xref: /rk3399_ARM-atf/drivers/st/clk/stm32mp1_clk.c (revision 7418cf397916c97cb4ecf159b1f497a84299b695)
1 /*
2  * Copyright (C) 2018-2022, STMicroelectronics - All Rights Reserved
3  *
4  * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdio.h>
11 
12 #include <arch.h>
13 #include <arch_helpers.h>
14 #include <common/debug.h>
15 #include <common/fdt_wrappers.h>
16 #include <drivers/clk.h>
17 #include <drivers/delay_timer.h>
18 #include <drivers/generic_delay_timer.h>
19 #include <drivers/st/stm32mp_clkfunc.h>
20 #include <drivers/st/stm32mp1_clk.h>
21 #include <drivers/st/stm32mp1_rcc.h>
22 #include <dt-bindings/clock/stm32mp1-clksrc.h>
23 #include <lib/mmio.h>
24 #include <lib/spinlock.h>
25 #include <lib/utils_def.h>
26 #include <libfdt.h>
27 #include <plat/common/platform.h>
28 
29 #include <platform_def.h>
30 
31 #define MAX_HSI_HZ		64000000
32 #define USB_PHY_48_MHZ		48000000
33 
34 #define TIMEOUT_US_200MS	U(200000)
35 #define TIMEOUT_US_1S		U(1000000)
36 
37 #define PLLRDY_TIMEOUT		TIMEOUT_US_200MS
38 #define CLKSRC_TIMEOUT		TIMEOUT_US_200MS
39 #define CLKDIV_TIMEOUT		TIMEOUT_US_200MS
40 #define HSIDIV_TIMEOUT		TIMEOUT_US_200MS
41 #define OSCRDY_TIMEOUT		TIMEOUT_US_1S
42 
43 const char *stm32mp_osc_node_label[NB_OSC] = {
44 	[_LSI] = "clk-lsi",
45 	[_LSE] = "clk-lse",
46 	[_HSI] = "clk-hsi",
47 	[_HSE] = "clk-hse",
48 	[_CSI] = "clk-csi",
49 	[_I2S_CKIN] = "i2s_ckin",
50 };
51 
52 enum stm32mp1_parent_id {
53 /* Oscillators are defined in enum stm32mp_osc_id */
54 
55 /* Other parent source */
56 	_HSI_KER = NB_OSC,
57 	_HSE_KER,
58 	_HSE_KER_DIV2,
59 	_HSE_RTC,
60 	_CSI_KER,
61 	_PLL1_P,
62 	_PLL1_Q,
63 	_PLL1_R,
64 	_PLL2_P,
65 	_PLL2_Q,
66 	_PLL2_R,
67 	_PLL3_P,
68 	_PLL3_Q,
69 	_PLL3_R,
70 	_PLL4_P,
71 	_PLL4_Q,
72 	_PLL4_R,
73 	_ACLK,
74 	_PCLK1,
75 	_PCLK2,
76 	_PCLK3,
77 	_PCLK4,
78 	_PCLK5,
79 	_HCLK6,
80 	_HCLK2,
81 	_CK_PER,
82 	_CK_MPU,
83 	_CK_MCU,
84 	_USB_PHY_48,
85 	_PARENT_NB,
86 	_UNKNOWN_ID = 0xff,
87 };
88 
89 /* Lists only the parent clock we are interested in */
90 enum stm32mp1_parent_sel {
91 	_I2C12_SEL,
92 	_I2C35_SEL,
93 	_STGEN_SEL,
94 	_I2C46_SEL,
95 	_SPI6_SEL,
96 	_UART1_SEL,
97 	_RNG1_SEL,
98 	_UART6_SEL,
99 	_UART24_SEL,
100 	_UART35_SEL,
101 	_UART78_SEL,
102 	_SDMMC12_SEL,
103 	_SDMMC3_SEL,
104 	_QSPI_SEL,
105 	_FMC_SEL,
106 	_AXIS_SEL,
107 	_MCUS_SEL,
108 	_USBPHY_SEL,
109 	_USBO_SEL,
110 	_MPU_SEL,
111 	_CKPER_SEL,
112 	_RTC_SEL,
113 	_PARENT_SEL_NB,
114 	_UNKNOWN_SEL = 0xff,
115 };
116 
117 /* State the parent clock ID straight related to a clock */
118 static const uint8_t parent_id_clock_id[_PARENT_NB] = {
119 	[_HSE] = CK_HSE,
120 	[_HSI] = CK_HSI,
121 	[_CSI] = CK_CSI,
122 	[_LSE] = CK_LSE,
123 	[_LSI] = CK_LSI,
124 	[_I2S_CKIN] = _UNKNOWN_ID,
125 	[_USB_PHY_48] = _UNKNOWN_ID,
126 	[_HSI_KER] = CK_HSI,
127 	[_HSE_KER] = CK_HSE,
128 	[_HSE_KER_DIV2] = CK_HSE_DIV2,
129 	[_HSE_RTC] = _UNKNOWN_ID,
130 	[_CSI_KER] = CK_CSI,
131 	[_PLL1_P] = PLL1_P,
132 	[_PLL1_Q] = PLL1_Q,
133 	[_PLL1_R] = PLL1_R,
134 	[_PLL2_P] = PLL2_P,
135 	[_PLL2_Q] = PLL2_Q,
136 	[_PLL2_R] = PLL2_R,
137 	[_PLL3_P] = PLL3_P,
138 	[_PLL3_Q] = PLL3_Q,
139 	[_PLL3_R] = PLL3_R,
140 	[_PLL4_P] = PLL4_P,
141 	[_PLL4_Q] = PLL4_Q,
142 	[_PLL4_R] = PLL4_R,
143 	[_ACLK] = CK_AXI,
144 	[_PCLK1] = CK_AXI,
145 	[_PCLK2] = CK_AXI,
146 	[_PCLK3] = CK_AXI,
147 	[_PCLK4] = CK_AXI,
148 	[_PCLK5] = CK_AXI,
149 	[_CK_PER] = CK_PER,
150 	[_CK_MPU] = CK_MPU,
151 	[_CK_MCU] = CK_MCU,
152 };
153 
154 static unsigned int clock_id2parent_id(unsigned long id)
155 {
156 	unsigned int n;
157 
158 	for (n = 0U; n < ARRAY_SIZE(parent_id_clock_id); n++) {
159 		if (parent_id_clock_id[n] == id) {
160 			return n;
161 		}
162 	}
163 
164 	return _UNKNOWN_ID;
165 }
166 
167 enum stm32mp1_pll_id {
168 	_PLL1,
169 	_PLL2,
170 	_PLL3,
171 	_PLL4,
172 	_PLL_NB
173 };
174 
175 enum stm32mp1_div_id {
176 	_DIV_P,
177 	_DIV_Q,
178 	_DIV_R,
179 	_DIV_NB,
180 };
181 
182 enum stm32mp1_clksrc_id {
183 	CLKSRC_MPU,
184 	CLKSRC_AXI,
185 	CLKSRC_MCU,
186 	CLKSRC_PLL12,
187 	CLKSRC_PLL3,
188 	CLKSRC_PLL4,
189 	CLKSRC_RTC,
190 	CLKSRC_MCO1,
191 	CLKSRC_MCO2,
192 	CLKSRC_NB
193 };
194 
195 enum stm32mp1_clkdiv_id {
196 	CLKDIV_MPU,
197 	CLKDIV_AXI,
198 	CLKDIV_MCU,
199 	CLKDIV_APB1,
200 	CLKDIV_APB2,
201 	CLKDIV_APB3,
202 	CLKDIV_APB4,
203 	CLKDIV_APB5,
204 	CLKDIV_RTC,
205 	CLKDIV_MCO1,
206 	CLKDIV_MCO2,
207 	CLKDIV_NB
208 };
209 
210 enum stm32mp1_pllcfg {
211 	PLLCFG_M,
212 	PLLCFG_N,
213 	PLLCFG_P,
214 	PLLCFG_Q,
215 	PLLCFG_R,
216 	PLLCFG_O,
217 	PLLCFG_NB
218 };
219 
220 enum stm32mp1_pllcsg {
221 	PLLCSG_MOD_PER,
222 	PLLCSG_INC_STEP,
223 	PLLCSG_SSCG_MODE,
224 	PLLCSG_NB
225 };
226 
227 enum stm32mp1_plltype {
228 	PLL_800,
229 	PLL_1600,
230 	PLL_TYPE_NB
231 };
232 
233 struct stm32mp1_pll {
234 	uint8_t refclk_min;
235 	uint8_t refclk_max;
236 	uint8_t divn_max;
237 };
238 
239 struct stm32mp1_clk_gate {
240 	uint16_t offset;
241 	uint8_t bit;
242 	uint8_t index;
243 	uint8_t set_clr;
244 	uint8_t secure;
245 	uint8_t sel; /* Relates to enum stm32mp1_parent_sel */
246 	uint8_t fixed; /* Relates to enum stm32mp1_parent_id */
247 };
248 
249 struct stm32mp1_clk_sel {
250 	uint16_t offset;
251 	uint8_t src;
252 	uint8_t msk;
253 	uint8_t nb_parent;
254 	const uint8_t *parent;
255 };
256 
257 #define REFCLK_SIZE 4
258 struct stm32mp1_clk_pll {
259 	enum stm32mp1_plltype plltype;
260 	uint16_t rckxselr;
261 	uint16_t pllxcfgr1;
262 	uint16_t pllxcfgr2;
263 	uint16_t pllxfracr;
264 	uint16_t pllxcr;
265 	uint16_t pllxcsgr;
266 	enum stm32mp_osc_id refclk[REFCLK_SIZE];
267 };
268 
269 /* Clocks with selectable source and non set/clr register access */
270 #define _CLK_SELEC(sec, off, b, idx, s)			\
271 	{						\
272 		.offset = (off),			\
273 		.bit = (b),				\
274 		.index = (idx),				\
275 		.set_clr = 0,				\
276 		.secure = (sec),			\
277 		.sel = (s),				\
278 		.fixed = _UNKNOWN_ID,			\
279 	}
280 
281 /* Clocks with fixed source and non set/clr register access */
282 #define _CLK_FIXED(sec, off, b, idx, f)			\
283 	{						\
284 		.offset = (off),			\
285 		.bit = (b),				\
286 		.index = (idx),				\
287 		.set_clr = 0,				\
288 		.secure = (sec),			\
289 		.sel = _UNKNOWN_SEL,			\
290 		.fixed = (f),				\
291 	}
292 
293 /* Clocks with selectable source and set/clr register access */
294 #define _CLK_SC_SELEC(sec, off, b, idx, s)			\
295 	{						\
296 		.offset = (off),			\
297 		.bit = (b),				\
298 		.index = (idx),				\
299 		.set_clr = 1,				\
300 		.secure = (sec),			\
301 		.sel = (s),				\
302 		.fixed = _UNKNOWN_ID,			\
303 	}
304 
305 /* Clocks with fixed source and set/clr register access */
306 #define _CLK_SC_FIXED(sec, off, b, idx, f)			\
307 	{						\
308 		.offset = (off),			\
309 		.bit = (b),				\
310 		.index = (idx),				\
311 		.set_clr = 1,				\
312 		.secure = (sec),			\
313 		.sel = _UNKNOWN_SEL,			\
314 		.fixed = (f),				\
315 	}
316 
317 #define _CLK_PARENT_SEL(_label, _rcc_selr, _parents)		\
318 	[_ ## _label ## _SEL] = {				\
319 		.offset = _rcc_selr,				\
320 		.src = _rcc_selr ## _ ## _label ## SRC_SHIFT,	\
321 		.msk = (_rcc_selr ## _ ## _label ## SRC_MASK) >> \
322 		       (_rcc_selr ## _ ## _label ## SRC_SHIFT), \
323 		.parent = (_parents),				\
324 		.nb_parent = ARRAY_SIZE(_parents)		\
325 	}
326 
327 #define _CLK_PLL(idx, type, off1, off2, off3,		\
328 		 off4, off5, off6,			\
329 		 p1, p2, p3, p4)			\
330 	[(idx)] = {					\
331 		.plltype = (type),			\
332 		.rckxselr = (off1),			\
333 		.pllxcfgr1 = (off2),			\
334 		.pllxcfgr2 = (off3),			\
335 		.pllxfracr = (off4),			\
336 		.pllxcr = (off5),			\
337 		.pllxcsgr = (off6),			\
338 		.refclk[0] = (p1),			\
339 		.refclk[1] = (p2),			\
340 		.refclk[2] = (p3),			\
341 		.refclk[3] = (p4),			\
342 	}
343 
344 #define NB_GATES	ARRAY_SIZE(stm32mp1_clk_gate)
345 
346 #define SEC		1
347 #define N_S		0
348 
349 static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
350 	_CLK_FIXED(SEC, RCC_DDRITFCR, 0, DDRC1, _ACLK),
351 	_CLK_FIXED(SEC, RCC_DDRITFCR, 1, DDRC1LP, _ACLK),
352 	_CLK_FIXED(SEC, RCC_DDRITFCR, 2, DDRC2, _ACLK),
353 	_CLK_FIXED(SEC, RCC_DDRITFCR, 3, DDRC2LP, _ACLK),
354 	_CLK_FIXED(SEC, RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
355 	_CLK_FIXED(SEC, RCC_DDRITFCR, 5, DDRPHYCLP, _PLL2_R),
356 	_CLK_FIXED(SEC, RCC_DDRITFCR, 6, DDRCAPB, _PCLK4),
357 	_CLK_FIXED(SEC, RCC_DDRITFCR, 7, DDRCAPBLP, _PCLK4),
358 	_CLK_FIXED(SEC, RCC_DDRITFCR, 8, AXIDCG, _ACLK),
359 	_CLK_FIXED(SEC, RCC_DDRITFCR, 9, DDRPHYCAPB, _PCLK4),
360 	_CLK_FIXED(SEC, RCC_DDRITFCR, 10, DDRPHYCAPBLP, _PCLK4),
361 
362 #if defined(IMAGE_BL32)
363 	_CLK_SC_FIXED(N_S, RCC_MP_APB1ENSETR, 6, TIM12_K, _PCLK1),
364 #endif
365 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
366 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
367 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
368 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
369 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
370 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
371 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 21, I2C1_K, _I2C12_SEL),
372 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 22, I2C2_K, _I2C12_SEL),
373 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 23, I2C3_K, _I2C35_SEL),
374 	_CLK_SC_SELEC(N_S, RCC_MP_APB1ENSETR, 24, I2C5_K, _I2C35_SEL),
375 
376 #if defined(IMAGE_BL32)
377 	_CLK_SC_FIXED(N_S, RCC_MP_APB2ENSETR, 2, TIM15_K, _PCLK2),
378 #endif
379 	_CLK_SC_SELEC(N_S, RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
380 
381 	_CLK_SC_FIXED(N_S, RCC_MP_APB3ENSETR, 11, SYSCFG, _UNKNOWN_ID),
382 
383 	_CLK_SC_SELEC(N_S, RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
384 	_CLK_SC_SELEC(N_S, RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
385 	_CLK_SC_SELEC(N_S, RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
386 
387 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 0, SPI6_K, _SPI6_SEL),
388 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
389 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 3, I2C6_K, _I2C46_SEL),
390 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 4, USART1_K, _UART1_SEL),
391 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 8, RTCAPB, _PCLK5),
392 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 11, TZC1, _PCLK5),
393 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 12, TZC2, _PCLK5),
394 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 13, TZPC, _PCLK5),
395 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 15, IWDG1, _PCLK5),
396 	_CLK_SC_FIXED(SEC, RCC_MP_APB5ENSETR, 16, BSEC, _PCLK5),
397 	_CLK_SC_SELEC(SEC, RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
398 
399 #if defined(IMAGE_BL32)
400 	_CLK_SC_SELEC(N_S, RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
401 	_CLK_SC_SELEC(N_S, RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
402 #endif
403 
404 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
405 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
406 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
407 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
408 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
409 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
410 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
411 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
412 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
413 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
414 	_CLK_SC_SELEC(N_S, RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
415 
416 	_CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 0, GPIOZ, _PCLK5),
417 	_CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 4, CRYP1, _PCLK5),
418 	_CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 5, HASH1, _PCLK5),
419 	_CLK_SC_SELEC(SEC, RCC_MP_AHB5ENSETR, 6, RNG1_K, _RNG1_SEL),
420 	_CLK_SC_FIXED(SEC, RCC_MP_AHB5ENSETR, 8, BKPSRAM, _PCLK5),
421 
422 #if defined(IMAGE_BL2)
423 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
424 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
425 #endif
426 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
427 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
428 #if defined(IMAGE_BL32)
429 	_CLK_SC_SELEC(N_S, RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
430 #endif
431 
432 	_CLK_SELEC(SEC, RCC_BDCR, 20, RTC, _RTC_SEL),
433 	_CLK_SELEC(N_S, RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
434 };
435 
436 static const uint8_t i2c12_parents[] = {
437 	_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
438 };
439 
440 static const uint8_t i2c35_parents[] = {
441 	_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER
442 };
443 
444 static const uint8_t stgen_parents[] = {
445 	_HSI_KER, _HSE_KER
446 };
447 
448 static const uint8_t i2c46_parents[] = {
449 	_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER
450 };
451 
452 static const uint8_t spi6_parents[] = {
453 	_PCLK5, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER, _PLL3_Q
454 };
455 
456 static const uint8_t usart1_parents[] = {
457 	_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER, _PLL4_Q, _HSE_KER
458 };
459 
460 static const uint8_t rng1_parents[] = {
461 	_CSI, _PLL4_R, _LSE, _LSI
462 };
463 
464 static const uint8_t uart6_parents[] = {
465 	_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
466 };
467 
468 static const uint8_t uart234578_parents[] = {
469 	_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER, _HSE_KER
470 };
471 
472 static const uint8_t sdmmc12_parents[] = {
473 	_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER
474 };
475 
476 static const uint8_t sdmmc3_parents[] = {
477 	_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER
478 };
479 
480 static const uint8_t qspi_parents[] = {
481 	_ACLK, _PLL3_R, _PLL4_P, _CK_PER
482 };
483 
484 static const uint8_t fmc_parents[] = {
485 	_ACLK, _PLL3_R, _PLL4_P, _CK_PER
486 };
487 
488 static const uint8_t axiss_parents[] = {
489 	_HSI, _HSE, _PLL2_P
490 };
491 
492 static const uint8_t mcuss_parents[] = {
493 	_HSI, _HSE, _CSI, _PLL3_P
494 };
495 
496 static const uint8_t usbphy_parents[] = {
497 	_HSE_KER, _PLL4_R, _HSE_KER_DIV2
498 };
499 
500 static const uint8_t usbo_parents[] = {
501 	_PLL4_R, _USB_PHY_48
502 };
503 
504 static const uint8_t mpu_parents[] = {
505 	_HSI, _HSE, _PLL1_P, _PLL1_P /* specific div */
506 };
507 
508 static const uint8_t per_parents[] = {
509 	_HSI, _HSE, _CSI,
510 };
511 
512 static const uint8_t rtc_parents[] = {
513 	_UNKNOWN_ID, _LSE, _LSI, _HSE_RTC
514 };
515 
516 static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
517 	_CLK_PARENT_SEL(I2C12, RCC_I2C12CKSELR, i2c12_parents),
518 	_CLK_PARENT_SEL(I2C35, RCC_I2C35CKSELR, i2c35_parents),
519 	_CLK_PARENT_SEL(STGEN, RCC_STGENCKSELR, stgen_parents),
520 	_CLK_PARENT_SEL(I2C46, RCC_I2C46CKSELR, i2c46_parents),
521 	_CLK_PARENT_SEL(SPI6, RCC_SPI6CKSELR, spi6_parents),
522 	_CLK_PARENT_SEL(UART1, RCC_UART1CKSELR, usart1_parents),
523 	_CLK_PARENT_SEL(RNG1, RCC_RNG1CKSELR, rng1_parents),
524 	_CLK_PARENT_SEL(MPU, RCC_MPCKSELR, mpu_parents),
525 	_CLK_PARENT_SEL(CKPER, RCC_CPERCKSELR, per_parents),
526 	_CLK_PARENT_SEL(RTC, RCC_BDCR, rtc_parents),
527 	_CLK_PARENT_SEL(UART6, RCC_UART6CKSELR, uart6_parents),
528 	_CLK_PARENT_SEL(UART24, RCC_UART24CKSELR, uart234578_parents),
529 	_CLK_PARENT_SEL(UART35, RCC_UART35CKSELR, uart234578_parents),
530 	_CLK_PARENT_SEL(UART78, RCC_UART78CKSELR, uart234578_parents),
531 	_CLK_PARENT_SEL(SDMMC12, RCC_SDMMC12CKSELR, sdmmc12_parents),
532 	_CLK_PARENT_SEL(SDMMC3, RCC_SDMMC3CKSELR, sdmmc3_parents),
533 	_CLK_PARENT_SEL(QSPI, RCC_QSPICKSELR, qspi_parents),
534 	_CLK_PARENT_SEL(FMC, RCC_FMCCKSELR, fmc_parents),
535 	_CLK_PARENT_SEL(AXIS, RCC_ASSCKSELR, axiss_parents),
536 	_CLK_PARENT_SEL(MCUS, RCC_MSSCKSELR, mcuss_parents),
537 	_CLK_PARENT_SEL(USBPHY, RCC_USBCKSELR, usbphy_parents),
538 	_CLK_PARENT_SEL(USBO, RCC_USBCKSELR, usbo_parents),
539 };
540 
541 /* Define characteristic of PLL according type */
542 #define DIVN_MIN	24
543 static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
544 	[PLL_800] = {
545 		.refclk_min = 4,
546 		.refclk_max = 16,
547 		.divn_max = 99,
548 	},
549 	[PLL_1600] = {
550 		.refclk_min = 8,
551 		.refclk_max = 16,
552 		.divn_max = 199,
553 	},
554 };
555 
556 /* PLLNCFGR2 register divider by output */
557 static const uint8_t pllncfgr2[_DIV_NB] = {
558 	[_DIV_P] = RCC_PLLNCFGR2_DIVP_SHIFT,
559 	[_DIV_Q] = RCC_PLLNCFGR2_DIVQ_SHIFT,
560 	[_DIV_R] = RCC_PLLNCFGR2_DIVR_SHIFT,
561 };
562 
563 static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = {
564 	_CLK_PLL(_PLL1, PLL_1600,
565 		 RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
566 		 RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
567 		 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
568 	_CLK_PLL(_PLL2, PLL_1600,
569 		 RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
570 		 RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
571 		 _HSI, _HSE, _UNKNOWN_OSC_ID, _UNKNOWN_OSC_ID),
572 	_CLK_PLL(_PLL3, PLL_800,
573 		 RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
574 		 RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
575 		 _HSI, _HSE, _CSI, _UNKNOWN_OSC_ID),
576 	_CLK_PLL(_PLL4, PLL_800,
577 		 RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
578 		 RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
579 		 _HSI, _HSE, _CSI, _I2S_CKIN),
580 };
581 
582 /* Prescaler table lookups for clock computation */
583 /* div = /1 /2 /4 /8 / 16 /64 /128 /512 */
584 static const uint8_t stm32mp1_mcu_div[16] = {
585 	0, 1, 2, 3, 4, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9
586 };
587 
588 /* div = /1 /2 /4 /8 /16 : same divider for PMU and APBX */
589 #define stm32mp1_mpu_div stm32mp1_mpu_apbx_div
590 #define stm32mp1_apbx_div stm32mp1_mpu_apbx_div
591 static const uint8_t stm32mp1_mpu_apbx_div[8] = {
592 	0, 1, 2, 3, 4, 4, 4, 4
593 };
594 
595 /* div = /1 /2 /3 /4 */
596 static const uint8_t stm32mp1_axi_div[8] = {
597 	1, 2, 3, 4, 4, 4, 4, 4
598 };
599 
600 static const char * const stm32mp1_clk_parent_name[_PARENT_NB] __unused = {
601 	[_HSI] = "HSI",
602 	[_HSE] = "HSE",
603 	[_CSI] = "CSI",
604 	[_LSI] = "LSI",
605 	[_LSE] = "LSE",
606 	[_I2S_CKIN] = "I2S_CKIN",
607 	[_HSI_KER] = "HSI_KER",
608 	[_HSE_KER] = "HSE_KER",
609 	[_HSE_KER_DIV2] = "HSE_KER_DIV2",
610 	[_HSE_RTC] = "HSE_RTC",
611 	[_CSI_KER] = "CSI_KER",
612 	[_PLL1_P] = "PLL1_P",
613 	[_PLL1_Q] = "PLL1_Q",
614 	[_PLL1_R] = "PLL1_R",
615 	[_PLL2_P] = "PLL2_P",
616 	[_PLL2_Q] = "PLL2_Q",
617 	[_PLL2_R] = "PLL2_R",
618 	[_PLL3_P] = "PLL3_P",
619 	[_PLL3_Q] = "PLL3_Q",
620 	[_PLL3_R] = "PLL3_R",
621 	[_PLL4_P] = "PLL4_P",
622 	[_PLL4_Q] = "PLL4_Q",
623 	[_PLL4_R] = "PLL4_R",
624 	[_ACLK] = "ACLK",
625 	[_PCLK1] = "PCLK1",
626 	[_PCLK2] = "PCLK2",
627 	[_PCLK3] = "PCLK3",
628 	[_PCLK4] = "PCLK4",
629 	[_PCLK5] = "PCLK5",
630 	[_HCLK6] = "KCLK6",
631 	[_HCLK2] = "HCLK2",
632 	[_CK_PER] = "CK_PER",
633 	[_CK_MPU] = "CK_MPU",
634 	[_CK_MCU] = "CK_MCU",
635 	[_USB_PHY_48] = "USB_PHY_48",
636 };
637 
638 /* RCC clock device driver private */
639 static unsigned long stm32mp1_osc[NB_OSC];
640 static struct spinlock reg_lock;
641 static unsigned int gate_refcounts[NB_GATES];
642 static struct spinlock refcount_lock;
643 
644 static const struct stm32mp1_clk_gate *gate_ref(unsigned int idx)
645 {
646 	return &stm32mp1_clk_gate[idx];
647 }
648 
649 #if defined(IMAGE_BL32)
650 static bool gate_is_non_secure(const struct stm32mp1_clk_gate *gate)
651 {
652 	return gate->secure == N_S;
653 }
654 #endif
655 
656 static const struct stm32mp1_clk_sel *clk_sel_ref(unsigned int idx)
657 {
658 	return &stm32mp1_clk_sel[idx];
659 }
660 
661 static const struct stm32mp1_clk_pll *pll_ref(unsigned int idx)
662 {
663 	return &stm32mp1_clk_pll[idx];
664 }
665 
666 static void stm32mp1_clk_lock(struct spinlock *lock)
667 {
668 	if (stm32mp_lock_available()) {
669 		/* Assume interrupts are masked */
670 		spin_lock(lock);
671 	}
672 }
673 
674 static void stm32mp1_clk_unlock(struct spinlock *lock)
675 {
676 	if (stm32mp_lock_available()) {
677 		spin_unlock(lock);
678 	}
679 }
680 
681 bool stm32mp1_rcc_is_secure(void)
682 {
683 	uintptr_t rcc_base = stm32mp_rcc_base();
684 	uint32_t mask = RCC_TZCR_TZEN;
685 
686 	return (mmio_read_32(rcc_base + RCC_TZCR) & mask) == mask;
687 }
688 
689 bool stm32mp1_rcc_is_mckprot(void)
690 {
691 	uintptr_t rcc_base = stm32mp_rcc_base();
692 	uint32_t mask = RCC_TZCR_TZEN | RCC_TZCR_MCKPROT;
693 
694 	return (mmio_read_32(rcc_base + RCC_TZCR) & mask) == mask;
695 }
696 
697 void stm32mp1_clk_rcc_regs_lock(void)
698 {
699 	stm32mp1_clk_lock(&reg_lock);
700 }
701 
702 void stm32mp1_clk_rcc_regs_unlock(void)
703 {
704 	stm32mp1_clk_unlock(&reg_lock);
705 }
706 
707 static unsigned long stm32mp1_clk_get_fixed(enum stm32mp_osc_id idx)
708 {
709 	if (idx >= NB_OSC) {
710 		return 0;
711 	}
712 
713 	return stm32mp1_osc[idx];
714 }
715 
716 static int stm32mp1_clk_get_gated_id(unsigned long id)
717 {
718 	unsigned int i;
719 
720 	for (i = 0U; i < NB_GATES; i++) {
721 		if (gate_ref(i)->index == id) {
722 			return i;
723 		}
724 	}
725 
726 	ERROR("%s: clk id %lu not found\n", __func__, id);
727 
728 	return -EINVAL;
729 }
730 
731 static enum stm32mp1_parent_sel stm32mp1_clk_get_sel(int i)
732 {
733 	return (enum stm32mp1_parent_sel)(gate_ref(i)->sel);
734 }
735 
736 static enum stm32mp1_parent_id stm32mp1_clk_get_fixed_parent(int i)
737 {
738 	return (enum stm32mp1_parent_id)(gate_ref(i)->fixed);
739 }
740 
741 static int stm32mp1_clk_get_parent(unsigned long id)
742 {
743 	const struct stm32mp1_clk_sel *sel;
744 	uint32_t p_sel;
745 	int i;
746 	enum stm32mp1_parent_id p;
747 	enum stm32mp1_parent_sel s;
748 	uintptr_t rcc_base = stm32mp_rcc_base();
749 
750 	/* Few non gateable clock have a static parent ID, find them */
751 	i = (int)clock_id2parent_id(id);
752 	if (i != _UNKNOWN_ID) {
753 		return i;
754 	}
755 
756 	i = stm32mp1_clk_get_gated_id(id);
757 	if (i < 0) {
758 		panic();
759 	}
760 
761 	p = stm32mp1_clk_get_fixed_parent(i);
762 	if (p < _PARENT_NB) {
763 		return (int)p;
764 	}
765 
766 	s = stm32mp1_clk_get_sel(i);
767 	if (s == _UNKNOWN_SEL) {
768 		return -EINVAL;
769 	}
770 	if (s >= _PARENT_SEL_NB) {
771 		panic();
772 	}
773 
774 	sel = clk_sel_ref(s);
775 	p_sel = (mmio_read_32(rcc_base + sel->offset) &
776 		 (sel->msk << sel->src)) >> sel->src;
777 	if (p_sel < sel->nb_parent) {
778 		return (int)sel->parent[p_sel];
779 	}
780 
781 	return -EINVAL;
782 }
783 
784 static unsigned long stm32mp1_pll_get_fref(const struct stm32mp1_clk_pll *pll)
785 {
786 	uint32_t selr = mmio_read_32(stm32mp_rcc_base() + pll->rckxselr);
787 	uint32_t src = selr & RCC_SELR_REFCLK_SRC_MASK;
788 
789 	return stm32mp1_clk_get_fixed(pll->refclk[src]);
790 }
791 
792 /*
793  * pll_get_fvco() : return the VCO or (VCO / 2) frequency for the requested PLL
794  * - PLL1 & PLL2 => return VCO / 2 with Fpll_y_ck = FVCO / 2 * (DIVy + 1)
795  * - PLL3 & PLL4 => return VCO     with Fpll_y_ck = FVCO / (DIVy + 1)
796  * => in all cases Fpll_y_ck = pll_get_fvco() / (DIVy + 1)
797  */
798 static unsigned long stm32mp1_pll_get_fvco(const struct stm32mp1_clk_pll *pll)
799 {
800 	unsigned long refclk, fvco;
801 	uint32_t cfgr1, fracr, divm, divn;
802 	uintptr_t rcc_base = stm32mp_rcc_base();
803 
804 	cfgr1 = mmio_read_32(rcc_base + pll->pllxcfgr1);
805 	fracr = mmio_read_32(rcc_base + pll->pllxfracr);
806 
807 	divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
808 	divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
809 
810 	refclk = stm32mp1_pll_get_fref(pll);
811 
812 	/*
813 	 * With FRACV :
814 	 *   Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1)
815 	 * Without FRACV
816 	 *   Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1)
817 	 */
818 	if ((fracr & RCC_PLLNFRACR_FRACLE) != 0U) {
819 		uint32_t fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK) >>
820 				 RCC_PLLNFRACR_FRACV_SHIFT;
821 		unsigned long long numerator, denominator;
822 
823 		numerator = (((unsigned long long)divn + 1U) << 13) + fracv;
824 		numerator = refclk * numerator;
825 		denominator = ((unsigned long long)divm + 1U) << 13;
826 		fvco = (unsigned long)(numerator / denominator);
827 	} else {
828 		fvco = (unsigned long)(refclk * (divn + 1U) / (divm + 1U));
829 	}
830 
831 	return fvco;
832 }
833 
834 static unsigned long stm32mp1_read_pll_freq(enum stm32mp1_pll_id pll_id,
835 					    enum stm32mp1_div_id div_id)
836 {
837 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
838 	unsigned long dfout;
839 	uint32_t cfgr2, divy;
840 
841 	if (div_id >= _DIV_NB) {
842 		return 0;
843 	}
844 
845 	cfgr2 = mmio_read_32(stm32mp_rcc_base() + pll->pllxcfgr2);
846 	divy = (cfgr2 >> pllncfgr2[div_id]) & RCC_PLLNCFGR2_DIVX_MASK;
847 
848 	dfout = stm32mp1_pll_get_fvco(pll) / (divy + 1U);
849 
850 	return dfout;
851 }
852 
853 static unsigned long get_clock_rate(int p)
854 {
855 	uint32_t reg, clkdiv;
856 	unsigned long clock = 0;
857 	uintptr_t rcc_base = stm32mp_rcc_base();
858 
859 	switch (p) {
860 	case _CK_MPU:
861 	/* MPU sub system */
862 		reg = mmio_read_32(rcc_base + RCC_MPCKSELR);
863 		switch (reg & RCC_SELR_SRC_MASK) {
864 		case RCC_MPCKSELR_HSI:
865 			clock = stm32mp1_clk_get_fixed(_HSI);
866 			break;
867 		case RCC_MPCKSELR_HSE:
868 			clock = stm32mp1_clk_get_fixed(_HSE);
869 			break;
870 		case RCC_MPCKSELR_PLL:
871 			clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
872 			break;
873 		case RCC_MPCKSELR_PLL_MPUDIV:
874 			clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
875 
876 			reg = mmio_read_32(rcc_base + RCC_MPCKDIVR);
877 			clkdiv = reg & RCC_MPUDIV_MASK;
878 			clock >>= stm32mp1_mpu_div[clkdiv];
879 			break;
880 		default:
881 			break;
882 		}
883 		break;
884 	/* AXI sub system */
885 	case _ACLK:
886 	case _HCLK2:
887 	case _HCLK6:
888 	case _PCLK4:
889 	case _PCLK5:
890 		reg = mmio_read_32(rcc_base + RCC_ASSCKSELR);
891 		switch (reg & RCC_SELR_SRC_MASK) {
892 		case RCC_ASSCKSELR_HSI:
893 			clock = stm32mp1_clk_get_fixed(_HSI);
894 			break;
895 		case RCC_ASSCKSELR_HSE:
896 			clock = stm32mp1_clk_get_fixed(_HSE);
897 			break;
898 		case RCC_ASSCKSELR_PLL:
899 			clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
900 			break;
901 		default:
902 			break;
903 		}
904 
905 		/* System clock divider */
906 		reg = mmio_read_32(rcc_base + RCC_AXIDIVR);
907 		clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK];
908 
909 		switch (p) {
910 		case _PCLK4:
911 			reg = mmio_read_32(rcc_base + RCC_APB4DIVR);
912 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
913 			break;
914 		case _PCLK5:
915 			reg = mmio_read_32(rcc_base + RCC_APB5DIVR);
916 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
917 			break;
918 		default:
919 			break;
920 		}
921 		break;
922 	/* MCU sub system */
923 	case _CK_MCU:
924 	case _PCLK1:
925 	case _PCLK2:
926 	case _PCLK3:
927 		reg = mmio_read_32(rcc_base + RCC_MSSCKSELR);
928 		switch (reg & RCC_SELR_SRC_MASK) {
929 		case RCC_MSSCKSELR_HSI:
930 			clock = stm32mp1_clk_get_fixed(_HSI);
931 			break;
932 		case RCC_MSSCKSELR_HSE:
933 			clock = stm32mp1_clk_get_fixed(_HSE);
934 			break;
935 		case RCC_MSSCKSELR_CSI:
936 			clock = stm32mp1_clk_get_fixed(_CSI);
937 			break;
938 		case RCC_MSSCKSELR_PLL:
939 			clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
940 			break;
941 		default:
942 			break;
943 		}
944 
945 		/* MCU clock divider */
946 		reg = mmio_read_32(rcc_base + RCC_MCUDIVR);
947 		clock >>= stm32mp1_mcu_div[reg & RCC_MCUDIV_MASK];
948 
949 		switch (p) {
950 		case _PCLK1:
951 			reg = mmio_read_32(rcc_base + RCC_APB1DIVR);
952 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
953 			break;
954 		case _PCLK2:
955 			reg = mmio_read_32(rcc_base + RCC_APB2DIVR);
956 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
957 			break;
958 		case _PCLK3:
959 			reg = mmio_read_32(rcc_base + RCC_APB3DIVR);
960 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
961 			break;
962 		case _CK_MCU:
963 		default:
964 			break;
965 		}
966 		break;
967 	case _CK_PER:
968 		reg = mmio_read_32(rcc_base + RCC_CPERCKSELR);
969 		switch (reg & RCC_SELR_SRC_MASK) {
970 		case RCC_CPERCKSELR_HSI:
971 			clock = stm32mp1_clk_get_fixed(_HSI);
972 			break;
973 		case RCC_CPERCKSELR_HSE:
974 			clock = stm32mp1_clk_get_fixed(_HSE);
975 			break;
976 		case RCC_CPERCKSELR_CSI:
977 			clock = stm32mp1_clk_get_fixed(_CSI);
978 			break;
979 		default:
980 			break;
981 		}
982 		break;
983 	case _HSI:
984 	case _HSI_KER:
985 		clock = stm32mp1_clk_get_fixed(_HSI);
986 		break;
987 	case _CSI:
988 	case _CSI_KER:
989 		clock = stm32mp1_clk_get_fixed(_CSI);
990 		break;
991 	case _HSE:
992 	case _HSE_KER:
993 		clock = stm32mp1_clk_get_fixed(_HSE);
994 		break;
995 	case _HSE_KER_DIV2:
996 		clock = stm32mp1_clk_get_fixed(_HSE) >> 1;
997 		break;
998 	case _HSE_RTC:
999 		clock = stm32mp1_clk_get_fixed(_HSE);
1000 		clock /= (mmio_read_32(rcc_base + RCC_RTCDIVR) & RCC_DIVR_DIV_MASK) + 1U;
1001 		break;
1002 	case _LSI:
1003 		clock = stm32mp1_clk_get_fixed(_LSI);
1004 		break;
1005 	case _LSE:
1006 		clock = stm32mp1_clk_get_fixed(_LSE);
1007 		break;
1008 	/* PLL */
1009 	case _PLL1_P:
1010 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_P);
1011 		break;
1012 	case _PLL1_Q:
1013 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_Q);
1014 		break;
1015 	case _PLL1_R:
1016 		clock = stm32mp1_read_pll_freq(_PLL1, _DIV_R);
1017 		break;
1018 	case _PLL2_P:
1019 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_P);
1020 		break;
1021 	case _PLL2_Q:
1022 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_Q);
1023 		break;
1024 	case _PLL2_R:
1025 		clock = stm32mp1_read_pll_freq(_PLL2, _DIV_R);
1026 		break;
1027 	case _PLL3_P:
1028 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_P);
1029 		break;
1030 	case _PLL3_Q:
1031 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_Q);
1032 		break;
1033 	case _PLL3_R:
1034 		clock = stm32mp1_read_pll_freq(_PLL3, _DIV_R);
1035 		break;
1036 	case _PLL4_P:
1037 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_P);
1038 		break;
1039 	case _PLL4_Q:
1040 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_Q);
1041 		break;
1042 	case _PLL4_R:
1043 		clock = stm32mp1_read_pll_freq(_PLL4, _DIV_R);
1044 		break;
1045 	/* Other */
1046 	case _USB_PHY_48:
1047 		clock = USB_PHY_48_MHZ;
1048 		break;
1049 	default:
1050 		break;
1051 	}
1052 
1053 	return clock;
1054 }
1055 
1056 static void __clk_enable(struct stm32mp1_clk_gate const *gate)
1057 {
1058 	uintptr_t rcc_base = stm32mp_rcc_base();
1059 
1060 	VERBOSE("Enable clock %u\n", gate->index);
1061 
1062 	if (gate->set_clr != 0U) {
1063 		mmio_write_32(rcc_base + gate->offset, BIT(gate->bit));
1064 	} else {
1065 		mmio_setbits_32(rcc_base + gate->offset, BIT(gate->bit));
1066 	}
1067 }
1068 
1069 static void __clk_disable(struct stm32mp1_clk_gate const *gate)
1070 {
1071 	uintptr_t rcc_base = stm32mp_rcc_base();
1072 
1073 	VERBOSE("Disable clock %u\n", gate->index);
1074 
1075 	if (gate->set_clr != 0U) {
1076 		mmio_write_32(rcc_base + gate->offset + RCC_MP_ENCLRR_OFFSET,
1077 			      BIT(gate->bit));
1078 	} else {
1079 		mmio_clrbits_32(rcc_base + gate->offset, BIT(gate->bit));
1080 	}
1081 }
1082 
1083 static bool __clk_is_enabled(struct stm32mp1_clk_gate const *gate)
1084 {
1085 	uintptr_t rcc_base = stm32mp_rcc_base();
1086 
1087 	return mmio_read_32(rcc_base + gate->offset) & BIT(gate->bit);
1088 }
1089 
1090 /* Oscillators and PLLs are not gated at runtime */
1091 static bool clock_is_always_on(unsigned long id)
1092 {
1093 	switch (id) {
1094 	case CK_HSE:
1095 	case CK_CSI:
1096 	case CK_LSI:
1097 	case CK_LSE:
1098 	case CK_HSI:
1099 	case CK_HSE_DIV2:
1100 	case PLL1_Q:
1101 	case PLL1_R:
1102 	case PLL2_P:
1103 	case PLL2_Q:
1104 	case PLL2_R:
1105 	case PLL3_P:
1106 	case PLL3_Q:
1107 	case PLL3_R:
1108 	case CK_AXI:
1109 	case CK_MPU:
1110 	case CK_MCU:
1111 	case RTC:
1112 		return true;
1113 	default:
1114 		return false;
1115 	}
1116 }
1117 
1118 static void __stm32mp1_clk_enable(unsigned long id, bool with_refcnt)
1119 {
1120 	const struct stm32mp1_clk_gate *gate;
1121 	int i;
1122 
1123 	if (clock_is_always_on(id)) {
1124 		return;
1125 	}
1126 
1127 	i = stm32mp1_clk_get_gated_id(id);
1128 	if (i < 0) {
1129 		ERROR("Clock %lu can't be enabled\n", id);
1130 		panic();
1131 	}
1132 
1133 	gate = gate_ref(i);
1134 
1135 	if (!with_refcnt) {
1136 		__clk_enable(gate);
1137 		return;
1138 	}
1139 
1140 #if defined(IMAGE_BL32)
1141 	if (gate_is_non_secure(gate)) {
1142 		/* Enable non-secure clock w/o any refcounting */
1143 		__clk_enable(gate);
1144 		return;
1145 	}
1146 #endif
1147 
1148 	stm32mp1_clk_lock(&refcount_lock);
1149 
1150 	if (gate_refcounts[i] == 0U) {
1151 		__clk_enable(gate);
1152 	}
1153 
1154 	gate_refcounts[i]++;
1155 	if (gate_refcounts[i] == UINT_MAX) {
1156 		ERROR("Clock %lu refcount reached max value\n", id);
1157 		panic();
1158 	}
1159 
1160 	stm32mp1_clk_unlock(&refcount_lock);
1161 }
1162 
1163 static void __stm32mp1_clk_disable(unsigned long id, bool with_refcnt)
1164 {
1165 	const struct stm32mp1_clk_gate *gate;
1166 	int i;
1167 
1168 	if (clock_is_always_on(id)) {
1169 		return;
1170 	}
1171 
1172 	i = stm32mp1_clk_get_gated_id(id);
1173 	if (i < 0) {
1174 		ERROR("Clock %lu can't be disabled\n", id);
1175 		panic();
1176 	}
1177 
1178 	gate = gate_ref(i);
1179 
1180 	if (!with_refcnt) {
1181 		__clk_disable(gate);
1182 		return;
1183 	}
1184 
1185 #if defined(IMAGE_BL32)
1186 	if (gate_is_non_secure(gate)) {
1187 		/* Don't disable non-secure clocks */
1188 		return;
1189 	}
1190 #endif
1191 
1192 	stm32mp1_clk_lock(&refcount_lock);
1193 
1194 	if (gate_refcounts[i] == 0U) {
1195 		ERROR("Clock %lu refcount reached 0\n", id);
1196 		panic();
1197 	}
1198 	gate_refcounts[i]--;
1199 
1200 	if (gate_refcounts[i] == 0U) {
1201 		__clk_disable(gate);
1202 	}
1203 
1204 	stm32mp1_clk_unlock(&refcount_lock);
1205 }
1206 
1207 static int stm32mp_clk_enable(unsigned long id)
1208 {
1209 	__stm32mp1_clk_enable(id, true);
1210 
1211 	return 0;
1212 }
1213 
1214 static void stm32mp_clk_disable(unsigned long id)
1215 {
1216 	__stm32mp1_clk_disable(id, true);
1217 }
1218 
1219 static bool stm32mp_clk_is_enabled(unsigned long id)
1220 {
1221 	int i;
1222 
1223 	if (clock_is_always_on(id)) {
1224 		return true;
1225 	}
1226 
1227 	i = stm32mp1_clk_get_gated_id(id);
1228 	if (i < 0) {
1229 		panic();
1230 	}
1231 
1232 	return __clk_is_enabled(gate_ref(i));
1233 }
1234 
1235 static unsigned long stm32mp_clk_get_rate(unsigned long id)
1236 {
1237 	uintptr_t rcc_base = stm32mp_rcc_base();
1238 	int p = stm32mp1_clk_get_parent(id);
1239 	uint32_t prescaler, timpre;
1240 	unsigned long parent_rate;
1241 
1242 	if (p < 0) {
1243 		return 0;
1244 	}
1245 
1246 	parent_rate = get_clock_rate(p);
1247 
1248 	switch (id) {
1249 	case TIM2_K:
1250 	case TIM3_K:
1251 	case TIM4_K:
1252 	case TIM5_K:
1253 	case TIM6_K:
1254 	case TIM7_K:
1255 	case TIM12_K:
1256 	case TIM13_K:
1257 	case TIM14_K:
1258 		prescaler = mmio_read_32(rcc_base + RCC_APB1DIVR) &
1259 			    RCC_APBXDIV_MASK;
1260 		timpre = mmio_read_32(rcc_base + RCC_TIMG1PRER) &
1261 			 RCC_TIMGXPRER_TIMGXPRE;
1262 		break;
1263 
1264 	case TIM1_K:
1265 	case TIM8_K:
1266 	case TIM15_K:
1267 	case TIM16_K:
1268 	case TIM17_K:
1269 		prescaler = mmio_read_32(rcc_base + RCC_APB2DIVR) &
1270 			    RCC_APBXDIV_MASK;
1271 		timpre = mmio_read_32(rcc_base + RCC_TIMG2PRER) &
1272 			 RCC_TIMGXPRER_TIMGXPRE;
1273 		break;
1274 
1275 	default:
1276 		return parent_rate;
1277 	}
1278 
1279 	if (prescaler == 0U) {
1280 		return parent_rate;
1281 	}
1282 
1283 	return parent_rate * (timpre + 1U) * 2U;
1284 }
1285 
1286 static void stm32mp1_ls_osc_set(bool enable, uint32_t offset, uint32_t mask_on)
1287 {
1288 	uintptr_t address = stm32mp_rcc_base() + offset;
1289 
1290 	if (enable) {
1291 		mmio_setbits_32(address, mask_on);
1292 	} else {
1293 		mmio_clrbits_32(address, mask_on);
1294 	}
1295 }
1296 
1297 static void stm32mp1_hs_ocs_set(bool enable, uint32_t mask_on)
1298 {
1299 	uint32_t offset = enable ? RCC_OCENSETR : RCC_OCENCLRR;
1300 	uintptr_t address = stm32mp_rcc_base() + offset;
1301 
1302 	mmio_write_32(address, mask_on);
1303 }
1304 
1305 static int stm32mp1_osc_wait(bool enable, uint32_t offset, uint32_t mask_rdy)
1306 {
1307 	uint64_t timeout;
1308 	uint32_t mask_test;
1309 	uintptr_t address = stm32mp_rcc_base() + offset;
1310 
1311 	if (enable) {
1312 		mask_test = mask_rdy;
1313 	} else {
1314 		mask_test = 0;
1315 	}
1316 
1317 	timeout = timeout_init_us(OSCRDY_TIMEOUT);
1318 	while ((mmio_read_32(address) & mask_rdy) != mask_test) {
1319 		if (timeout_elapsed(timeout)) {
1320 			ERROR("OSC %x @ %lx timeout for enable=%d : 0x%x\n",
1321 			      mask_rdy, address, enable, mmio_read_32(address));
1322 			return -ETIMEDOUT;
1323 		}
1324 	}
1325 
1326 	return 0;
1327 }
1328 
1329 static void stm32mp1_lse_enable(bool bypass, bool digbyp, uint32_t lsedrv)
1330 {
1331 	uint32_t value;
1332 	uintptr_t rcc_base = stm32mp_rcc_base();
1333 
1334 	if (digbyp) {
1335 		mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_DIGBYP);
1336 	}
1337 
1338 	if (bypass || digbyp) {
1339 		mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_LSEBYP);
1340 	}
1341 
1342 	/*
1343 	 * Warning: not recommended to switch directly from "high drive"
1344 	 * to "medium low drive", and vice-versa.
1345 	 */
1346 	value = (mmio_read_32(rcc_base + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK) >>
1347 		RCC_BDCR_LSEDRV_SHIFT;
1348 
1349 	while (value != lsedrv) {
1350 		if (value > lsedrv) {
1351 			value--;
1352 		} else {
1353 			value++;
1354 		}
1355 
1356 		mmio_clrsetbits_32(rcc_base + RCC_BDCR,
1357 				   RCC_BDCR_LSEDRV_MASK,
1358 				   value << RCC_BDCR_LSEDRV_SHIFT);
1359 	}
1360 
1361 	stm32mp1_ls_osc_set(true, RCC_BDCR, RCC_BDCR_LSEON);
1362 }
1363 
1364 static void stm32mp1_lse_wait(void)
1365 {
1366 	if (stm32mp1_osc_wait(true, RCC_BDCR, RCC_BDCR_LSERDY) != 0) {
1367 		VERBOSE("%s: failed\n", __func__);
1368 	}
1369 }
1370 
1371 static void stm32mp1_lsi_set(bool enable)
1372 {
1373 	stm32mp1_ls_osc_set(enable, RCC_RDLSICR, RCC_RDLSICR_LSION);
1374 
1375 	if (stm32mp1_osc_wait(enable, RCC_RDLSICR, RCC_RDLSICR_LSIRDY) != 0) {
1376 		VERBOSE("%s: failed\n", __func__);
1377 	}
1378 }
1379 
1380 static void stm32mp1_hse_enable(bool bypass, bool digbyp, bool css)
1381 {
1382 	uintptr_t rcc_base = stm32mp_rcc_base();
1383 
1384 	if (digbyp) {
1385 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_DIGBYP);
1386 	}
1387 
1388 	if (bypass || digbyp) {
1389 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSEBYP);
1390 	}
1391 
1392 	stm32mp1_hs_ocs_set(true, RCC_OCENR_HSEON);
1393 	if (stm32mp1_osc_wait(true, RCC_OCRDYR, RCC_OCRDYR_HSERDY) != 0) {
1394 		VERBOSE("%s: failed\n", __func__);
1395 	}
1396 
1397 	if (css) {
1398 		mmio_write_32(rcc_base + RCC_OCENSETR, RCC_OCENR_HSECSSON);
1399 	}
1400 
1401 #if STM32MP_UART_PROGRAMMER || STM32MP_USB_PROGRAMMER
1402 	if ((mmio_read_32(rcc_base + RCC_OCENSETR) & RCC_OCENR_HSEBYP) &&
1403 	    (!(digbyp || bypass))) {
1404 		panic();
1405 	}
1406 #endif
1407 }
1408 
1409 static void stm32mp1_csi_set(bool enable)
1410 {
1411 	stm32mp1_hs_ocs_set(enable, RCC_OCENR_CSION);
1412 	if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_CSIRDY) != 0) {
1413 		VERBOSE("%s: failed\n", __func__);
1414 	}
1415 }
1416 
1417 static void stm32mp1_hsi_set(bool enable)
1418 {
1419 	stm32mp1_hs_ocs_set(enable, RCC_OCENR_HSION);
1420 	if (stm32mp1_osc_wait(enable, RCC_OCRDYR, RCC_OCRDYR_HSIRDY) != 0) {
1421 		VERBOSE("%s: failed\n", __func__);
1422 	}
1423 }
1424 
1425 static int stm32mp1_set_hsidiv(uint8_t hsidiv)
1426 {
1427 	uint64_t timeout;
1428 	uintptr_t rcc_base = stm32mp_rcc_base();
1429 	uintptr_t address = rcc_base + RCC_OCRDYR;
1430 
1431 	mmio_clrsetbits_32(rcc_base + RCC_HSICFGR,
1432 			   RCC_HSICFGR_HSIDIV_MASK,
1433 			   RCC_HSICFGR_HSIDIV_MASK & (uint32_t)hsidiv);
1434 
1435 	timeout = timeout_init_us(HSIDIV_TIMEOUT);
1436 	while ((mmio_read_32(address) & RCC_OCRDYR_HSIDIVRDY) == 0U) {
1437 		if (timeout_elapsed(timeout)) {
1438 			ERROR("HSIDIV failed @ 0x%lx: 0x%x\n",
1439 			      address, mmio_read_32(address));
1440 			return -ETIMEDOUT;
1441 		}
1442 	}
1443 
1444 	return 0;
1445 }
1446 
1447 static int stm32mp1_hsidiv(unsigned long hsifreq)
1448 {
1449 	uint8_t hsidiv;
1450 	uint32_t hsidivfreq = MAX_HSI_HZ;
1451 
1452 	for (hsidiv = 0; hsidiv < 4U; hsidiv++) {
1453 		if (hsidivfreq == hsifreq) {
1454 			break;
1455 		}
1456 
1457 		hsidivfreq /= 2U;
1458 	}
1459 
1460 	if (hsidiv == 4U) {
1461 		ERROR("Invalid clk-hsi frequency\n");
1462 		return -1;
1463 	}
1464 
1465 	if (hsidiv != 0U) {
1466 		return stm32mp1_set_hsidiv(hsidiv);
1467 	}
1468 
1469 	return 0;
1470 }
1471 
1472 static bool stm32mp1_check_pll_conf(enum stm32mp1_pll_id pll_id,
1473 				    unsigned int clksrc,
1474 				    uint32_t *pllcfg, int plloff)
1475 {
1476 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1477 	uintptr_t rcc_base = stm32mp_rcc_base();
1478 	uintptr_t pllxcr = rcc_base + pll->pllxcr;
1479 	enum stm32mp1_plltype type = pll->plltype;
1480 	uintptr_t clksrc_address = rcc_base + (clksrc >> 4);
1481 	unsigned long refclk;
1482 	uint32_t ifrge = 0U;
1483 	uint32_t src, value, fracv = 0;
1484 	void *fdt;
1485 
1486 	/* Check PLL output */
1487 	if (mmio_read_32(pllxcr) != RCC_PLLNCR_PLLON) {
1488 		return false;
1489 	}
1490 
1491 	/* Check current clksrc */
1492 	src = mmio_read_32(clksrc_address) & RCC_SELR_SRC_MASK;
1493 	if (src != (clksrc & RCC_SELR_SRC_MASK)) {
1494 		return false;
1495 	}
1496 
1497 	/* Check Div */
1498 	src = mmio_read_32(rcc_base + pll->rckxselr) & RCC_SELR_REFCLK_SRC_MASK;
1499 
1500 	refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
1501 		 (pllcfg[PLLCFG_M] + 1U);
1502 
1503 	if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
1504 	    (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
1505 		return false;
1506 	}
1507 
1508 	if ((type == PLL_800) && (refclk >= 8000000U)) {
1509 		ifrge = 1U;
1510 	}
1511 
1512 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
1513 		RCC_PLLNCFGR1_DIVN_MASK;
1514 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
1515 		 RCC_PLLNCFGR1_DIVM_MASK;
1516 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
1517 		 RCC_PLLNCFGR1_IFRGE_MASK;
1518 	if (mmio_read_32(rcc_base + pll->pllxcfgr1) != value) {
1519 		return false;
1520 	}
1521 
1522 	/* Fractional configuration */
1523 	if (fdt_get_address(&fdt) == 1) {
1524 		fracv = fdt_read_uint32_default(fdt, plloff, "frac", 0);
1525 	}
1526 
1527 	value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
1528 	value |= RCC_PLLNFRACR_FRACLE;
1529 	if (mmio_read_32(rcc_base + pll->pllxfracr) != value) {
1530 		return false;
1531 	}
1532 
1533 	/* Output config */
1534 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
1535 		RCC_PLLNCFGR2_DIVP_MASK;
1536 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
1537 		 RCC_PLLNCFGR2_DIVQ_MASK;
1538 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
1539 		 RCC_PLLNCFGR2_DIVR_MASK;
1540 	if (mmio_read_32(rcc_base + pll->pllxcfgr2) != value) {
1541 		return false;
1542 	}
1543 
1544 	return true;
1545 }
1546 
1547 static void stm32mp1_pll_start(enum stm32mp1_pll_id pll_id)
1548 {
1549 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1550 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1551 
1552 	/* Preserve RCC_PLLNCR_SSCG_CTRL value */
1553 	mmio_clrsetbits_32(pllxcr,
1554 			   RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1555 			   RCC_PLLNCR_DIVREN,
1556 			   RCC_PLLNCR_PLLON);
1557 }
1558 
1559 static int stm32mp1_pll_output(enum stm32mp1_pll_id pll_id, uint32_t output)
1560 {
1561 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1562 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1563 	uint64_t timeout = timeout_init_us(PLLRDY_TIMEOUT);
1564 
1565 	/* Wait PLL lock */
1566 	while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) == 0U) {
1567 		if (timeout_elapsed(timeout)) {
1568 			ERROR("PLL%d start failed @ 0x%lx: 0x%x\n",
1569 			      pll_id, pllxcr, mmio_read_32(pllxcr));
1570 			return -ETIMEDOUT;
1571 		}
1572 	}
1573 
1574 	/* Start the requested output */
1575 	mmio_setbits_32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT);
1576 
1577 	return 0;
1578 }
1579 
1580 static int stm32mp1_pll_stop(enum stm32mp1_pll_id pll_id)
1581 {
1582 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1583 	uintptr_t pllxcr = stm32mp_rcc_base() + pll->pllxcr;
1584 	uint64_t timeout;
1585 
1586 	/* Stop all output */
1587 	mmio_clrbits_32(pllxcr, RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1588 			RCC_PLLNCR_DIVREN);
1589 
1590 	/* Stop PLL */
1591 	mmio_clrbits_32(pllxcr, RCC_PLLNCR_PLLON);
1592 
1593 	timeout = timeout_init_us(PLLRDY_TIMEOUT);
1594 	/* Wait PLL stopped */
1595 	while ((mmio_read_32(pllxcr) & RCC_PLLNCR_PLLRDY) != 0U) {
1596 		if (timeout_elapsed(timeout)) {
1597 			ERROR("PLL%d stop failed @ 0x%lx: 0x%x\n",
1598 			      pll_id, pllxcr, mmio_read_32(pllxcr));
1599 			return -ETIMEDOUT;
1600 		}
1601 	}
1602 
1603 	return 0;
1604 }
1605 
1606 static void stm32mp1_pll_config_output(enum stm32mp1_pll_id pll_id,
1607 				       uint32_t *pllcfg)
1608 {
1609 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1610 	uintptr_t rcc_base = stm32mp_rcc_base();
1611 	uint32_t value;
1612 
1613 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) &
1614 		RCC_PLLNCFGR2_DIVP_MASK;
1615 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) &
1616 		 RCC_PLLNCFGR2_DIVQ_MASK;
1617 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) &
1618 		 RCC_PLLNCFGR2_DIVR_MASK;
1619 	mmio_write_32(rcc_base + pll->pllxcfgr2, value);
1620 }
1621 
1622 static int stm32mp1_pll_config(enum stm32mp1_pll_id pll_id,
1623 			       uint32_t *pllcfg, uint32_t fracv)
1624 {
1625 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1626 	uintptr_t rcc_base = stm32mp_rcc_base();
1627 	enum stm32mp1_plltype type = pll->plltype;
1628 	unsigned long refclk;
1629 	uint32_t ifrge = 0;
1630 	uint32_t src, value;
1631 
1632 	src = mmio_read_32(rcc_base + pll->rckxselr) &
1633 		RCC_SELR_REFCLK_SRC_MASK;
1634 
1635 	refclk = stm32mp1_clk_get_fixed(pll->refclk[src]) /
1636 		 (pllcfg[PLLCFG_M] + 1U);
1637 
1638 	if ((refclk < (stm32mp1_pll[type].refclk_min * 1000000U)) ||
1639 	    (refclk > (stm32mp1_pll[type].refclk_max * 1000000U))) {
1640 		return -EINVAL;
1641 	}
1642 
1643 	if ((type == PLL_800) && (refclk >= 8000000U)) {
1644 		ifrge = 1U;
1645 	}
1646 
1647 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) &
1648 		RCC_PLLNCFGR1_DIVN_MASK;
1649 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) &
1650 		 RCC_PLLNCFGR1_DIVM_MASK;
1651 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) &
1652 		 RCC_PLLNCFGR1_IFRGE_MASK;
1653 	mmio_write_32(rcc_base + pll->pllxcfgr1, value);
1654 
1655 	/* Fractional configuration */
1656 	value = 0;
1657 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1658 
1659 	value = fracv << RCC_PLLNFRACR_FRACV_SHIFT;
1660 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1661 
1662 	value |= RCC_PLLNFRACR_FRACLE;
1663 	mmio_write_32(rcc_base + pll->pllxfracr, value);
1664 
1665 	stm32mp1_pll_config_output(pll_id, pllcfg);
1666 
1667 	return 0;
1668 }
1669 
1670 static void stm32mp1_pll_csg(enum stm32mp1_pll_id pll_id, uint32_t *csg)
1671 {
1672 	const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
1673 	uint32_t pllxcsg = 0;
1674 
1675 	pllxcsg |= (csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) &
1676 		    RCC_PLLNCSGR_MOD_PER_MASK;
1677 
1678 	pllxcsg |= (csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) &
1679 		    RCC_PLLNCSGR_INC_STEP_MASK;
1680 
1681 	pllxcsg |= (csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) &
1682 		    RCC_PLLNCSGR_SSCG_MODE_MASK;
1683 
1684 	mmio_write_32(stm32mp_rcc_base() + pll->pllxcsgr, pllxcsg);
1685 
1686 	mmio_setbits_32(stm32mp_rcc_base() + pll->pllxcr,
1687 			RCC_PLLNCR_SSCG_CTRL);
1688 }
1689 
1690 static int stm32mp1_set_clksrc(unsigned int clksrc)
1691 {
1692 	uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4);
1693 	uint64_t timeout;
1694 
1695 	mmio_clrsetbits_32(clksrc_address, RCC_SELR_SRC_MASK,
1696 			   clksrc & RCC_SELR_SRC_MASK);
1697 
1698 	timeout = timeout_init_us(CLKSRC_TIMEOUT);
1699 	while ((mmio_read_32(clksrc_address) & RCC_SELR_SRCRDY) == 0U) {
1700 		if (timeout_elapsed(timeout)) {
1701 			ERROR("CLKSRC %x start failed @ 0x%lx: 0x%x\n", clksrc,
1702 			      clksrc_address, mmio_read_32(clksrc_address));
1703 			return -ETIMEDOUT;
1704 		}
1705 	}
1706 
1707 	return 0;
1708 }
1709 
1710 static int stm32mp1_set_clkdiv(unsigned int clkdiv, uintptr_t address)
1711 {
1712 	uint64_t timeout;
1713 
1714 	mmio_clrsetbits_32(address, RCC_DIVR_DIV_MASK,
1715 			   clkdiv & RCC_DIVR_DIV_MASK);
1716 
1717 	timeout = timeout_init_us(CLKDIV_TIMEOUT);
1718 	while ((mmio_read_32(address) & RCC_DIVR_DIVRDY) == 0U) {
1719 		if (timeout_elapsed(timeout)) {
1720 			ERROR("CLKDIV %x start failed @ 0x%lx: 0x%x\n",
1721 			      clkdiv, address, mmio_read_32(address));
1722 			return -ETIMEDOUT;
1723 		}
1724 	}
1725 
1726 	return 0;
1727 }
1728 
1729 static void stm32mp1_mco_csg(uint32_t clksrc, uint32_t clkdiv)
1730 {
1731 	uintptr_t clksrc_address = stm32mp_rcc_base() + (clksrc >> 4);
1732 
1733 	/*
1734 	 * Binding clksrc :
1735 	 *      bit15-4 offset
1736 	 *      bit3:   disable
1737 	 *      bit2-0: MCOSEL[2:0]
1738 	 */
1739 	if ((clksrc & 0x8U) != 0U) {
1740 		mmio_clrbits_32(clksrc_address, RCC_MCOCFG_MCOON);
1741 	} else {
1742 		mmio_clrsetbits_32(clksrc_address,
1743 				   RCC_MCOCFG_MCOSRC_MASK,
1744 				   clksrc & RCC_MCOCFG_MCOSRC_MASK);
1745 		mmio_clrsetbits_32(clksrc_address,
1746 				   RCC_MCOCFG_MCODIV_MASK,
1747 				   clkdiv << RCC_MCOCFG_MCODIV_SHIFT);
1748 		mmio_setbits_32(clksrc_address, RCC_MCOCFG_MCOON);
1749 	}
1750 }
1751 
1752 static void stm32mp1_set_rtcsrc(unsigned int clksrc, bool lse_css)
1753 {
1754 	uintptr_t address = stm32mp_rcc_base() + RCC_BDCR;
1755 
1756 	if (((mmio_read_32(address) & RCC_BDCR_RTCCKEN) == 0U) ||
1757 	    (clksrc != (uint32_t)CLK_RTC_DISABLED)) {
1758 		mmio_clrsetbits_32(address,
1759 				   RCC_BDCR_RTCSRC_MASK,
1760 				   (clksrc & RCC_SELR_SRC_MASK) << RCC_BDCR_RTCSRC_SHIFT);
1761 
1762 		mmio_setbits_32(address, RCC_BDCR_RTCCKEN);
1763 	}
1764 
1765 	if (lse_css) {
1766 		mmio_setbits_32(address, RCC_BDCR_LSECSSON);
1767 	}
1768 }
1769 
1770 static void stm32mp1_stgen_config(void)
1771 {
1772 	uint32_t cntfid0;
1773 	unsigned long rate;
1774 	unsigned long long counter;
1775 
1776 	cntfid0 = mmio_read_32(STGEN_BASE + CNTFID_OFF);
1777 	rate = get_clock_rate(stm32mp1_clk_get_parent(STGEN_K));
1778 
1779 	if (cntfid0 == rate) {
1780 		return;
1781 	}
1782 
1783 	mmio_clrbits_32(STGEN_BASE + CNTCR_OFF, CNTCR_EN);
1784 	counter = (unsigned long long)mmio_read_32(STGEN_BASE + CNTCVL_OFF);
1785 	counter |= ((unsigned long long)mmio_read_32(STGEN_BASE + CNTCVU_OFF)) << 32;
1786 	counter = (counter * rate / cntfid0);
1787 
1788 	mmio_write_32(STGEN_BASE + CNTCVL_OFF, (uint32_t)counter);
1789 	mmio_write_32(STGEN_BASE + CNTCVU_OFF, (uint32_t)(counter >> 32));
1790 	mmio_write_32(STGEN_BASE + CNTFID_OFF, rate);
1791 	mmio_setbits_32(STGEN_BASE + CNTCR_OFF, CNTCR_EN);
1792 
1793 	write_cntfrq((u_register_t)rate);
1794 
1795 	/* Need to update timer with new frequency */
1796 	generic_delay_timer_init();
1797 }
1798 
1799 void stm32mp1_stgen_increment(unsigned long long offset_in_ms)
1800 {
1801 	unsigned long long cnt;
1802 
1803 	cnt = ((unsigned long long)mmio_read_32(STGEN_BASE + CNTCVU_OFF) << 32) |
1804 		mmio_read_32(STGEN_BASE + CNTCVL_OFF);
1805 
1806 	cnt += (offset_in_ms * mmio_read_32(STGEN_BASE + CNTFID_OFF)) / 1000U;
1807 
1808 	mmio_clrbits_32(STGEN_BASE + CNTCR_OFF, CNTCR_EN);
1809 	mmio_write_32(STGEN_BASE + CNTCVL_OFF, (uint32_t)cnt);
1810 	mmio_write_32(STGEN_BASE + CNTCVU_OFF, (uint32_t)(cnt >> 32));
1811 	mmio_setbits_32(STGEN_BASE + CNTCR_OFF, CNTCR_EN);
1812 }
1813 
1814 static void stm32mp1_pkcs_config(uint32_t pkcs)
1815 {
1816 	uintptr_t address = stm32mp_rcc_base() + ((pkcs >> 4) & 0xFFFU);
1817 	uint32_t value = pkcs & 0xFU;
1818 	uint32_t mask = 0xFU;
1819 
1820 	if ((pkcs & BIT(31)) != 0U) {
1821 		mask <<= 4;
1822 		value <<= 4;
1823 	}
1824 
1825 	mmio_clrsetbits_32(address, mask, value);
1826 }
1827 
1828 static int clk_get_pll_settings_from_dt(int plloff, unsigned int *pllcfg,
1829 					uint32_t *fracv, uint32_t *csg,
1830 					bool *csg_set)
1831 {
1832 	void *fdt;
1833 	int ret;
1834 
1835 	if (fdt_get_address(&fdt) == 0) {
1836 		return -FDT_ERR_NOTFOUND;
1837 	}
1838 
1839 	ret = fdt_read_uint32_array(fdt, plloff, "cfg", (uint32_t)PLLCFG_NB,
1840 				    pllcfg);
1841 	if (ret < 0) {
1842 		return -FDT_ERR_NOTFOUND;
1843 	}
1844 
1845 	*fracv = fdt_read_uint32_default(fdt, plloff, "frac", 0);
1846 
1847 	ret = fdt_read_uint32_array(fdt, plloff, "csg", (uint32_t)PLLCSG_NB,
1848 				    csg);
1849 
1850 	*csg_set = (ret == 0);
1851 
1852 	if (ret == -FDT_ERR_NOTFOUND) {
1853 		ret = 0;
1854 	}
1855 
1856 	return ret;
1857 }
1858 
1859 int stm32mp1_clk_init(void)
1860 {
1861 	uintptr_t rcc_base = stm32mp_rcc_base();
1862 	uint32_t pllfracv[_PLL_NB];
1863 	uint32_t pllcsg[_PLL_NB][PLLCSG_NB];
1864 	unsigned int clksrc[CLKSRC_NB];
1865 	unsigned int clkdiv[CLKDIV_NB];
1866 	unsigned int pllcfg[_PLL_NB][PLLCFG_NB];
1867 	int plloff[_PLL_NB];
1868 	int ret, len;
1869 	enum stm32mp1_pll_id i;
1870 	bool pllcsg_set[_PLL_NB];
1871 	bool pllcfg_valid[_PLL_NB];
1872 	bool lse_css = false;
1873 	bool pll3_preserve = false;
1874 	bool pll4_preserve = false;
1875 	bool pll4_bootrom = false;
1876 	const fdt32_t *pkcs_cell;
1877 	void *fdt;
1878 	int stgen_p = stm32mp1_clk_get_parent(STGEN_K);
1879 	int usbphy_p = stm32mp1_clk_get_parent(USBPHY_K);
1880 
1881 	if (fdt_get_address(&fdt) == 0) {
1882 		return -FDT_ERR_NOTFOUND;
1883 	}
1884 
1885 	/* Check status field to disable security */
1886 	if (!fdt_get_rcc_secure_status()) {
1887 		mmio_write_32(rcc_base + RCC_TZCR, 0);
1888 	}
1889 
1890 	ret = fdt_rcc_read_uint32_array("st,clksrc", (uint32_t)CLKSRC_NB,
1891 					clksrc);
1892 	if (ret < 0) {
1893 		return -FDT_ERR_NOTFOUND;
1894 	}
1895 
1896 	ret = fdt_rcc_read_uint32_array("st,clkdiv", (uint32_t)CLKDIV_NB,
1897 					clkdiv);
1898 	if (ret < 0) {
1899 		return -FDT_ERR_NOTFOUND;
1900 	}
1901 
1902 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1903 		char name[12];
1904 
1905 		snprintf(name, sizeof(name), "st,pll@%d", i);
1906 		plloff[i] = fdt_rcc_subnode_offset(name);
1907 
1908 		pllcfg_valid[i] = fdt_check_node(plloff[i]);
1909 		if (!pllcfg_valid[i]) {
1910 			continue;
1911 		}
1912 
1913 		ret = clk_get_pll_settings_from_dt(plloff[i], pllcfg[i],
1914 						   &pllfracv[i], pllcsg[i],
1915 						   &pllcsg_set[i]);
1916 		if (ret != 0) {
1917 			return ret;
1918 		}
1919 	}
1920 
1921 	stm32mp1_mco_csg(clksrc[CLKSRC_MCO1], clkdiv[CLKDIV_MCO1]);
1922 	stm32mp1_mco_csg(clksrc[CLKSRC_MCO2], clkdiv[CLKDIV_MCO2]);
1923 
1924 	/*
1925 	 * Switch ON oscillator found in device-tree.
1926 	 * Note: HSI already ON after BootROM stage.
1927 	 */
1928 	if (stm32mp1_osc[_LSI] != 0U) {
1929 		stm32mp1_lsi_set(true);
1930 	}
1931 	if (stm32mp1_osc[_LSE] != 0U) {
1932 		const char *name = stm32mp_osc_node_label[_LSE];
1933 		bool bypass, digbyp;
1934 		uint32_t lsedrv;
1935 
1936 		bypass = fdt_clk_read_bool(name, "st,bypass");
1937 		digbyp = fdt_clk_read_bool(name, "st,digbypass");
1938 		lse_css = fdt_clk_read_bool(name, "st,css");
1939 		lsedrv = fdt_clk_read_uint32_default(name, "st,drive",
1940 						     LSEDRV_MEDIUM_HIGH);
1941 		stm32mp1_lse_enable(bypass, digbyp, lsedrv);
1942 	}
1943 	if (stm32mp1_osc[_HSE] != 0U) {
1944 		const char *name = stm32mp_osc_node_label[_HSE];
1945 		bool bypass, digbyp, css;
1946 
1947 		bypass = fdt_clk_read_bool(name, "st,bypass");
1948 		digbyp = fdt_clk_read_bool(name, "st,digbypass");
1949 		css = fdt_clk_read_bool(name, "st,css");
1950 		stm32mp1_hse_enable(bypass, digbyp, css);
1951 	}
1952 	/*
1953 	 * CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR)
1954 	 * => switch on CSI even if node is not present in device tree
1955 	 */
1956 	stm32mp1_csi_set(true);
1957 
1958 	/* Come back to HSI */
1959 	ret = stm32mp1_set_clksrc(CLK_MPU_HSI);
1960 	if (ret != 0) {
1961 		return ret;
1962 	}
1963 	ret = stm32mp1_set_clksrc(CLK_AXI_HSI);
1964 	if (ret != 0) {
1965 		return ret;
1966 	}
1967 	ret = stm32mp1_set_clksrc(CLK_MCU_HSI);
1968 	if (ret != 0) {
1969 		return ret;
1970 	}
1971 
1972 	if ((mmio_read_32(rcc_base + RCC_MP_RSTSCLRR) &
1973 	     RCC_MP_RSTSCLRR_MPUP0RSTF) != 0) {
1974 		pll3_preserve = stm32mp1_check_pll_conf(_PLL3,
1975 							clksrc[CLKSRC_PLL3],
1976 							pllcfg[_PLL3],
1977 							plloff[_PLL3]);
1978 		pll4_preserve = stm32mp1_check_pll_conf(_PLL4,
1979 							clksrc[CLKSRC_PLL4],
1980 							pllcfg[_PLL4],
1981 							plloff[_PLL4]);
1982 	}
1983 	/* Don't initialize PLL4, when used by BOOTROM */
1984 	if ((stm32mp_get_boot_itf_selected() ==
1985 	     BOOT_API_CTX_BOOT_INTERFACE_SEL_SERIAL_USB) &&
1986 	    ((stgen_p == (int)_PLL4_R) || (usbphy_p == (int)_PLL4_R))) {
1987 		pll4_bootrom = true;
1988 		pll4_preserve = true;
1989 	}
1990 
1991 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
1992 		if (((i == _PLL3) && pll3_preserve) ||
1993 		    ((i == _PLL4) && pll4_preserve)) {
1994 			continue;
1995 		}
1996 
1997 		ret = stm32mp1_pll_stop(i);
1998 		if (ret != 0) {
1999 			return ret;
2000 		}
2001 	}
2002 
2003 	/* Configure HSIDIV */
2004 	if (stm32mp1_osc[_HSI] != 0U) {
2005 		ret = stm32mp1_hsidiv(stm32mp1_osc[_HSI]);
2006 		if (ret != 0) {
2007 			return ret;
2008 		}
2009 		stm32mp1_stgen_config();
2010 	}
2011 
2012 	/* Select DIV */
2013 	/* No ready bit when MPUSRC != CLK_MPU_PLL1P_DIV, MPUDIV is disabled */
2014 	mmio_write_32(rcc_base + RCC_MPCKDIVR,
2015 		      clkdiv[CLKDIV_MPU] & RCC_DIVR_DIV_MASK);
2016 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_AXI], rcc_base + RCC_AXIDIVR);
2017 	if (ret != 0) {
2018 		return ret;
2019 	}
2020 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB4], rcc_base + RCC_APB4DIVR);
2021 	if (ret != 0) {
2022 		return ret;
2023 	}
2024 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB5], rcc_base + RCC_APB5DIVR);
2025 	if (ret != 0) {
2026 		return ret;
2027 	}
2028 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_MCU], rcc_base + RCC_MCUDIVR);
2029 	if (ret != 0) {
2030 		return ret;
2031 	}
2032 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB1], rcc_base + RCC_APB1DIVR);
2033 	if (ret != 0) {
2034 		return ret;
2035 	}
2036 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB2], rcc_base + RCC_APB2DIVR);
2037 	if (ret != 0) {
2038 		return ret;
2039 	}
2040 	ret = stm32mp1_set_clkdiv(clkdiv[CLKDIV_APB3], rcc_base + RCC_APB3DIVR);
2041 	if (ret != 0) {
2042 		return ret;
2043 	}
2044 
2045 	/* No ready bit for RTC */
2046 	mmio_write_32(rcc_base + RCC_RTCDIVR,
2047 		      clkdiv[CLKDIV_RTC] & RCC_DIVR_DIV_MASK);
2048 
2049 	/* Configure PLLs source */
2050 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL12]);
2051 	if (ret != 0) {
2052 		return ret;
2053 	}
2054 
2055 	if (!pll3_preserve) {
2056 		ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL3]);
2057 		if (ret != 0) {
2058 			return ret;
2059 		}
2060 	}
2061 
2062 	if (!pll4_preserve) {
2063 		ret = stm32mp1_set_clksrc(clksrc[CLKSRC_PLL4]);
2064 		if (ret != 0) {
2065 			return ret;
2066 		}
2067 	}
2068 
2069 	/* Configure and start PLLs */
2070 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
2071 		if (((i == _PLL3) && pll3_preserve) ||
2072 		    ((i == _PLL4) && pll4_preserve && !pll4_bootrom)) {
2073 			continue;
2074 		}
2075 
2076 		if (!pllcfg_valid[i]) {
2077 			continue;
2078 		}
2079 
2080 		if ((i == _PLL4) && pll4_bootrom) {
2081 			/* Set output divider if not done by the Bootrom */
2082 			stm32mp1_pll_config_output(i, pllcfg[i]);
2083 			continue;
2084 		}
2085 
2086 		ret = stm32mp1_pll_config(i, pllcfg[i], pllfracv[i]);
2087 		if (ret != 0) {
2088 			return ret;
2089 		}
2090 
2091 		if (pllcsg_set[i]) {
2092 			stm32mp1_pll_csg(i, pllcsg[i]);
2093 		}
2094 
2095 		stm32mp1_pll_start(i);
2096 	}
2097 	/* Wait and start PLLs ouptut when ready */
2098 	for (i = (enum stm32mp1_pll_id)0; i < _PLL_NB; i++) {
2099 		if (!pllcfg_valid[i]) {
2100 			continue;
2101 		}
2102 
2103 		ret = stm32mp1_pll_output(i, pllcfg[i][PLLCFG_O]);
2104 		if (ret != 0) {
2105 			return ret;
2106 		}
2107 	}
2108 	/* Wait LSE ready before to use it */
2109 	if (stm32mp1_osc[_LSE] != 0U) {
2110 		stm32mp1_lse_wait();
2111 	}
2112 
2113 	/* Configure with expected clock source */
2114 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_MPU]);
2115 	if (ret != 0) {
2116 		return ret;
2117 	}
2118 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_AXI]);
2119 	if (ret != 0) {
2120 		return ret;
2121 	}
2122 	ret = stm32mp1_set_clksrc(clksrc[CLKSRC_MCU]);
2123 	if (ret != 0) {
2124 		return ret;
2125 	}
2126 	stm32mp1_set_rtcsrc(clksrc[CLKSRC_RTC], lse_css);
2127 
2128 	/* Configure PKCK */
2129 	pkcs_cell = fdt_rcc_read_prop("st,pkcs", &len);
2130 	if (pkcs_cell != NULL) {
2131 		bool ckper_disabled = false;
2132 		uint32_t j;
2133 		uint32_t usbreg_bootrom = 0U;
2134 
2135 		if (pll4_bootrom) {
2136 			usbreg_bootrom = mmio_read_32(rcc_base + RCC_USBCKSELR);
2137 		}
2138 
2139 		for (j = 0; j < ((uint32_t)len / sizeof(uint32_t)); j++) {
2140 			uint32_t pkcs = fdt32_to_cpu(pkcs_cell[j]);
2141 
2142 			if (pkcs == (uint32_t)CLK_CKPER_DISABLED) {
2143 				ckper_disabled = true;
2144 				continue;
2145 			}
2146 			stm32mp1_pkcs_config(pkcs);
2147 		}
2148 
2149 		/*
2150 		 * CKPER is source for some peripheral clocks
2151 		 * (FMC-NAND / QPSI-NOR) and switching source is allowed
2152 		 * only if previous clock is still ON
2153 		 * => deactivated CKPER only after switching clock
2154 		 */
2155 		if (ckper_disabled) {
2156 			stm32mp1_pkcs_config(CLK_CKPER_DISABLED);
2157 		}
2158 
2159 		if (pll4_bootrom) {
2160 			uint32_t usbreg_value, usbreg_mask;
2161 			const struct stm32mp1_clk_sel *sel;
2162 
2163 			sel = clk_sel_ref(_USBPHY_SEL);
2164 			usbreg_mask = (uint32_t)sel->msk << sel->src;
2165 			sel = clk_sel_ref(_USBO_SEL);
2166 			usbreg_mask |= (uint32_t)sel->msk << sel->src;
2167 
2168 			usbreg_value = mmio_read_32(rcc_base + RCC_USBCKSELR) &
2169 				       usbreg_mask;
2170 			usbreg_bootrom &= usbreg_mask;
2171 			if (usbreg_bootrom != usbreg_value) {
2172 				VERBOSE("forbidden new USB clk path\n");
2173 				VERBOSE("vs bootrom on USB boot\n");
2174 				return -FDT_ERR_BADVALUE;
2175 			}
2176 		}
2177 	}
2178 
2179 	/* Switch OFF HSI if not found in device-tree */
2180 	if (stm32mp1_osc[_HSI] == 0U) {
2181 		stm32mp1_hsi_set(false);
2182 	}
2183 	stm32mp1_stgen_config();
2184 
2185 	/* Software Self-Refresh mode (SSR) during DDR initilialization */
2186 	mmio_clrsetbits_32(rcc_base + RCC_DDRITFCR,
2187 			   RCC_DDRITFCR_DDRCKMOD_MASK,
2188 			   RCC_DDRITFCR_DDRCKMOD_SSR <<
2189 			   RCC_DDRITFCR_DDRCKMOD_SHIFT);
2190 
2191 	return 0;
2192 }
2193 
2194 static void stm32mp1_osc_clk_init(const char *name,
2195 				  enum stm32mp_osc_id index)
2196 {
2197 	uint32_t frequency;
2198 
2199 	if (fdt_osc_read_freq(name, &frequency) == 0) {
2200 		stm32mp1_osc[index] = frequency;
2201 	}
2202 }
2203 
2204 static void stm32mp1_osc_init(void)
2205 {
2206 	enum stm32mp_osc_id i;
2207 
2208 	for (i = (enum stm32mp_osc_id)0 ; i < NB_OSC; i++) {
2209 		stm32mp1_osc_clk_init(stm32mp_osc_node_label[i], i);
2210 	}
2211 }
2212 
2213 #ifdef STM32MP_SHARED_RESOURCES
2214 /*
2215  * Get the parent ID of the target parent clock, for tagging as secure
2216  * shared clock dependencies.
2217  */
2218 static int get_parent_id_parent(unsigned int parent_id)
2219 {
2220 	enum stm32mp1_parent_sel s = _UNKNOWN_SEL;
2221 	enum stm32mp1_pll_id pll_id;
2222 	uint32_t p_sel;
2223 	uintptr_t rcc_base = stm32mp_rcc_base();
2224 
2225 	switch (parent_id) {
2226 	case _ACLK:
2227 	case _PCLK4:
2228 	case _PCLK5:
2229 		s = _AXIS_SEL;
2230 		break;
2231 	case _PLL1_P:
2232 	case _PLL1_Q:
2233 	case _PLL1_R:
2234 		pll_id = _PLL1;
2235 		break;
2236 	case _PLL2_P:
2237 	case _PLL2_Q:
2238 	case _PLL2_R:
2239 		pll_id = _PLL2;
2240 		break;
2241 	case _PLL3_P:
2242 	case _PLL3_Q:
2243 	case _PLL3_R:
2244 		pll_id = _PLL3;
2245 		break;
2246 	case _PLL4_P:
2247 	case _PLL4_Q:
2248 	case _PLL4_R:
2249 		pll_id = _PLL4;
2250 		break;
2251 	case _PCLK1:
2252 	case _PCLK2:
2253 	case _HCLK2:
2254 	case _HCLK6:
2255 	case _CK_PER:
2256 	case _CK_MPU:
2257 	case _CK_MCU:
2258 	case _USB_PHY_48:
2259 		/* We do not expect to access these */
2260 		panic();
2261 		break;
2262 	default:
2263 		/* Other parents have no parent */
2264 		return -1;
2265 	}
2266 
2267 	if (s != _UNKNOWN_SEL) {
2268 		const struct stm32mp1_clk_sel *sel = clk_sel_ref(s);
2269 
2270 		p_sel = (mmio_read_32(rcc_base + sel->offset) >> sel->src) &
2271 			sel->msk;
2272 
2273 		if (p_sel < sel->nb_parent) {
2274 			return (int)sel->parent[p_sel];
2275 		}
2276 	} else {
2277 		const struct stm32mp1_clk_pll *pll = pll_ref(pll_id);
2278 
2279 		p_sel = mmio_read_32(rcc_base + pll->rckxselr) &
2280 			RCC_SELR_REFCLK_SRC_MASK;
2281 
2282 		if (pll->refclk[p_sel] != _UNKNOWN_OSC_ID) {
2283 			return (int)pll->refclk[p_sel];
2284 		}
2285 	}
2286 
2287 	VERBOSE("No parent selected for %s\n",
2288 		stm32mp1_clk_parent_name[parent_id]);
2289 
2290 	return -1;
2291 }
2292 
2293 static void secure_parent_clocks(unsigned long parent_id)
2294 {
2295 	int grandparent_id;
2296 
2297 	switch (parent_id) {
2298 	case _PLL3_P:
2299 	case _PLL3_Q:
2300 	case _PLL3_R:
2301 		stm32mp_register_secure_periph(STM32MP1_SHRES_PLL3);
2302 		break;
2303 
2304 	/* These clocks are always secure when RCC is secure */
2305 	case _ACLK:
2306 	case _HCLK2:
2307 	case _HCLK6:
2308 	case _PCLK4:
2309 	case _PCLK5:
2310 	case _PLL1_P:
2311 	case _PLL1_Q:
2312 	case _PLL1_R:
2313 	case _PLL2_P:
2314 	case _PLL2_Q:
2315 	case _PLL2_R:
2316 	case _HSI:
2317 	case _HSI_KER:
2318 	case _LSI:
2319 	case _CSI:
2320 	case _CSI_KER:
2321 	case _HSE:
2322 	case _HSE_KER:
2323 	case _HSE_KER_DIV2:
2324 	case _HSE_RTC:
2325 	case _LSE:
2326 		break;
2327 
2328 	default:
2329 		VERBOSE("Cannot secure parent clock %s\n",
2330 			stm32mp1_clk_parent_name[parent_id]);
2331 		panic();
2332 	}
2333 
2334 	grandparent_id = get_parent_id_parent(parent_id);
2335 	if (grandparent_id >= 0) {
2336 		secure_parent_clocks(grandparent_id);
2337 	}
2338 }
2339 
2340 void stm32mp1_register_clock_parents_secure(unsigned long clock_id)
2341 {
2342 	int parent_id;
2343 
2344 	if (!stm32mp1_rcc_is_secure()) {
2345 		return;
2346 	}
2347 
2348 	switch (clock_id) {
2349 	case PLL1:
2350 	case PLL2:
2351 		/* PLL1/PLL2 are always secure: nothing to do */
2352 		break;
2353 	case PLL3:
2354 		stm32mp_register_secure_periph(STM32MP1_SHRES_PLL3);
2355 		break;
2356 	case PLL4:
2357 		ERROR("PLL4 cannot be secured\n");
2358 		panic();
2359 		break;
2360 	default:
2361 		/* Others are expected gateable clock */
2362 		parent_id = stm32mp1_clk_get_parent(clock_id);
2363 		if (parent_id < 0) {
2364 			INFO("No parent found for clock %lu\n", clock_id);
2365 		} else {
2366 			secure_parent_clocks(parent_id);
2367 		}
2368 		break;
2369 	}
2370 }
2371 #endif /* STM32MP_SHARED_RESOURCES */
2372 
2373 static void sync_earlyboot_clocks_state(void)
2374 {
2375 	unsigned int idx;
2376 	const unsigned long secure_enable[] = {
2377 		AXIDCG,
2378 		BSEC,
2379 		DDRC1, DDRC1LP,
2380 		DDRC2, DDRC2LP,
2381 		DDRCAPB, DDRPHYCAPB, DDRPHYCAPBLP,
2382 		DDRPHYC, DDRPHYCLP,
2383 		RTCAPB,
2384 		TZC1, TZC2,
2385 		TZPC,
2386 		STGEN_K,
2387 	};
2388 
2389 	for (idx = 0U; idx < ARRAY_SIZE(secure_enable); idx++) {
2390 		stm32mp_clk_enable(secure_enable[idx]);
2391 	}
2392 }
2393 
2394 static const struct clk_ops stm32mp_clk_ops = {
2395 	.enable		= stm32mp_clk_enable,
2396 	.disable	= stm32mp_clk_disable,
2397 	.is_enabled	= stm32mp_clk_is_enabled,
2398 	.get_rate	= stm32mp_clk_get_rate,
2399 	.get_parent	= stm32mp1_clk_get_parent,
2400 };
2401 
2402 int stm32mp1_clk_probe(void)
2403 {
2404 	stm32mp1_osc_init();
2405 
2406 	sync_earlyboot_clocks_state();
2407 
2408 	clk_register(&stm32mp_clk_ops);
2409 
2410 	return 0;
2411 }
2412