	[_DIV_P] = RCC_PLLNCFGR2_DIVP_SHIFT,
558 	[_DIV_Q] = RCC_PLLNCFGR2_DIVQ_SHIFT,
559 	[_DIV_R] = RCC_PLLNCFGR2_DIVR_SHIFT,
560 };
561 
562 static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = {
563 	_CLK_PLL(_PLL1, PLL_1600,
564 		 RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
565 		 RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
566 		 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
567 	_CLK_PLL(_PLL2, PLL_1600,
568 		 RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
569 		 RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
570 		 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
571 	_CLK_PLL(_PLL3, PLL_800,
572 		 RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
573 		 RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
574 		 _HSI, _HSE, _CSI, _UNKNOWN_OSC_ID),
575 	_CLK_PLL(_PLL4, PLL_800,
576 		 RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
577 		 RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
578 		 _HSI, _HSE, _CSI, _I2S_CKIN),
579 };
580 
581 /* Prescaler table lookups for clock computation */
582 /* div = /1 /2 /4 /8 / 16 /64 /128 /512 */
583 static const uint8_t stm32mp1_mcu_div[16] = {
584 	0, 1, 2, 3, 4, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9
585 };
586 
587 /* div = /1 /2 /4 /8 /16 : same divider for PMU and APBX */
588 #define stm32mp1_mpu_div stm32mp1_mpu_apbx_div
589 #define stm32mp1_apbx_div stm32mp1_mpu_apbx_div
590 static const uint8_t stm32mp1_mpu_apbx_div[8] = {
591 	0, 1, 2, 3, 4, 4, 4, 4
592 };
593 
594 /* div = /1 /2 /3 /4 */
595 static const uint8_t stm32mp1_axi_div[8] = {
596 	1, 2, 3, 4, 4, 4, 4, 4
597 };
598 
599 static const char * const stm32mp1_clk_parent_name[_PARENT_NB] __unused = {
600 	[_HSI] = "HSI",
601 	[_HSE] = "HSE",
602 	[_CSI] = "CSI",
603 	[_LSI] = "LSI",
604 	[_LSE] = "LSE",
605 	[_I2S_CKIN] = "I2S_CKIN",
606 	[_HSI_KER] = "HSI_KER",
607 	[_HSE_KER] = "HSE_KER",
608 	[_HSE_KER_DIV2] = "HSE_KER_DIV2",
609 	[_HSE_RTC] = "HSE_RTC",
610 	[_CSI_KER] = "CSI_KER",
611 	[_PLL1_P] = "PLL1_P",
612 	[_PLL1_Q] = "PLL1_Q",
613 	[_PLL1_R] = "PLL1_R",
614 	[_PLL2_P] = "PLL2_P",
615 	[_PLL2_Q] = "PLL2_Q",
616 	[_PLL2_R] = "PLL2_R",
617 	[_PLL3_P] = "PLL3_P",
618 	[_PLL3_Q] = "PLL3_Q",
619 	[_PLL3_R] = "PLL3_R",
620 	[_PLL4_P] = "PLL4_P",
621 	[_PLL4_Q] = "PLL4_Q",
622 	[_PLL4_R] = "PLL4_R",
623 	[_ACLK] = "ACLK",
624 	[_PCLK1] = "PCLK1",
625 	[_PCLK2] = "PCLK2",
626 	[_PCLK3] = "PCLK3",
627 	[_PCLK4] = "PCLK4",
628 	[_PCLK5] = "PCLK5",
629 	[_HCLK6] = "KCLK6",
630 	[_HCLK2] = "HCLK2",
631 	[_CK_PER] = "CK_PER",
632 	[_CK_MPU] = "CK_MPU",
633 	[_CK_MCU] = "CK_MCU",
634 	[_USB_PHY_48] = "USB_PHY_48",
635 };
636 
637 /* RCC clock device driver private */
638 static unsigned long stm32mp1_osc[NB_OSC];
639 static struct spinlock reg_lock;
640 static unsigned int gate_refcounts[NB_GATES];
641 static struct spinlock refcount_lock;
642 
643 static const struct stm32mp1_clk_gate *gate_ref(unsigned int idx)
644 {
645 	return &stm32mp1_clk_gate[idx];
646 }
647 
648 #if defined(IMAGE_BL32)
649 static bool gate_is_non_secure(const struct stm32mp1_clk_gate *gate)
650 {
651 	return gate->secure == N_S;
652 }
653 #endif
654 
655 static const struct stm32mp1_clk_sel *clk_sel_ref(unsigned int idx)
656 {
657 	return &stm32mp1_clk_sel[idx];
658 }
659 
660 static const struct stm32mp1_clk_pll *pll_ref(unsigned int idx)
661 {
662 	return &stm32mp1_clk_pll[idx];
663 }
664 
665 static void stm32mp1_clk_lock(struct spinlock *lock)
666 {
667 	if (stm32mp_lock_available()) {
668 		/* Assume interrupts are masked */
669 		spin_lock(lock);
670 	}
671 }
672 
673 static void stm32mp1_clk_unlock(struct spinlock *lock)
674 {
675 	if (stm32mp_lock_available()) {
676 		spin_unlock(lock);
677 	}
678 }
679 
680 bool stm32mp1_rcc_is_secure(void)
681 {
682 	uintptr_t rcc_base = stm32mp_rcc_base();
683 	uint32_t mask = RCC_TZCR_TZEN;
684 
685 	return (mmio_read_32(rcc_base + RCC_TZCR) & mask) == mask;
686 }
687 
688 bool stm32mp1_rcc_is_mckprot(void)
689 {
690 	uintptr_t rcc_base = stm32mp_rcc_base();
691 	uint32_t mask = RCC_TZCR_TZEN | RCC_TZCR_MCKPROT;
692 
693 	return (mmio_read_32(rcc_base + RCC_TZCR) & mask) == mask;
694 }
695 
696 void stm32mp1_clk_rcc_regs_lock(void)
697 {
698 	stm32mp1_clk_lock(&reg_lock);
699 }
700 
701 void stm32mp1_clk_rcc_regs_unlock(void)
702 {
703 	stm32mp1_clk_unlock(&reg_lock);
704 }
705 
706 static unsigned long stm32mp1_clk_get_fixed(enum stm32mp_osc_id idx)
707 {
708 	if (idx >= NB_OSC) {
709 		return 0;
710 	}
711 
712 	return stm32mp1_osc[idx];
713 }
714 
715 static int stm32mp1_clk_get_gated_id(unsigned long id)
716 {
717 	unsigned int i;
718 
719 	for (i = 0U; i < NB_GATES; i++) {
720 		if (gate_ref(i)->index == id) {
721 			return i;
722 		}
723 	}
724 
725 	ERROR("%s: clk id %lu not found\n", __func__, id);
726 
727 	return -EINVAL;
728 }
729 
730 static enum stm32mp1_parent_sel stm32mp1_clk_get_sel(int i)
731 {
732 	return (enum stm32mp1_parent_sel)(gate_ref(i)->sel);
733 }
734 
735 static enum stm32mp1_parent_id stm32mp1_clk_get_fixed_parent(int i)
736 {
737 	return (enum stm32mp1_parent_id)(gate_ref(i)->fixed);
738 }
739 
740 static int stm32mp1_clk_get_parent(unsigned long id)
741 {
742 	const struct stm32mp1_clk_sel *sel;
743 	uint32_t p_sel;
744 	int i;
745 	enum stm32mp1_parent_id p;
746 	enum stm32mp1_parent_sel s;
747 	uintptr_t rcc_base = stm32mp_rcc_base();
748 
749 	/* Few non gateable clock have a static parent ID, find them */
750 	i = (int)clock_id2parent_id(id);
751 	if (i != _UNKNOWN_ID) {
752 		return i;
753 	}
754 
755 	i = stm32mp1_clk_get_gated_id(id);
756 	if (i < 0) {
757 		panic();
758 	}
759 
760 	p = stm32mp1_clk_get_fixed_parent(i);
761 	if (p < _PARENT_NB) {
762 		return (int)p;
763 	}
764 
765 	s = stm32mp1_clk_get_sel(i);
766 	if (s == _UNKNOWN_SEL) {
767 		return -EINVAL;
768 	}
769 	if (s >= _PARENT_SEL_NB) {
770 		panic();
771 	}
772 
773 	sel = clk_sel_ref(s);
774 	p_sel = (mmio_read_32(rcc_base + sel->offset) &
775 		 (sel->msk << sel->src)) >> sel->src;
776 	if (p_sel < sel->nb_parent) {
777 		return (int)sel->parent[p_sel];
778 	}
779 
780 	return -EINVAL;
781 }
782 
783 static unsigned long stm32mp1_pll_get_fref(const struct stm32mp1_clk_pll *pll)
784 {
785 	uint32_t selr = mmio_read_32(stm32mp_rcc_base() + pll->rckxselr);
786 	uint32_t src = selr & RCC_SELR_REFCLK_SRC_MASK;
787 
788 	return stm32mp1_clk_get_fixed(pll->refclk[src]);
789 }
790 
791 /*
792  * pll_get_fvco() : return the VCO or (VCO / 2) frequency for the requested PLL
793  * - PLL1 & PLL2 => return VCO / 2 with Fpll_y_ck = FVCO / 2 * (DIVy + 1)
794  * - PLL3 & PLL4 => return VCO     with Fpll_y_ck = FVCO / (DIVy + 1)
795  * => in all cases Fpll_y_ck = pll_get_fvco() / (DIVy + 1)
796  */
797 static unsigned long stm32mp1_pll_get_fvco(const struct stm32mp1_clk_pll *pll)
798 {
799 	unsigned long refclk, fvco;
800 	uint32_t cfgr1, fracr, divm, divn;
801 	uintptr_t rcc_base = stm32mp_rcc_base();
802 
803 	cfgr1 = mmio_read_32(rcc_base + pll->pllxcfgr1);
804 	fracr = mmio_read_32(rcc_base + pll->pllxfracr);
805 
806 	divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
807 	divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
808 
809 	refclk = stm32mp1_pll_get_fref(pll);
810 
811 	/*
812 	 * With FRACV :
813 	 *   Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1)
814 	 * Without FRACV
815 	 *   Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1)
816 	 */
817 	if ((fracr & RCC_PLLNFRACR_FRACLE) != 0U) {
818 		uint32_t fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK) >>
819 				 RCC_PLLNFRACR_FRACV_SHIFT;
820 		unsigned long long numerator, denominator;
821 
822 		numerator = (((unsigned long long)divn + 1U) << 13) + fracv;
823 		numerator = refclk * numerator;
824 		denominator = ((unsigned long long)divm + 1U) << 13;
825 		fvco = (unsigned long)(numerator / denominator);
826 	} else {
827 		fvco = (unsigned long)(refclk * (divn + 1U) / (divm + 1U));
828 	}
829 
830 	return fvco;
831 }
832 
833 static unsigned long stm32mp1_read_pll_freq(enum stm32mp1_pll_id pll_id,
834 					    enum stm32mp1_div_id div_id)
835 {
836 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
837 	unsigned long dfout;
838 	uint32_t cfgr2, divy;
839 
840 	if (div_id >= _DIV_NB) {
841 		return 0;
842 	}
843 
844 	cfgr2 = mmio_read_32(stm32mp_rcc_base() + pll->pllxcfgr2);
845 	divy = (cfgr2 >> pllncfgr2[div_id]) & RCC_PLLNCFGR2_DIVX_MASK;
846 
847 	dfout = stm32mp1_pll_get_fvco(pll) / (divy + 1U);
848 
849 	return dfout;
850 }
851 
852 static unsigned long get_clock_rate(int p)
853 {
854 	uint32_t reg, clkdiv;
855 	unsigned long clock = 0;
856 	uintptr_t rcc_base = stm32mp_rcc_base();
857 
858 	switch (p) {
859 	case _CK_MPU:
860 	/* MPU sub system */
861 		reg = mmio_read_32(rcc_base + RCC_MPCKSELR);
862 		switch (reg & RCC_SELR_SRC_MASK) {
863 		case RCC_MPCKSELR_HSI:
864 			clock = stm32mp1_clk_get_fixed(_HSI);
865 			break;
866 		case RCC_MPCKSELR_HSE:
867 			clock = stm32mp1_clk_get_fixed(_HSE);
868 			break;
869 		case RCC_MPCKSELR_PLL:
870 			clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
871 			break;
872 		case RCC_MPCKSELR_PLL_MPUDIV:
873 			clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
874 
875 			reg = mmio_read_32(rcc_base + RCC_MPCKDIVR);
876 			clkdiv = reg & RCC_MPUDIV_MASK;
877 			clock >>= stm32mp1_mpu_div[clkdiv];
878 			break;
879 		default:
880 			break;
881 		}
882 		break;
883 	/* AXI sub system */
884 	case _ACLK:
885 	case _HCLK2:
886 	case _HCLK6:
887 	case _PCLK4:
888 	case _PCLK5:
889 		reg = mmio_read_32(rcc_base + RCC_ASSCKSELR);
890 		switch (reg & RCC_SELR_SRC_MASK) {
891 		case RCC_ASSCKSELR_HSI:
892 			clock = stm32mp1_clk_get_fixed(_HSI);
893 			break;
894 		case RCC_ASSCKSELR_HSE:
895 			clock = stm32mp1_clk_get_fixed(_HSE);
896 			break;
897 		case RCC_ASSCKSELR_PLL:
898 			clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
899 			break;
900 		default:
901 			break;
902 		}
903 
904 		/* System clock divider */
905 		reg = mmio_read_32(rcc_base + RCC_AXIDIVR);
906 		clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK];
907 
908 		switch (p) {
909 		case _PCLK4:
910 			reg = mmio_read_32(rcc_base + RCC_APB4DIVR);
911 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
912 			break;
913 		case _PCLK5:
914 			reg = mmio_read_32(rcc_base + RCC_APB5DIVR);
915 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
916 			break;
917 		default:
918 			break;
919 		}
920 		break;
921 	/* MCU sub system */
922 	case _CK_MCU:
923 	case _PCLK1:
924 	case _PCLK2:
925 	case _PCLK3:
926 		reg = mmio_read_32(rcc_base + RCC_MSSCKSELR);
927 		switch (reg & RCC_SELR_SRC_MASK) {
928 		case RCC_MSSCKSELR_HSI:
929 			clock = stm32mp1_clk_get_fixed(_HSI);
930 			break;
931 		case RCC_MSSCKSELR_HSE:
932 			clock = stm32mp1_clk_get_fixed(_HSE);
933 			break;
934 		case RCC_MSSCKSELR_CSI:
935 			clock = stm32mp1_clk_get_fixed(_CSI);
936 			break;
937 		case RCC_MSSCKSELR_PLL:
938 			clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
939 			break;
940 		default:
941 			break;
942 		}
943 
944 		/* MCU clock divider */
945 		reg = mmio_read_32(rcc_base + RCC_MCUDIVR);
946 		clock >>= stm32mp1_mcu_div[reg & RCC_MCUDIV_MASK];
947 
948 		switch (p) {
949 		case _PCLK1:
950 			reg = mmio_read_32(rcc_base + RCC_APB1DIVR);
951 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
952 			break;
953 		case _PCLK2:
954 			reg = mmio_read_32(rcc_base + RCC_APB2DIVR);
955 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
956 			break;
957 		case _PCLK3:
958 			reg = mmio_read_32(rcc_base + RCC_APB3DIVR);
959 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
960 			break;
961 		case _CK_MCU:
962 		default:
963 			break;
964 		}
965 		break;
966 	case _CK_PER:
967 		reg = mmio_read_32(rcc_base + RCC_CPERCKSELR);
968 		switch (reg & RCC_SELR_SRC_MASK) {
969 		case RCC_CPERCKSELR_HSI:
970 			clock = stm32mp1_clk_get_fixed(_HSI);
971 			break;
972 		case RCC_CPERCKSELR_HSE:
973 			clock = stm32mp1_clk_get_fixed(_HSE);
974 			break;
975 		case RCC_CPERCKSELR_CSI:
976 			clock = stm32mp1_clk_get_fixed(_CSI);
977 			break;
978 		default:
979 			break;
980 		}
981 		break;
982 	case _HSI:
983 	case _HSI_KER:
984 		clock = stm32mp1_clk_get_fixed(_HSI);
985 		break;
986 	case _CSI:
987 	case _CSI_KER:
988 		clock = stm32mp1_clk_get_fixed(_CSI);
989 		break;
990 	case _HSE:
991 	case _HSE_KER:
992 		clock = stm32mp1_clk_get_fixed(_HSE);
993 		break;
994 	case _HSE_KER_DIV2:
995 		clock = stm32mp1_clk_get_fixed(_HSE) >> 1;
996 		break;
997 	case _HSE_RTC:
998 		clock = stm32mp1_clk_get_fixed(_HSE);
999 		clock /= (mmio_read_32(rcc_base + RCC_RTCDIVR) & RCC_DIVR_DIV_MASK) + 1U;
1000 		break;
1001 	case _LSI:
1002 		clock = stm32mp1_clk_get_fixed(_LSI);
1003 		break;
1004 	case _LSE:
1005 		clock = stm32mp1_clk_get_fixed(_LSE);
1006 		break;
1007 	/* PLL */
1008 	case _PLL1_P:
1009 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
1010 		break;
1011 	case _PLL1_Q:
1012 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_Q);
1013 		break;
1014 	case _PLL1_R:
1015 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_R);
1016 		break;
1017 	case _PLL2_P:
1018 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
1019 		break;
1020 	case _PLL2_Q:
1021 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_Q);
1022 		break;
1023 	case _PLL2_R:
1024 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_R);
1025 		break;
1026 	case _PLL3_P:
1027 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
1028 		break;
1029 	case _PLL3_Q:
1030 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_Q);
1031 		break;
1032 	case _PLL3_R:
1033 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_R);
1034 		break;
1035 	case _PLL4_P:
1036 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_P);
1037 		break;
1038 	case _PLL4_Q:
1039 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_Q);
1040 		break;
1041 	case _PLL4_R:
1042 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_R);
1043 		break;
1044 	/* Other */
1045 	case _USB_PHY_48:
1046 		clock = USB_PHY_48_MHZ;
1047 		break;
1048 	default:
1049 		break;
1050 	}
1051 
1052 	return clock;
1053 }
1054 
1055 static void __clk_enable(struct stm32mp1_clk_gate const *gate)
1056 {
1057 	uintptr_t rcc_base = stm32mp_rcc_base();
1058 
1059 	VERBOSE("Enable clock %u\n", gate->index);
1060 
1061 	if (gate->set_clr != 0U) {
1062 		mmio_write_32(rcc_base + gate->offset, BIT(gate->bit));
1063 	} else {
1064 		mmio_setbits_32(rcc_base + gate->offset, BIT(gate->bit));
1065 	}
1066 }
1067 
1068 static void __clk_disable(struct stm32mp1_clk_gate const *gate)
1069 {
1070 	uintptr_t rcc_base = stm32mp_rcc_base();
1071 
1072 	VERBOSE("Disable clock %u\n", gate->index);
1073 
1074 	if (gate->set_clr != 0U) {
1075 		mmio_write_32(rcc_base + gate->offset + RCC_MP_ENCLRR_OFFSET,
1076 			      BIT(gate->bit));
1077 	} else {
1078 		mmio_clrbits_32(rcc_base + gate->offset, BIT(gate->bit));
1079 	}
1080 }
1081 
1082 static bool __clk_is_enabled(struct stm32mp1_clk_gate const *gate)
1083 {
1084 	uintptr_t rcc_base = stm32mp_rcc_base();
1085 
1086 	return mmio_read_32(rcc_base + gate->offset) & BIT(gate->bit);
1087 }
1088 
1089 /* Oscillators and PLLs are not gated at runtime */
1090 static bool clock_is_always_on(unsigned long id)
1091 {
1092 	switch (id) {
1093 	case CK_HSE:
1094 	case CK_CSI:
1095 	case CK_LSI:
1096 	case CK_LSE:
1097 	case CK_HSI:
1098 	case CK_HSE_DIV2:
1099 	case PLL1_Q:
1100 	case PLL1_R:
1101 	case PLL2_P:
1102 	case PLL2_Q:
1103 	case PLL2_R:
1104 	case PLL3_P:
1105 	case PLL3_Q:
1106 	case PLL3_R:
1107 	case CK_AXI:
1108 	case CK_MPU:
1109 	case CK_MCU:
1110 	case RTC:
1111 		return true;
1112 	default:
1113 		return false;
1114 	}
1115 }
1116 
1117 static void __stm32mp1_clk_enable(unsigned long id, bool with_refcnt)
1118 {
1119 	const struct stm32mp1_clk_gate *gate;
1120 	int i;
1121 
1122 	if (clock_is_always_on(id)) {
1123 		return;
1124 	}
1125 
1126 	i = stm32mp1_clk_get_gated_id(id);
1127 	if (i < 0) {
1128 		ERROR("Clock %lu can't be enabled\n", id);
1129 		panic();
1130 	}
1131 
1132 	gate = gate_ref(i);
1133 
1134 	if (!with_refcnt) {
1135 		__clk_enable(gate);
1136 		return;
1137 	}
1138 
1139 #if defined(IMAGE_BL32)
1140 	if (gate_is_non_secure(gate)) {
1141 		/* Enable non-secure clock w/o any refcounting */
1142 		__clk_enable(gate);
1143 		return;
1144 	}
1145 #endif
1146 
1147 	stm32mp1_clk_lock(&refcount_lock);
1148 
1149 	if (gate_refcounts[i] == 0U) {
1150 		__clk_enable(gate);
1151 	}
1152 
1153 	gate_refcounts[i]++;
1154 	if (gate_refcounts[i] == UINT_MAX) {
1155 		ERROR("Clock %lu refcount reached max value\n", id);
1156 		panic();
1157 	}
1158 
1159 	stm32mp1_clk_unlock(&refcount_lock);
1160 }
1161 
1162 static void __stm32mp1_clk_disable(unsigned long id, bool with_refcnt)
1163 {
1164 	const struct stm32mp1_clk_gate *gate;
1165 	int i;
1166 
1167 	if (clock_is_always_on(id)) {
1168 		return;
1169 	}
1170 
1171 	i = stm32mp1_clk_get_gated_id(id);
1172 	if (i < 0) {
1173 		ERROR("Clock %lu can't be disabled\n", id);
1174 		panic();
1175 	}
1176 
1177 	gate = gate_ref(i);
1178 
1179 	if (!with_refcnt) {
1180 		__clk_disable(gate);
1181 		return;
1182 	}
1183 
1184 #if defined(IMAGE_BL32)
1185 	if (gate_is_non_secure(gate)) {
1186 		/* Don't disable non-secure clocks */
1187 		return;
1188 	}
1189 #endif
1190 
1191 	stm32mp1_clk_lock(&refcount_lock);
1192 
1193 	if (gate_refcounts[i] == 0U) {
1194 		ERROR("Clock %lu refcount reached 0\n", id);
1195 		panic();
1196 	}
1197 	gate_refcounts[i]--;
1198 
1199 	if (gate_refcounts[i] == 0U) {
1200 		__clk_disable(gate);
1201 	}
1202 
1203 	stm32mp1_clk_unlock(&refcount_lock);
1204 }
1205 
1206 static int stm32mp_clk_enable(unsigned long id)
1207 {
1208 	__stm32mp1_clk_enable(id, true);
1209 
1210 	return 0;
1211 }
1212 
1213 static void stm32mp_clk_disable(unsigned long id)
1214 {
1215 	__stm32mp1_clk_disable(id, true);
1216 }
1217 
1218 static bool stm32mp_clk_is_enabled(unsigned long id)
1219 {
1220 	int i;
1221 
1222 	if (clock_is_always_on(id)) {
1223 		return true;
1224 	}
1225 
1226 	i = stm32mp1_clk_get_gated_id(id);
1227 	if (i < 0) {
1228 		panic();
1229 	}
1230 
1231 	return __clk_is_enabled(gate_ref(i));
1232 }
1233 
1234 static unsigned long stm32mp_clk_get_rate(unsigned long id)
1235 {
1236 	uintptr_t rcc_base = stm32mp_rcc_base();
1237 	int p = stm32mp1_clk_get_parent(id);
1238 	uint32_t prescaler, timpre;
1239 	unsigned long parent_rate;
1240 
1241 	if (p < 0) {
1242 		return 0;
1243 	}
1244 
1245 	parent_rate = get_clock_rate(p);
1246 
1247 	switch (id) {
1248 	case TIM2_K:
1249 	case TIM3_K:
1250 	case TIM4_K:
1251 	case TIM5_K:
1252 	case TIM6_K:
1253 	case TIM7_K:
1254 	case TIM12_K:
1255 	case TIM13_K:
1256 	case TIM14_K:
1257 		prescaler = mmio_read_32(rcc_base + RCC_APB1DIVR) &
1258 			    RCC_APBXDIV_MASK;
1259 		timpre = mmio_read_32(rcc_base + RCC_TIMG1PRER) &
1260 			 RCC_TIMGXPRER_TIMGXPRE;
1261 		break;
1262 
1263 	case TIM1_K:
1264 	case TIM8_K:
1265 	case TIM15_K:
1266 	case TIM16_K:
1267 	case TIM17_K:
1268 		prescaler = mmio_read_32(rcc_base + RCC_APB2DIVR) &
1269 			    RCC_APBXDIV_MASK;
1270 		timpre = mmio_read_32(rcc_base + RCC_TIMG2PRER) &
1271 			 RCC_TIMGXPRER_TIMGXPRE;
1272 		break;
1273 
1274 	default:
1275 		return parent_rate;
1276 	}
1277 
1278 	if (prescaler == 0U) {
1279 		return parent_rate;
1280 	}
1281 
1282 	return parent_rate * (timpre + 1U) * 2U;
1283 }
1284 
1285 static void stm32mp1_ls_osc_set(bool enable, uint32_t offset, uint32_t mask_on)
1286 {
1287 	uintptr_t address = stm32mp_rcc_base() + offset;
1288 
1289 	if (enable) {
1290 		mmio_setbits_32(address, mask_on);
1291 	} else {
1292 		mmio_clrbits_32(address, mask_on);
1293 	}
1294 }
1295 
1296 static void stm32mp1_hs_ocs_set(bool enable, uint32_t mask_on)
1297 {
1298 	uint32_t offset = enable ? RCC_OCENSETR : RCC_OCENCLRR;
1299 	uintptr_t address = stm32mp_rcc_base() + offset;
1300 
1301 	mmio_write_32(address, mask_on);
1302 }
1303 
1304 static int stm32mp1_osc_wait(bool enable, uint32_t offset, uint32_t mask_rdy)
1305 {
1306 	uint64_t timeout;
1307 	uint32_t mask_test;
1308 	uintptr_t address = stm32mp_rcc_base() + offset;
1309 
1310 	if (enable) {
1311 		mask_test = mask_rdy;
1312 	} else {
1313 		mask_test = 0;
1314 	}
1315 
1316 	timeout = timeout_init_us(OSCRDY_TIMEOUT);
1317 	while ((mmio_read_32(address) & mask_rdy) != mask_test) {
1318 		if (timeout_elapsed(timeout)) {
1319 			ERROR("OSC %x @ %lx timeout for enable=%d : 0x%x\n",
1320 			      mask_rdy, address, enable, mmio_read_32(address));
1321 			return -ETIMEDOUT;
1322 		}
1323 	}
1324 
1325 	return 0;
1326 }
1327 
1328 static void stm32mp1_lse_enable(bool bypass, bool digbyp, uint32_t lsedrv)
1329 {
1330 	uint32_t value;
1331 	uintptr_t rcc_base = stm32mp_rcc_base();
1332 
1333 	if (digbyp) {
1334 		mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_DIGBYP);
1335 	}
1336 
1337 	if (bypass || digbyp) {
1338 		mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_LSEBYP);
1339 	}
1340 
1341 	/*
1342 	 * Warning: not recommended to switch directly from "high drive"
1343 	 * to "medium low drive", and vice-versa.
1344 	 */
1345 	value = (mmio_read_32(rcc_base + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK) >>
1346 		RCC_BDCR_LSEDRV_SHIFT;
1347 
1348 	while (value != lsedrv) {
1349 		if (value > lsedrv) {
1350 			value--;
1351 		} else {
1352 			value++;
1353 		}
1354 
1355 		mmio_clrsetbits_32(rcc_base + RCC_BDCR,
1356 				   RCC_BDCR_LSEDRV_MASK,
1357 				   value << RCC_BDCR_LSEDRV_SHIFT);
1358 	}
1359 
1360 	stm32mp1_ls_osc_set(true, RCC_BDCR, RCC_BDCR_LSEON);
1361 }
1362 
1363 static void stm32mp1_lse_wait(void)
1364 {
1365 	if (stm32mp1_osc_wait(true, RCC_BDCR, RCC_BDCR_LSERDY) != 0) {
1366 		VERBOSE("%s: failed\n", __func__);
1367 	}
1368 }
1369 
1370 static void stm32mp1_lsi_set(bool enable)
1371 {
1372 	stm32mp1_ls_osc_set(enable, RCC_RDLSICR, RCC_RDLSICR_LSION);
1373 
1374 	if (stm32mp1_osc_wait(enable, RCC_RDLSICR, RCC_RDLSICR_LSIRDY) != 0) {
1375 		VERBOSE("%s: failed\n", __func__);
1376 	}
1377 }
1378 
1379 static void stm32mp1_hse_enable(bool bypass, bool digbyp, bool css)
1380 {
1381 	uintptr_t rcc_base = stm32mp_rcc_base();
1382 
1383 	if (digbyp) {
1384 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_DIGBYP);
1385 	}
1386 
1387 	if (bypass || digbyp) {
1388 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSEBYP);
1389 	}
1390 
1391 	stm32mp1_hs_ocs_set(true, RCC_OCENR_HSEON);
1392 	if (stm32mp1_osc_wait(true, RCC_OCRDYR, RCC_OCRDYR_HSERDY) != 0) {
1393 		VERBOSE("%s: failed\n", __func__);
1394 	}
1395 
1396 	if (css) {
1397 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSECSSON);
1398 	}
1399 
1400 #if STM32MP_UART_PROGRAMMER || STM32MP_USB_PROGRAMMER
1401 	if ((mmio_read_32(rcc_base + RCC_OCENSETR) & RCC_OCENR_HSEBYP) &&
1402 	    (!(digbyp || bypass))) {
1403 		panic();
1404 	}
1405 #endif
1406 }
1407 
1408 static void stm32mp1_csi_set(bool enable)
1409 {
1410 	stm32mp1_hs_ocs_set(enable, RCC_OCENR_CSION);
1411 	if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_CSIRDY) != 0) {
1412 		VERBOSE("%s: failed\n", __func__);
1413 	}
1414 }
1415 
1416 static void stm32mp1_hsi_set(bool enable)
1417 {
1418 	stm32mp1_hs_ocs_set(enable, RCC_OCENR_HSION);
1419 	if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_HSIRDY) != 0) {
1420 		VERBOSE("%s: failed\n", __func__);
1421 	}
1422 }
1423 
1424 static int stm32mp1_set_hsidiv(uint8_t hsidiv)
1425 {
1426 	uint64_t timeout;
1427 	uintptr_t rcc_base = stm32mp_rcc_base();
1428 	uintptr_t address = rcc_base + RCC_OCRDYR;
1429 
1430 	mmio_clrsetbits_32(rcc_base + RCC_HSICFGR,
1431 			   RCC_HSICFGR_HSIDIV_MASK,
1432 			   RCC_HSICFGR_HSIDIV_MASK & (uint32_t)hsidiv);
1433 
1434 	timeout = timeout_init_us(HSIDIV_TIMEOUT);
1435 	while ((mmio_read_32(address) & RCC_OCRDYR_HSIDIVRDY) == 0U) {
1436 		if (timeout_elapsed(timeout)) {
1437 			ERROR("HSIDIV failed @ 0x%lx: 0x%x\n",
1438 			      address, mmio_read_32(address));
1439 			return -ETIMEDOUT;
1440 		}
1441 	}
1442 
1443 	return 0;
1444 }
1445 
1446 static int stm32mp1_hsidiv(unsigned long hsifreq)
1447 {
1448 	uint8_t hsidiv;
1449 	uint32_t hsidivfreq = MAX_HSI_HZ;
1450 
1451 	for (hsidiv = 0; hsidiv < 4U; hsidiv++) {
1452 		if (hsidivfreq == hsifreq) {
1453 			break;
1454 		}
1455 
1456 		hsidivfreq /= 2U;
1457 	}
1458 
1459 	if (hsidiv == 4U) {
1460 		ERROR("Invalid clk-hsi frequency\n");
1461 		return -1;
1462 	}
1463 
1464 	if (hsidiv != 0U) {
1465 		return stm32mp1_set_hsidiv(hsidiv);
1466 	}
1467 
1468 	return 0;
1469 }
1470 
1471 static bool stm32mp1_check_pll_conf(enum stm32mp1_pll_id pll_id,
1472 				    unsigned int clksrc,
1473 				    uint32_t *pllcfg, int plloff)
1474 {
1475 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1476 	uintptr_t rcc_base = stm32mp_rcc_base();
1477 	uintptr_t pllxcr = rcc_base + pll->pllxcr;
1478 	enum stm32mp1_plltype type = pll->plltype;
1479 	uintptr_t clksrc_address = rcc_base + (clksrc >> 4);
1480 	unsigned long refclk;
1481 	uint32_t ifrge = 0U;
1482 	uint32_t src, value, fracv = 0;
1483 	void *fdt;
1484 
1485 	/* Check PLL output */
1486 	if (mmio_read_32(pllxcr) != RCC_PLLNCR_PLLON) {
1487 		return false;
1488 	}
1489 
1490 	/* Check current clksrc */
1491 	src = mmio_read_32(clksrc_address) & RCC_SELR_SRC_MASK;
1492 	if (src != (clksrc & RCC_SELR_SRC_MASK)) {
1493 		return false;
1494 	}
1495 
1496 	/* Check Div */
1497 	src = mmio_read_32(rcc_base + pll->rckxselr) & RCC_SELR_REFCLK_SRC_MASK;
1498 
1499 	refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
1500 		 (pllcfg[PLLCFG_M] + 1U);
1501 
1502 	if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
1503 	    (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
1504 		return false;
1505 	}
1506 
1507 	if ((type == PLL_800) && (refclk >= 8000000U)) {
1508 		ifrge = 1U;
1509 	}
1510 
1511 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
1512 		RCC_PLLNCFGR1_DIVN_MASK;
1513 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
1514 		 RCC_PLLNCFGR1_DIVM_MASK;
1515 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
1516 		 RCC_PLLNCFGR1_IFRGE_MASK;
1517 	if (mmio_read_32(rcc_base + pll->pllxcfgr1) != value) {
1518 		return false;
1519 	}
1520 
1521 	/* Fractional configuration */
1522 	if (fdt_get_address(&fdt) == 1) {
1523 		fracv = fdt_read_uint32_default(fdt, plloff, "frac", 0);
1524 	}
1525 
1526 	value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
1527 	value |= RCC_PLLNFRACR_FRACLE;
1528 	if (mmio_read_32(rcc_base + pll->pllxfracr) != value) {
1529 		return false;
1530 	}
1531 
1532 	/* Output config */
1533 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
1534 		RCC_PLLNCFGR2_DIVP_MASK;
1535 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
1536 		 RCC_PLLNCFGR2_DIVQ_MASK;
1537 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
1538 		 RCC_PLLNCFGR2_DIVR_MASK;
1539 	if (mmio_read_32(rcc_base + pll->pllxcfgr2) != value) {
1540 		return false;
1541 	}
1542 
1543 	return true;
1544 }
1545 
1546 static void stm32mp1_pll_start(enum stm32mp1_pll_id pll_id)
1547 {
1548 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1549 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1550 
1551 	/* Preserve RCC_PLLNCR_SSCG_CTRL value */
1552 	mmio_clrsetbits_32(pllxcr,
1553 			   RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1554 			   RCC_PLLNCR_DIVREN,
1555 			   RCC_PLLNCR_PLLON);
1556 }
1557 
1558 static int stm32mp1_pll_output(enum stm32mp1_pll_id pll_id, uint32_t output)
1559 {
1560 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1561 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1562 	uint64_t timeout = timeout_init_us(PLLRDY_TIMEOUT);
1563 
1564 	/* Wait PLL lock */
1565 	while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) == 0U) {
1566 		if (timeout_elapsed(timeout)) {
1567 			ERROR("PLL%d start failed @ 0x%lx: 0x%x\n",
1568 			      pll_id, pllxcr, mmio_read_32(pllxcr));
1569 			return -ETIMEDOUT;
1570 		}
1571 	}
1572 
1573 	/* Start the requested output */
1574 	mmio_setbits_32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT);
1575 
1576 	return 0;
1577 }
1578 
1579 static int stm32mp1_pll_stop(enum stm32mp1_pll_id pll_id)
1580 {
1581 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1582 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1583 	uint64_t timeout;
1584 
1585 	/* Stop all output */
1586 	mmio_clrbits_32(pllxcr, RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1587 			RCC_PLLNCR_DIVREN);
1588 
1589 	/* Stop PLL */
1590 	mmio_clrbits_32(pllxcr, RCC_PLLNCR_PLLON);
1591 
1592 	timeout = timeout_init_us(PLLRDY_TIMEOUT);
1593 	/* Wait PLL stopped */
1594 	while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) != 0U) {
1595 		if (timeout_elapsed(timeout)) {
1596 			ERROR("PLL%d stop failed @ 0x%lx: 0x%x\n",
1597 			      pll_id, pllxcr, mmio_read_32(pllxcr));
1598 			return -ETIMEDOUT;
1599 		}
1600 	}
1601 
1602 	return 0;
1603 }
1604 
1605 static void stm32mp1_pll_config_output(enum stm32mp1_pll_id pll_id,
1606 				       uint32_t *pllcfg)
1607 {
1608 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1609 	uintptr_t rcc_base = stm32mp_rcc_base();
1610 	uint32_t value;
1611 
1612 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
1613 		RCC_PLLNCFGR2_DIVP_MASK;
1614 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
1615 		 RCC_PLLNCFGR2_DIVQ_MASK;
1616 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
1617 		 RCC_PLLNCFGR2_DIVR_MASK;
1618 	mmio_write_32(rcc_base + pll->pllxcfgr2, value);
1619 }
1620 
1621 static int stm32mp1_pll_config(enum stm32mp1_pll_id pll_id,
1622 			       uint32_t *pllcfg, uint32_t fracv)
1623 {
1624 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1625 	uintptr_t rcc_base = stm32mp_rcc_base();
1626 	enum stm32mp1_plltype type = pll->plltype;
1627 	unsigned long refclk;
1628 	uint32_t ifrge = 0;
1629 	uint32_t src, value;
1630 
1631 	src = mmio_read_32(rcc_base + pll->rckxselr) &
1632 		RCC_SELR_REFCLK_SRC_MASK;
1633 
1634 	refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
1635 		 (pllcfg[PLLCFG_M] + 1U);
1636 
1637 	if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
1638 	    (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
1639 		return -EINVAL;
1640 	}
1641 
1642 	if ((type == PLL_800) && (refclk >= 8000000U)) {
1643 		ifrge = 1U;
1644 	}
1645 
1646 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
1647 		RCC_PLLNCFGR1_DIVN_MASK;
1648 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
1649 		 RCC_PLLNCFGR1_DIVM_MASK;
1650 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
1651 		 RCC_PLLNCFGR1_IFRGE_MASK;
1652 	mmio_write_32(rcc_base + pll->pllxcfgr1, value);
1653 
1654 	/* Fractional configuration */
1655 	value = 0;
1656 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1657 
1658 	value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
1659 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1660 
1661 	value |= RCC_PLLNFRACR_FRACLE;
1662 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1663 
1664 	stm32mp1_pll_config_output(pll_id, pllcfg);
1665 
1666 	return 0;
1667 }
1668 
1669 static void stm32mp1_pll_csg(enum stm32mp1_pll_id pll_id, uint32_t *csg)
1670 {
1671 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1672 	uint32_t pllxcsg = 0;
1673 
1674 	pllxcsg |= (csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) &
1675 		    RCC_PLLNCSGR_MOD_PER_MASK;
1676 
1677 	pllxcsg |= (csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) &
1678 		    RCC_PLLNCSGR_INC_STEP_MASK;
1679 
1680 	pllxcsg |= (csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) &
1681 		    RCC_PLLNCSGR_SSCG_MODE_MASK;
1682 
1683 	mmio_write_32(stm32mp_rcc_base() + pll->pllxcsgr, pllxcsg);
1684 
1685 	mmio_setbits_32(stm32mp_rcc_base() + pll->pllxcr,
1686 			RCC_PLLNCR_SSCG_CTRL);
1687 }
1688 
1689 static int stm32mp1_set_clksrc(unsigned int clksrc)
1690 {
1691 	uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4);
1692 	uint64_t timeout;
1693 
1694 	mmio_clrsetbits_32(clksrc_address, RCC_SELR_SRC_MASK,
1695 			   clksrc & RCC_SELR_SRC_MASK);
1696 
1697 	timeout = timeout_init_us(CLKSRC_TIMEOUT);
1698 	while ((mmio_read_32(clksrc_address) & RCC_SELR_SRCRDY) == 0U) {
1699 		if (timeout_elapsed(timeout)) {
1700 			ERROR("CLKSRC %x start failed @ 0x%lx: 0x%x\n", clksrc,
1701 			      clksrc_address, mmio_read_32(clksrc_address));
1702 			return -ETIMEDOUT;
1703 		}
1704 	}
1705 
1706 	return 0;
1707 }
1708 
1709 static int stm32mp1_set_clkdiv(unsigned int clkdiv, uintptr_t address)
1710 {
1711 	uint64_t timeout;
1712 
1713 	mmio_clrsetbits_32(address, RCC_DIVR_DIV_MASK,
1714 			   clkdiv & RCC_DIVR_DIV_MASK);
1715 
1716 	timeout = timeout_init_us(CLKDIV_TIMEOUT);
1717 	while ((mmio_read_32(address) & RCC_DIVR_DIVRDY) == 0U) {
1718 		if (timeout_elapsed(timeout)) {
1719 			ERROR("CLKDIV %x start failed @ 0x%lx: 0x%x\n",
1720 			      clkdiv, address, mmio_read_32(address));
1721 			return -ETIMEDOUT;
1722 		}
1723 	}
1724 
1725 	return 0;
1726 }
1727 
1728 static void stm32mp1_mco_csg(uint32_t clksrc, uint32_t clkdiv)
1729 {
1730 	uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4);
1731 
1732 	/*
1733 	 * Binding clksrc :
1734 	 *      bit15-4 offset
1735 	 *      bit3:   disable
1736 	 *      bit2-0: MCOSEL[2:0]
1737 	 */
1738 	if ((clksrc & 0x8U) != 0U) {
1739 		mmio_clrbits_32(clksrc_address, RCC_MCOCFG_MCOON);
1740 	} else {
1741 		mmio_clrsetbits_32(clksrc_address,
1742 				   RCC_MCOCFG_MCOSRC_MASK,
1743 				   clksrc & RCC_MCOCFG_MCOSRC_MASK);
1744 		mmio_clrsetbits_32(clksrc_address,
1745 				   RCC_MCOCFG_MCODIV_MASK,
1746 				   clkdiv << RCC_MCOCFG_MCODIV_SHIFT);
1747 		mmio_setbits_32(clksrc_address, RCC_MCOCFG_MCOON);
1748 	}
1749 }
1750 
1751 static void stm32mp1_set_rtcsrc(unsigned int clksrc, bool lse_css)
1752 {
1753 	uintptr_t address = stm32mp_rcc_base() + RCC_BDCR;
1754 
1755 	if (((mmio_read_32(address) & RCC_BDCR_RTCCKEN) == 0U) ||
1756 	    (clksrc != (uint32_t)CLK_RTC_DISABLED)) {
1757 		mmio_clrsetbits_32(address,
1758 				   RCC_BDCR_RTCSRC_MASK,
1759 				   (clksrc & RCC_SELR_SRC_MASK) << RCC_BDCR_RTCSRC_SHIFT);
1760 
1761 		mmio_setbits_32(address, RCC_BDCR_RTCCKEN);
1762 	}
1763 
1764 	if (lse_css) {
1765 		mmio_setbits_32(address, RCC_BDCR_LSECSSON);
1766 	}
1767 }
1768 
1769 static void stm32mp1_pkcs_config(uint32_t pkcs)
1770 {
1771 	uintptr_t address = stm32mp_rcc_base() + ((pkcs >> 4) & 0xFFFU);
1772 	uint32_t value = pkcs & 0xFU;
1773 	uint32_t mask = 0xFU;
1774 
1775 	if ((pkcs & BIT(31)) != 0U) {
1776 		mask <<= 4;
1777 		value <<= 4;
1778 	}
1779 
1780 	mmio_clrsetbits_32(address, mask, value);
1781 }
1782 
1783 static int clk_get_pll_settings_from_dt(int plloff, unsigned int *pllcfg,
1784 					uint32_t *fracv, uint32_t *csg,
1785 					bool *csg_set)
1786 {
1787 	void *fdt;
1788 	int ret;
1789 
1790 	if (fdt_get_address(&fdt) == 0) {
1791 		return -FDT_ERR_NOTFOUND;
1792 	}
1793 
1794 	ret = fdt_read_uint32_array(fdt, plloff, "cfg", (uint32_t)PLLCFG_NB,
1795 				    pllcfg);
1796 	if (ret < 0) {
1797 		return -FDT_ERR_NOTFOUND;
1798 	}
1799 
1800 	*fracv = fdt_read_uint32_default(fdt, plloff, "frac", 0);
1801 
1802 	ret = fdt_read_uint32_array(fdt, plloff, "csg", (uint32_t)PLLCSG_NB,
1803 				    csg);
1804 
1805 	*csg_set = (ret == 0);
1806 
1807 	if (ret == -FDT_ERR_NOTFOUND) {
1808 		ret = 0;
1809 	}
1810 
1811 	return ret;
1812 }
1813 
1814 int stm32mp1_clk_init(void)
1815 {
1816 	uintptr_t rcc_base = stm32mp_rcc_base();
1817 	uint32_t pllfracv[_PLL_NB];
1818 	uint32_t pllcsg[_PLL_NB][PLLCSG_NB];
1819 	unsigned int clksrc[CLKSRC_NB];
1820 	unsigned int clkdiv[CLKDIV_NB];
1821 	unsigned int pllcfg[_PLL_NB][PLLCFG_NB];
1822 	int plloff[_PLL_NB];
1823 	int ret, len;
1824 	enum stm32mp1_pll_id i;
1825 	bool pllcsg_set[_PLL_NB];
1826 	bool pllcfg_valid[_PLL_NB];
1827 	bool lse_css = false;
1828 	bool pll3_preserve = false;
1829 	bool pll4_preserve = false;
1830 	bool pll4_bootrom = false;
1831 	const fdt32_t *pkcs_cell;
1832 	void *fdt;
1833 	int stgen_p = stm32mp1_clk_get_parent(STGEN_K);
1834 	int usbphy_p = stm32mp1_clk_get_parent(USBPHY_K);
1835 
1836 	if (fdt_get_address(&fdt) == 0) {
1837 		return -FDT_ERR_NOTFOUND;
1838 	}
1839 
1840 	ret = fdt_rcc_read_uint32_array("st,clksrc", (uint32_t)CLKSRC_NB,
1841 					clksrc);
1842 	if (ret < 0) {
1843 		return -FDT_ERR_NOTFOUND;
1844 	}
1845 
1846 	ret = fdt_rcc_read_uint32_array("st,clkdiv", (uint32_t)CLKDIV_NB,
1847 					clkdiv);
1848 	if (ret < 0) {
1849 		return -FDT_ERR_NOTFOUND;
1850 	}
1851 
1852 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1853 		char name[12];
1854 
1855 		snprintf(name, sizeof(name), "st,pll@%d", i);
1856 		plloff[i] = fdt_rcc_subnode_offset(name);
1857 
1858 		pllcfg_valid[i] = fdt_check_node(plloff[i]);
1859 		if (!pllcfg_valid[i]) {
1860 			continue;
1861 		}
1862 
1863 		ret = clk_get_pll_settings_from_dt(plloff[i], pllcfg[i],
1864 						   &pllfracv[i], pllcsg[i],
1865 						   &pllcsg_set[i]);
1866 		if (ret != 0) {
1867 			return ret;
1868 		}
1869 	}
1870 
1871 	stm32mp1_mco_csg(clksrc[CLKSRC_MCO1], clkdiv[CLKDIV_MCO1]);
1872 	stm32mp1_mco_csg(clksrc[CLKSRC_MCO2], clkdiv[CLKDIV_MCO2]);
1873 
1874 	/*
1875 	 * Switch ON oscillator found in device-tree.
1876 	 * Note: HSI already ON after BootROM stage.
1877 	 */
1878 	if (stm32mp1_osc[_LSI] != 0U) {
1879 		stm32mp1_lsi_set(true);
1880 	}
1881 	if (stm32mp1_osc[_LSE] != 0U) {
1882 		const char *name = stm32mp_osc_node_label[_LSE];
1883 		bool bypass, digbyp;
1884 		uint32_t lsedrv;
1885 
1886 		bypass = fdt_clk_read_bool(name, "st,bypass");
1887 		digbyp = fdt_clk_read_bool(name, "st,digbypass");
1888 		lse_css = fdt_clk_read_bool(name, "st,css");
1889 		lsedrv = fdt_clk_read_uint32_default(name, "st,drive",
1890 						     LSEDRV_MEDIUM_HIGH);
1891 		stm32mp1_lse_enable(bypass, digbyp, lsedrv);
1892 	}
1893 	if (stm32mp1_osc[_HSE] != 0U) {
1894 		const char *name = stm32mp_osc_node_label[_HSE];
1895 		bool bypass, digbyp, css;
1896 
1897 		bypass = fdt_clk_read_bool(name, "st,bypass");
1898 		digbyp = fdt_clk_read_bool(name, "st,digbypass");
1899 		css = fdt_clk_read_bool(name, "st,css");
1900 		stm32mp1_hse_enable(bypass, digbyp, css);
1901 	}
1902 	/*
1903 	 * CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR)
1904 	 * => switch on CSI even if node is not present in device tree
1905 	 */
1906 	stm32mp1_csi_set(true);
1907 
1908 	/* Come back to HSI */
1909 	ret = stm32mp1_set_clksrc(CLK_MPU_HSI);
1910 	if (ret != 0) {
1911 		return ret;
1912 	}
1913 	ret = stm32mp1_set_clksrc(CLK_AXI_HSI);
1914 	if (ret != 0) {
1915 		return ret;
1916 	}
1917 	ret = stm32mp1_set_clksrc(CLK_MCU_HSI);
1918 	if (ret != 0) {
1919 		return ret;
1920 	}
1921 
1922 	if ((mmio_read_32(rcc_base + RCC_MP_RSTSCLRR) &
1923 	     RCC_MP_RSTSCLRR_MPUP0RSTF) != 0) {
1924 		pll3_preserve = stm32mp1_check_pll_conf(_PLL3,
1925 							clksrc[CLKSRC_PLL3],
1926 							pllcfg[_PLL3],
1927 							plloff[_PLL3]);
1928 		pll4_preserve = stm32mp1_check_pll_conf(_PLL4,
1929 							clksrc[CLKSRC_PLL4],
1930 							pllcfg[_PLL4],
1931 							plloff[_PLL4]);
1932 	}
1933 	/* Don't initialize PLL4, when used by BOOTROM */
1934 	if ((stm32mp_get_boot_itf_selected() ==
1935 	     BOOT_API_CTX_BOOT_INTERFACE_SEL_SERIAL_USB) &&
1936 	    ((stgen_p == (int)_PLL4_R) || (usbphy_p == (int)_PLL4_R))) {
1937 		pll4_bootrom = true;
1938 		pll4_preserve = true;
1939 	}
1940 
1941 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1942 		if (((i == _PLL3) && pll3_preserve) ||
1943 		    ((i == _PLL4) && pll4_preserve)) {
1944 			continue;
1945 		}
1946 
1947 		ret = stm32mp1_pll_stop(i);
1948 		if (ret != 0) {
1949 			return ret;
1950 		}
1951 	}
1952 
1953 	/* Configure HSIDIV */
1954 	if (stm32mp1_osc[_HSI] != 0U) {
1955 		ret = stm32mp1_hsidiv(stm32mp1_osc[_HSI]);
1956 		if (ret != 0) {
1957 			return ret;
1958 		}
1959 
1960 		stm32mp_stgen_config(stm32mp_clk_get_rate(STGEN_K));
1961 	}
1962 
1963 	/* Select DIV */
1964 	/* No ready bit when MPUSRC != CLK_MPU_PLL1P_DIV, MPUDIV is disabled */
1965 	mmio_write_32(rcc_base + RCC_MPCKDIVR,
1966 		      clkdiv[CLKDIV_MPU] & RCC_DIVR_DIV_MASK);
1967 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_AXI], rcc_base + RCC_AXIDIVR);
1968 	if (ret != 0) {
1969 		return ret;
1970 	}
1971 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB4], rcc_base + RCC_APB4DIVR);
1972 	if (ret != 0) {
1973 		return ret;
1974 	}
1975 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB5], rcc_base + RCC_APB5DIVR);
1976 	if (ret != 0) {
1977 		return ret;
1978 	}
1979 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_MCU], rcc_base + RCC_MCUDIVR);
1980 	if (ret != 0) {
1981 		return ret;
1982 	}
1983 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB1], rcc_base + RCC_APB1DIVR);
1984 	if (ret != 0) {
1985 		return ret;
1986 	}
1987 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB2], rcc_base + RCC_APB2DIVR);
1988 	if (ret != 0) {
1989 		return ret;
1990 	}
1991 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB3], rcc_base + RCC_APB3DIVR);
1992 	if (ret != 0) {
1993 		return ret;
1994 	}
1995 
1996 	/* No ready bit for RTC */
1997 	mmio_write_32(rcc_base + RCC_RTCDIVR,
1998 		      clkdiv[CLKDIV_RTC] & RCC_DIVR_DIV_MASK);
1999 
2000 	/* Configure PLLs source */
2001 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL12]);
2002 	if (ret != 0) {
2003 		return ret;
2004 	}
2005 
2006 	if (!pll3_preserve) {
2007 		ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL3]);
2008 		if (ret != 0) {
2009 			return ret;
2010 		}
2011 	}
2012 
2013 	if (!pll4_preserve) {
2014 		ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL4]);
2015 		if (ret != 0) {
2016 			return ret;
2017 		}
2018 	}
2019 
2020 	/* Configure and start PLLs */
2021 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
2022 		if (((i == _PLL3) && pll3_preserve) ||
2023 		    ((i == _PLL4) && pll4_preserve && !pll4_bootrom)) {
2024 			continue;
2025 		}
2026 
2027 		if (!pllcfg_valid[i]) {
2028 			continue;
2029 		}
2030 
2031 		if ((i == _PLL4) && pll4_bootrom) {
2032 			/* Set output divider if not done by the Bootrom */
2033 			stm32mp1_pll_config_output(i, pllcfg[i]);
2034 			continue;
2035 		}
2036 
2037 		ret = stm32mp1_pll_config(i, pllcfg[i], pllfracv[i]);
2038 		if (ret != 0) {
2039 			return ret;
2040 		}
2041 
2042 		if (pllcsg_set[i]) {
2043 			stm32mp1_pll_csg(i, pllcsg[i]);
2044 		}
2045 
2046 		stm32mp1_pll_start(i);
2047 	}
2048 	/* Wait and start PLLs ouptut when ready */
2049 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
2050 		if (!pllcfg_valid[i]) {
2051 			continue;
2052 		}
2053 
2054 		ret = stm32mp1_pll_output(i, pllcfg[i][PLLCFG_O]);
2055 		if (ret != 0) {
2056 			return ret;
2057 		}
2058 	}
2059 	/* Wait LSE ready before to use it */
2060 	if (stm32mp1_osc[_LSE] != 0U) {
2061 		stm32mp1_lse_wait();
2062 	}
2063 
2064 	/* Configure with expected clock source */
2065 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_MPU]);
2066 	if (ret != 0) {
2067 		return ret;
2068 	}
2069 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_AXI]);
2070 	if (ret != 0) {
2071 		return ret;
2072 	}
2073 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_MCU]);
2074 	if (ret != 0) {
2075 		return ret;
2076 	}
2077 	stm32mp1_set_rtcsrc(clksrc[CLKSRC_RTC], lse_css);
2078 
2079 	/* Configure PKCK */
2080 	pkcs_cell = fdt_rcc_read_prop("st,pkcs", &len);
2081 	if (pkcs_cell != NULL) {
2082 		bool ckper_disabled = false;
2083 		uint32_t j;
2084 		uint32_t usbreg_bootrom = 0U;
2085 
2086 		if (pll4_bootrom) {
2087 			usbreg_bootrom = mmio_read_32(rcc_base + RCC_USBCKSELR);
2088 		}
2089 
2090 		for (j = 0; j < ((uint32_t)len / sizeof(uint32_t)); j++) {
2091 			uint32_t pkcs = fdt32_to_cpu(pkcs_cell[j]);
2092 
2093 			if (pkcs == (uint32_t)CLK_CKPER_DISABLED) {
2094 				ckper_disabled = true;
2095 				continue;
2096 			}
2097 			stm32mp1_pkcs_config(pkcs);
2098 		}
2099 
2100 		/*
2101 		 * CKPER is source for some peripheral clocks
2102 		 * (FMC-NAND / QPSI-NOR) and switching source is allowed
2103 		 * only if previous clock is still ON
2104 		 * => deactivated CKPER only after switching clock
2105 		 */
2106 		if (ckper_disabled) {
2107 			stm32mp1_pkcs_config(CLK_CKPER_DISABLED);
2108 		}
2109 
2110 		if (pll4_bootrom) {
2111 			uint32_t usbreg_value, usbreg_mask;
2112 			const struct stm32mp1_clk_sel *sel;
2113 
2114 			sel = clk_sel_ref(_USBPHY_SEL);
2115 			usbreg_mask = (uint32_t)sel->msk << sel->src;
2116 			sel = clk_sel_ref(_USBO_SEL);
2117 			usbreg_mask |= (uint32_t)sel->msk << sel->src;
2118 
2119 			usbreg_value = mmio_read_32(rcc_base + RCC_USBCKSELR) &
2120 				       usbreg_mask;
2121 			usbreg_bootrom &= usbreg_mask;
2122 			if (usbreg_bootrom != usbreg_value) {
2123 				VERBOSE("forbidden new USB clk path\n");
2124 				VERBOSE("vs bootrom on USB boot\n");
2125 				return -FDT_ERR_BADVALUE;
2126 			}
2127 		}
2128 	}
2129 
2130 	/* Switch OFF HSI if not found in device-tree */
2131 	if (stm32mp1_osc[_HSI] == 0U) {
2132 		stm32mp1_hsi_set(false);
2133 	}
2134 
2135 	stm32mp_stgen_config(stm32mp_clk_get_rate(STGEN_K));
2136 
2137 	/* Software Self-Refresh mode (SSR) during DDR initilialization */
2138 	mmio_clrsetbits_32(rcc_base + RCC_DDRITFCR,
2139 			   RCC_DDRITFCR_DDRCKMOD_MASK,
2140 			   RCC_DDRITFCR_DDRCKMOD_SSR <<
2141 			   RCC_DDRITFCR_DDRCKMOD_SHIFT);
2142 
2143 	return 0;
2144 }
2145 
2146 static void stm32mp1_osc_clk_init(const char *name,
2147 				  enum stm32mp_osc_id index)
2148 {
2149 	uint32_t frequency;
2150 
2151 	if (fdt_osc_read_freq(name, &frequency) == 0) {
2152 		stm32mp1_osc[index] = frequency;
2153 	}
2154 }
2155 
2156 static void stm32mp1_osc_init(void)
2157 {
2158 	enum stm32mp_osc_id i;
2159 
2160 	for (i = (enum stm32mp_osc_id)0 ; i < NB_OSC; i++) {
2161 		stm32mp1_osc_clk_init(stm32mp_osc_node_label[i], i);
2162 	}
2163 }
2164 
2165 #ifdef STM32MP_SHARED_RESOURCES
2166 /*
2167  * Get the parent ID of the target parent clock, for tagging as secure
2168  * shared clock dependencies.
2169  */
2170 static int get_parent_id_parent(unsigned int parent_id)
2171 {
2172 	enum stm32mp1_parent_sel s = _UNKNOWN_SEL;
2173 	enum stm32mp1_pll_id pll_id;
2174 	uint32_t p_sel;
2175 	uintptr_t rcc_base = stm32mp_rcc_base();
2176 
2177 	switch (parent_id) {
2178 	case _ACLK:
2179 	case _PCLK4:
2180 	case _PCLK5:
2181 		s = _AXIS_SEL;
2182 		break;
2183 	case _PLL1_P:
2184 	case _PLL1_Q:
2185 	case _PLL1_R:
2186 		pll_id = _PLL1;
2187 		break;
2188 	case _PLL2_P:
2189 	case _PLL2_Q:
2190 	case _PLL2_R:
2191 		pll_id = _PLL2;
2192 		break;
2193 	case _PLL3_P:
2194 	case _PLL3_Q:
2195 	case _PLL3_R:
2196 		pll_id = _PLL3;
2197 		break;
2198 	case _PLL4_P:
2199 	case _PLL4_Q:
2200 	case _PLL4_R:
2201 		pll_id = _PLL4;
2202 		break;
2203 	case _PCLK1:
2204 	case _PCLK2:
2205 	case _HCLK2:
2206 	case _HCLK6:
2207 	case _CK_PER:
2208 	case _CK_MPU:
2209 	case _CK_MCU:
2210 	case _USB_PHY_48:
2211 		/* We do not expect to access these */
2212 		panic();
2213 		break;
2214 	default:
2215 		/* Other parents have no parent */
2216 		return -1;
2217 	}
2218 
2219 	if (s != _UNKNOWN_SEL) {
2220 		const struct stm32mp1_clk_sel *sel = clk_sel_ref(s);
2221 
2222 		p_sel = (mmio_read_32(rcc_base + sel->offset) >> sel->src) &
2223 			sel->msk;
2224 
2225 		if (p_sel < sel->nb_parent) {
2226 			return (int)sel->parent[p_sel];
2227 		}
2228 	} else {
2229 		const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
2230 
2231 		p_sel = mmio_read_32(rcc_base + pll->rckxselr) &
2232 			RCC_SELR_REFCLK_SRC_MASK;
2233 
2234 		if (pll->refclk[p_sel] != _UNKNOWN_OSC_ID) {
2235 			return (int)pll->refclk[p_sel];
2236 		}
2237 	}
2238 
2239 	VERBOSE("No parent selected for %s\n",
2240 		stm32mp1_clk_parent_name[parent_id]);
2241 
2242 	return -1;
2243 }
2244 
2245 static void secure_parent_clocks(unsigned long parent_id)
2246 {
2247 	int grandparent_id;
2248 
2249 	switch (parent_id) {
2250 	case _PLL3_P:
2251 	case _PLL3_Q:
2252 	case _PLL3_R:
2253 		stm32mp_register_secure_periph(STM32MP1_SHRES_PLL3);
2254 		break;
2255 
2256 	/* These clocks are always secure when RCC is secure */
2257 	case _ACLK:
2258 	case _HCLK2:
2259 	case _HCLK6:
2260 	case _PCLK4:
2261 	case _PCLK5:
2262 	case _PLL1_P:
2263 	case _PLL1_Q:
2264 	case _PLL1_R:
2265 	case _PLL2_P:
2266 	case _PLL2_Q:
2267 	case _PLL2_R:
2268 	case _HSI:
2269 	case _HSI_KER:
2270 	case _LSI:
2271 	case _CSI:
2272 	case _CSI_KER:
2273 	case _HSE:
2274 	case _HSE_KER:
2275 	case _HSE_KER_DIV2:
2276 	case _HSE_RTC:
2277 	case _LSE:
2278 		break;
2279 
2280 	default:
2281 		VERBOSE("Cannot secure parent clock %s\n",
2282 			stm32mp1_clk_parent_name[parent_id]);
2283 		panic();
2284 	}
2285 
2286 	grandparent_id = get_parent_id_parent(parent_id);
2287 	if (grandparent_id >= 0) {
2288 		secure_parent_clocks(grandparent_id);
2289 	}
2290 }
2291 
2292 void stm32mp1_register_clock_parents_secure(unsigned long clock_id)
2293 {
2294 	int parent_id;
2295 
2296 	if (!stm32mp1_rcc_is_secure()) {
2297 		return;
2298 	}
2299 
2300 	switch (clock_id) {
2301 	case PLL1:
2302 	case PLL2:
2303 		/* PLL1/PLL2 are always secure: nothing to do */
2304 		break;
2305 	case PLL3:
2306 		stm32mp_register_secure_periph(STM32MP1_SHRES_PLL3);
2307 		break;
2308 	case PLL4:
2309 		ERROR("PLL4 cannot be secured\n");
2310 		panic();
2311 		break;
2312 	default:
2313 		/* Others are expected gateable clock */
2314 		parent_id = stm32mp1_clk_get_parent(clock_id);
2315 		if (parent_id < 0) {
2316 			INFO("No parent found for clock %lu\n", clock_id);
2317 		} else {
2318 			secure_parent_clocks(parent_id);
2319 		}
2320 		break;
2321 	}
2322 }
2323 #endif /* STM32MP_SHARED_RESOURCES */
2324 
2325 static void sync_earlyboot_clocks_state(void)
2326 {
2327 	unsigned int idx;
2328 	const unsigned long secure_enable[] = {
2329 		AXIDCG,
2330 		BSEC,
2331 		DDRC1, DDRC1LP,
2332 		DDRC2, DDRC2LP,
2333 		DDRCAPB, DDRPHYCAPB, DDRPHYCAPBLP,
2334 		DDRPHYC, DDRPHYCLP,
2335 		RTCAPB,
2336 		TZC1, TZC2,
2337 		TZPC,
2338 		STGEN_K,
2339 	};
2340 
2341 	for (idx = 0U; idx < ARRAY_SIZE(secure_enable); idx++) {
2342 		stm32mp_clk_enable(secure_enable[idx]);
2343 	}
2344 }
2345 
2346 static const struct clk_ops stm32mp_clk_ops = {
2347 	.enable		= stm32mp_clk_enable,
2348 	.disable	= stm32mp_clk_disable,
2349 	.is_enabled	= stm32mp_clk_is_enabled,
2350 	.get_rate	= stm32mp_clk_get_rate,
2351 	.get_parent	= stm32mp1_clk_get_parent,
2352 };
2353 
2354 int stm32mp1_clk_probe(void)
2355 {
2356 #if defined(IMAGE_BL32)
2357 	if (!fdt_get_rcc_secure_state()) {
2358 		mmio_write_32(stm32mp_rcc_base() + RCC_TZCR, 0U);
2359 	}
2360 #endif
2361 
2362 	stm32mp1_osc_init();
2363 
2364 	sync_earlyboot_clocks_state();
2365 
2366 	clk_register(&stm32mp_clk_ops);
2367 
2368 	return 0;
2369 }
2370