xref: /rk3399_ARM-atf/drivers/st/clk/clk-stm32-core.c (revision f2de48cb143c20ccd7a9c141df3d34cae74049de)
1 /*
2  * Copyright (C) 2022, STMicroelectronics - All Rights Reserved
3  *
4  * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 
10 #include "clk-stm32-core.h"
11 #include <common/debug.h>
12 #include <common/fdt_wrappers.h>
13 #include <drivers/clk.h>
14 #include <drivers/delay_timer.h>
15 #include <drivers/st/stm32mp_clkfunc.h>
16 #include <lib/mmio.h>
17 #include <lib/spinlock.h>
18 
19 static struct spinlock reg_lock;
20 static struct spinlock refcount_lock;
21 
22 static struct stm32_clk_priv *stm32_clock_data;
23 
24 const struct stm32_clk_ops clk_mux_ops;
25 
26 struct stm32_clk_priv *clk_stm32_get_priv(void)
27 {
28 	return stm32_clock_data;
29 }
30 
31 static void stm32mp1_clk_lock(struct spinlock *lock)
32 {
33 	if (stm32mp_lock_available()) {
34 		/* Assume interrupts are masked */
35 		spin_lock(lock);
36 	}
37 }
38 
39 static void stm32mp1_clk_unlock(struct spinlock *lock)
40 {
41 	if (stm32mp_lock_available()) {
42 		spin_unlock(lock);
43 	}
44 }
45 
46 void stm32mp1_clk_rcc_regs_lock(void)
47 {
48 	stm32mp1_clk_lock(&reg_lock);
49 }
50 
51 void stm32mp1_clk_rcc_regs_unlock(void)
52 {
53 	stm32mp1_clk_unlock(&reg_lock);
54 }
55 
56 #define TIMEOUT_US_1S	U(1000000)
57 #define OSCRDY_TIMEOUT	TIMEOUT_US_1S
58 
59 struct clk_oscillator_data *clk_oscillator_get_data(struct stm32_clk_priv *priv, int id)
60 {
61 	const struct clk_stm32 *clk = _clk_get(priv, id);
62 	struct stm32_osc_cfg *osc_cfg = clk->clock_cfg;
63 	int osc_id = osc_cfg->osc_id;
64 
65 	return &priv->osci_data[osc_id];
66 }
67 
68 void clk_oscillator_set_bypass(struct stm32_clk_priv *priv, int id, bool digbyp, bool bypass)
69 {
70 	struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
71 
72 	struct stm32_clk_bypass *bypass_data = osc_data->bypass;
73 	uintptr_t address;
74 
75 	if (bypass_data == NULL) {
76 		return;
77 	}
78 
79 	address = priv->base + bypass_data->offset;
80 
81 	if (digbyp) {
82 		mmio_setbits_32(address, BIT(bypass_data->bit_digbyp));
83 	}
84 
85 	if (bypass || digbyp) {
86 		mmio_setbits_32(address, BIT(bypass_data->bit_byp));
87 	}
88 }
89 
90 void clk_oscillator_set_css(struct stm32_clk_priv *priv, int id, bool css)
91 {
92 	struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
93 
94 	struct stm32_clk_css *css_data = osc_data->css;
95 	uintptr_t address;
96 
97 	if (css_data == NULL) {
98 		return;
99 	}
100 
101 	address = priv->base + css_data->offset;
102 
103 	if (css) {
104 		mmio_setbits_32(address, BIT(css_data->bit_css));
105 	}
106 }
107 
108 void clk_oscillator_set_drive(struct stm32_clk_priv *priv, int id, uint8_t lsedrv)
109 {
110 	struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
111 
112 	struct stm32_clk_drive *drive_data = osc_data->drive;
113 	uintptr_t address;
114 	uint32_t mask;
115 	uint32_t value;
116 
117 	if (drive_data == NULL) {
118 		return;
119 	}
120 
121 	address = priv->base + drive_data->offset;
122 
123 	mask = (BIT(drive_data->drv_width) - 1U) <<  drive_data->drv_shift;
124 
125 	/*
126 	 * Warning: not recommended to switch directly from "high drive"
127 	 * to "medium low drive", and vice-versa.
128 	 */
129 	value = (mmio_read_32(address) & mask) >> drive_data->drv_shift;
130 
131 	while (value != lsedrv) {
132 		if (value > lsedrv) {
133 			value--;
134 		} else {
135 			value++;
136 		}
137 
138 		mmio_clrsetbits_32(address, mask, value << drive_data->drv_shift);
139 	}
140 }
141 
142 int clk_oscillator_wait_ready(struct stm32_clk_priv *priv, int id, bool ready_on)
143 {
144 	struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
145 
146 	return _clk_stm32_gate_wait_ready(priv, osc_data->gate_id, ready_on);
147 }
148 
149 int clk_oscillator_wait_ready_on(struct stm32_clk_priv *priv, int id)
150 {
151 	return clk_oscillator_wait_ready(priv, id, true);
152 }
153 
154 int clk_oscillator_wait_ready_off(struct stm32_clk_priv *priv, int id)
155 {
156 	return clk_oscillator_wait_ready(priv, id, false);
157 }
158 
159 static int clk_gate_enable(struct stm32_clk_priv *priv, int id)
160 {
161 	const struct clk_stm32 *clk = _clk_get(priv, id);
162 	struct clk_gate_cfg *cfg = clk->clock_cfg;
163 
164 	mmio_setbits_32(priv->base + cfg->offset, BIT(cfg->bit_idx));
165 
166 	return 0;
167 }
168 
169 static void clk_gate_disable(struct stm32_clk_priv *priv, int id)
170 {
171 	const struct clk_stm32 *clk = _clk_get(priv, id);
172 	struct clk_gate_cfg *cfg = clk->clock_cfg;
173 
174 	mmio_clrbits_32(priv->base + cfg->offset, BIT(cfg->bit_idx));
175 }
176 
177 static bool clk_gate_is_enabled(struct stm32_clk_priv *priv, int id)
178 {
179 	const struct clk_stm32 *clk = _clk_get(priv, id);
180 	struct clk_gate_cfg *cfg = clk->clock_cfg;
181 
182 	return ((mmio_read_32(priv->base + cfg->offset) & BIT(cfg->bit_idx)) != 0U);
183 }
184 
185 const struct stm32_clk_ops clk_gate_ops = {
186 	.enable		= clk_gate_enable,
187 	.disable	= clk_gate_disable,
188 	.is_enabled	= clk_gate_is_enabled,
189 };
190 
191 void _clk_stm32_gate_disable(struct stm32_clk_priv *priv, uint16_t gate_id)
192 {
193 	const struct gate_cfg *gate = &priv->gates[gate_id];
194 	uintptr_t addr = priv->base + gate->offset;
195 
196 	if (gate->set_clr != 0U) {
197 		mmio_write_32(addr + RCC_MP_ENCLRR_OFFSET, BIT(gate->bit_idx));
198 	} else {
199 		mmio_clrbits_32(addr, BIT(gate->bit_idx));
200 	}
201 }
202 
203 int _clk_stm32_gate_enable(struct stm32_clk_priv *priv, uint16_t gate_id)
204 {
205 	const struct gate_cfg *gate = &priv->gates[gate_id];
206 	uintptr_t addr = priv->base + gate->offset;
207 
208 	if (gate->set_clr != 0U) {
209 		mmio_write_32(addr, BIT(gate->bit_idx));
210 
211 	} else {
212 		mmio_setbits_32(addr, BIT(gate->bit_idx));
213 	}
214 
215 	return 0;
216 }
217 
218 const char *_clk_stm32_get_name(struct stm32_clk_priv *priv, int id)
219 {
220 	return priv->clks[id].name;
221 }
222 
223 const char *clk_stm32_get_name(struct stm32_clk_priv *priv,
224 			       unsigned long binding_id)
225 {
226 	int id;
227 
228 	id = clk_get_index(priv, binding_id);
229 	if (id == -EINVAL) {
230 		return NULL;
231 	}
232 
233 	return _clk_stm32_get_name(priv, id);
234 }
235 
236 const struct clk_stm32 *_clk_get(struct stm32_clk_priv *priv, int id)
237 {
238 	if ((unsigned int)id < priv->num) {
239 		return &priv->clks[id];
240 	}
241 
242 	return NULL;
243 }
244 
245 #define clk_div_mask(_width) GENMASK(((_width) - 1U), 0U)
246 
247 static unsigned int _get_table_div(const struct clk_div_table *table,
248 				   unsigned int val)
249 {
250 	const struct clk_div_table *clkt;
251 
252 	for (clkt = table; clkt->div; clkt++) {
253 		if (clkt->val == val) {
254 			return clkt->div;
255 		}
256 	}
257 
258 	return 0;
259 }
260 
261 static unsigned int _get_div(const struct clk_div_table *table,
262 			     unsigned int val, unsigned long flags,
263 			     uint8_t width)
264 {
265 	if ((flags & CLK_DIVIDER_ONE_BASED) != 0UL) {
266 		return val;
267 	}
268 
269 	if ((flags & CLK_DIVIDER_POWER_OF_TWO) != 0UL) {
270 		return BIT(val);
271 	}
272 
273 	if ((flags & CLK_DIVIDER_MAX_AT_ZERO) != 0UL) {
274 		return (val != 0U) ? val : BIT(width);
275 	}
276 
277 	if (table != NULL) {
278 		return _get_table_div(table, val);
279 	}
280 
281 	return val + 1U;
282 }
283 
284 #define TIMEOUT_US_200MS	U(200000)
285 #define CLKSRC_TIMEOUT		TIMEOUT_US_200MS
286 
287 int clk_mux_set_parent(struct stm32_clk_priv *priv, uint16_t pid, uint8_t sel)
288 {
289 	const struct parent_cfg *parents = &priv->parents[pid & MUX_PARENT_MASK];
290 	const struct mux_cfg *mux = parents->mux;
291 	uintptr_t address = priv->base + mux->offset;
292 	uint32_t mask;
293 	uint64_t timeout;
294 
295 	mask = MASK_WIDTH_SHIFT(mux->width, mux->shift);
296 
297 	mmio_clrsetbits_32(address, mask, (sel << mux->shift) & mask);
298 
299 	if (mux->bitrdy == MUX_NO_BIT_RDY) {
300 		return 0;
301 	}
302 
303 	timeout = timeout_init_us(CLKSRC_TIMEOUT);
304 
305 	mask = BIT(mux->bitrdy);
306 
307 	while ((mmio_read_32(address) & mask) == 0U) {
308 		if (timeout_elapsed(timeout)) {
309 			return -ETIMEDOUT;
310 		}
311 	}
312 
313 	return 0;
314 }
315 
316 int _clk_stm32_set_parent(struct stm32_clk_priv *priv, int clk, int clkp)
317 {
318 	const struct parent_cfg *parents;
319 	uint16_t pid;
320 	uint8_t sel;
321 	int old_parent;
322 
323 	pid = priv->clks[clk].parent;
324 
325 	if ((pid == CLK_IS_ROOT) || (pid < MUX_MAX_PARENTS)) {
326 		return -EINVAL;
327 	}
328 
329 	old_parent = _clk_stm32_get_parent(priv, clk);
330 	if (old_parent == clkp) {
331 		return 0;
332 	}
333 
334 	parents = &priv->parents[pid & MUX_PARENT_MASK];
335 
336 	for (sel = 0; sel <  parents->num_parents; sel++) {
337 		if (parents->id_parents[sel] == (uint16_t)clkp) {
338 			bool clk_was_enabled = _clk_stm32_is_enabled(priv, clk);
339 			int err = 0;
340 
341 			/* Enable the parents (for glitch free mux) */
342 			_clk_stm32_enable(priv, clkp);
343 			_clk_stm32_enable(priv, old_parent);
344 
345 			err = clk_mux_set_parent(priv, pid, sel);
346 
347 			_clk_stm32_disable(priv, old_parent);
348 
349 			if (clk_was_enabled) {
350 				_clk_stm32_disable(priv, old_parent);
351 			} else {
352 				_clk_stm32_disable(priv, clkp);
353 			}
354 
355 			return err;
356 		}
357 	}
358 
359 	return -EINVAL;
360 }
361 
362 int clk_mux_get_parent(struct stm32_clk_priv *priv, uint32_t mux_id)
363 {
364 	const struct parent_cfg *parent;
365 	const struct mux_cfg *mux;
366 	uint32_t mask;
367 
368 	if (mux_id >= priv->nb_parents) {
369 		panic();
370 	}
371 
372 	parent = &priv->parents[mux_id];
373 	mux = parent->mux;
374 
375 	mask = MASK_WIDTH_SHIFT(mux->width, mux->shift);
376 
377 	return (mmio_read_32(priv->base + mux->offset) & mask) >> mux->shift;
378 }
379 
380 int _clk_stm32_set_parent_by_index(struct stm32_clk_priv *priv, int clk, int sel)
381 {
382 	uint16_t pid;
383 
384 	pid = priv->clks[clk].parent;
385 
386 	if ((pid == CLK_IS_ROOT) || (pid < MUX_MAX_PARENTS)) {
387 		return -EINVAL;
388 	}
389 
390 	return clk_mux_set_parent(priv, pid, sel);
391 }
392 
393 int _clk_stm32_get_parent(struct stm32_clk_priv *priv, int clk_id)
394 {
395 	const struct clk_stm32 *clk = _clk_get(priv, clk_id);
396 	const struct parent_cfg *parent;
397 	uint16_t mux_id;
398 	int sel;
399 
400 	mux_id = priv->clks[clk_id].parent;
401 	if (mux_id == CLK_IS_ROOT) {
402 		return CLK_IS_ROOT;
403 	}
404 
405 	if (mux_id < MUX_MAX_PARENTS) {
406 		return mux_id & MUX_PARENT_MASK;
407 	}
408 
409 	mux_id &= MUX_PARENT_MASK;
410 	parent = &priv->parents[mux_id];
411 
412 	if (clk->ops->get_parent != NULL) {
413 		sel = clk->ops->get_parent(priv, clk_id);
414 	} else {
415 		sel = clk_mux_get_parent(priv, mux_id);
416 	}
417 
418 	if (sel < parent->num_parents) {
419 		return parent->id_parents[sel];
420 	}
421 
422 	return -EINVAL;
423 }
424 
425 int _clk_stm32_get_parent_index(struct stm32_clk_priv *priv, int clk_id)
426 {
427 	uint16_t mux_id;
428 
429 	mux_id = priv->clks[clk_id].parent;
430 	if (mux_id == CLK_IS_ROOT) {
431 		return CLK_IS_ROOT;
432 	}
433 
434 	if (mux_id < MUX_MAX_PARENTS) {
435 		return mux_id & MUX_PARENT_MASK;
436 	}
437 
438 	mux_id &= MUX_PARENT_MASK;
439 
440 	return clk_mux_get_parent(priv, mux_id);
441 }
442 
443 int _clk_stm32_get_parent_by_index(struct stm32_clk_priv *priv, int clk_id, int idx)
444 {
445 	const struct parent_cfg *parent;
446 	uint16_t mux_id;
447 
448 	mux_id = priv->clks[clk_id].parent;
449 	if (mux_id == CLK_IS_ROOT) {
450 		return CLK_IS_ROOT;
451 	}
452 
453 	if (mux_id < MUX_MAX_PARENTS) {
454 		return mux_id & MUX_PARENT_MASK;
455 	}
456 
457 	mux_id &= MUX_PARENT_MASK;
458 	parent = &priv->parents[mux_id];
459 
460 	if (idx < parent->num_parents) {
461 		return parent->id_parents[idx];
462 	}
463 
464 	return -EINVAL;
465 }
466 
467 int clk_get_index(struct stm32_clk_priv *priv, unsigned long binding_id)
468 {
469 	unsigned int i;
470 
471 	for (i = 0U; i < priv->num; i++) {
472 		if (binding_id == priv->clks[i].binding) {
473 			return (int)i;
474 		}
475 	}
476 
477 	return -EINVAL;
478 }
479 
480 unsigned long _clk_stm32_get_rate(struct stm32_clk_priv *priv, int id)
481 {
482 	const struct clk_stm32 *clk = _clk_get(priv, id);
483 	int parent;
484 	unsigned long rate = 0UL;
485 
486 	if ((unsigned int)id >= priv->num) {
487 		return rate;
488 	}
489 
490 	parent = _clk_stm32_get_parent(priv, id);
491 
492 	if (clk->ops->recalc_rate != NULL) {
493 		unsigned long prate = 0UL;
494 
495 		if (parent != CLK_IS_ROOT) {
496 			prate = _clk_stm32_get_rate(priv, parent);
497 		}
498 
499 		rate = clk->ops->recalc_rate(priv, id, prate);
500 
501 		return rate;
502 	}
503 
504 	switch (parent) {
505 	case CLK_IS_ROOT:
506 		panic();
507 
508 	default:
509 		rate = _clk_stm32_get_rate(priv, parent);
510 		break;
511 	}
512 	return rate;
513 
514 }
515 
516 unsigned long _clk_stm32_get_parent_rate(struct stm32_clk_priv *priv, int id)
517 {
518 	int parent_id = _clk_stm32_get_parent(priv, id);
519 
520 	return _clk_stm32_get_rate(priv, parent_id);
521 }
522 
523 static uint8_t _stm32_clk_get_flags(struct stm32_clk_priv *priv, int id)
524 {
525 	return priv->clks[id].flags;
526 }
527 
528 bool _stm32_clk_is_flags(struct stm32_clk_priv *priv, int id, uint8_t flag)
529 {
530 	if (_stm32_clk_get_flags(priv, id) & flag) {
531 		return true;
532 	}
533 
534 	return false;
535 }
536 
537 int clk_stm32_enable_call_ops(struct stm32_clk_priv *priv, uint16_t id)
538 {
539 	const struct clk_stm32 *clk = _clk_get(priv, id);
540 
541 	if (clk->ops->enable != NULL) {
542 		clk->ops->enable(priv, id);
543 	}
544 
545 	return 0;
546 }
547 
548 static int _clk_stm32_enable_core(struct stm32_clk_priv *priv, int id)
549 {
550 	int parent;
551 	int ret = 0;
552 
553 	if (priv->gate_refcounts[id] == 0U) {
554 		parent = _clk_stm32_get_parent(priv, id);
555 		if (parent != CLK_IS_ROOT) {
556 			ret = _clk_stm32_enable_core(priv, parent);
557 			if (ret) {
558 				return ret;
559 			}
560 		}
561 		clk_stm32_enable_call_ops(priv, id);
562 	}
563 
564 	priv->gate_refcounts[id]++;
565 
566 	if (priv->gate_refcounts[id] == UINT_MAX) {
567 		ERROR("%s: %d max enable count !", __func__, id);
568 		panic();
569 	}
570 
571 	return 0;
572 }
573 
574 int _clk_stm32_enable(struct stm32_clk_priv *priv, int id)
575 {
576 	int ret;
577 
578 	stm32mp1_clk_lock(&refcount_lock);
579 	ret = _clk_stm32_enable_core(priv, id);
580 	stm32mp1_clk_unlock(&refcount_lock);
581 
582 	return ret;
583 }
584 
585 void clk_stm32_disable_call_ops(struct stm32_clk_priv *priv, uint16_t id)
586 {
587 	const struct clk_stm32 *clk = _clk_get(priv, id);
588 
589 	if (clk->ops->disable != NULL) {
590 		clk->ops->disable(priv, id);
591 	}
592 }
593 
594 static void _clk_stm32_disable_core(struct stm32_clk_priv *priv, int id)
595 {
596 	int parent;
597 
598 	if ((priv->gate_refcounts[id] == 1U) && _stm32_clk_is_flags(priv, id, CLK_IS_CRITICAL)) {
599 		return;
600 	}
601 
602 	if (priv->gate_refcounts[id] == 0U) {
603 		/* case of clock ignore unused */
604 		if (_clk_stm32_is_enabled(priv, id)) {
605 			clk_stm32_disable_call_ops(priv, id);
606 			return;
607 		}
608 		VERBOSE("%s: %d already disabled !\n\n", __func__, id);
609 		return;
610 	}
611 
612 	if (--priv->gate_refcounts[id] > 0U) {
613 		return;
614 	}
615 
616 	clk_stm32_disable_call_ops(priv, id);
617 
618 	parent = _clk_stm32_get_parent(priv, id);
619 	if (parent != CLK_IS_ROOT) {
620 		_clk_stm32_disable_core(priv, parent);
621 	}
622 }
623 
624 void _clk_stm32_disable(struct stm32_clk_priv *priv, int id)
625 {
626 	stm32mp1_clk_lock(&refcount_lock);
627 
628 	_clk_stm32_disable_core(priv, id);
629 
630 	stm32mp1_clk_unlock(&refcount_lock);
631 }
632 
633 bool _clk_stm32_is_enabled(struct stm32_clk_priv *priv, int id)
634 {
635 	const struct clk_stm32 *clk = _clk_get(priv, id);
636 
637 	if (clk->ops->is_enabled != NULL) {
638 		return clk->ops->is_enabled(priv, id);
639 	}
640 
641 	return priv->gate_refcounts[id];
642 }
643 
644 static int clk_stm32_enable(unsigned long binding_id)
645 {
646 	struct stm32_clk_priv *priv = clk_stm32_get_priv();
647 	int id;
648 
649 	id = clk_get_index(priv, binding_id);
650 	if (id == -EINVAL) {
651 		return id;
652 	}
653 
654 	return _clk_stm32_enable(priv, id);
655 }
656 
657 static void clk_stm32_disable(unsigned long binding_id)
658 {
659 	struct stm32_clk_priv *priv = clk_stm32_get_priv();
660 	int id;
661 
662 	id = clk_get_index(priv, binding_id);
663 	if (id != -EINVAL) {
664 		_clk_stm32_disable(priv, id);
665 	}
666 }
667 
668 static bool clk_stm32_is_enabled(unsigned long binding_id)
669 {
670 	struct stm32_clk_priv *priv = clk_stm32_get_priv();
671 	int id;
672 
673 	id = clk_get_index(priv, binding_id);
674 	if (id == -EINVAL) {
675 		return false;
676 	}
677 
678 	return _clk_stm32_is_enabled(priv, id);
679 }
680 
681 static unsigned long clk_stm32_get_rate(unsigned long binding_id)
682 {
683 	struct stm32_clk_priv *priv = clk_stm32_get_priv();
684 	int id;
685 
686 	id = clk_get_index(priv, binding_id);
687 	if (id == -EINVAL) {
688 		return 0UL;
689 	}
690 
691 	return _clk_stm32_get_rate(priv, id);
692 }
693 
694 static int clk_stm32_get_parent(unsigned long binding_id)
695 {
696 	struct stm32_clk_priv *priv = clk_stm32_get_priv();
697 	int id;
698 
699 	id = clk_get_index(priv, binding_id);
700 	if (id == -EINVAL) {
701 		return id;
702 	}
703 
704 	return _clk_stm32_get_parent(priv, id);
705 }
706 
707 static const struct clk_ops stm32mp_clk_ops = {
708 	.enable		= clk_stm32_enable,
709 	.disable	= clk_stm32_disable,
710 	.is_enabled	= clk_stm32_is_enabled,
711 	.get_rate	= clk_stm32_get_rate,
712 	.get_parent	= clk_stm32_get_parent,
713 };
714 
715 void clk_stm32_enable_critical_clocks(void)
716 {
717 	struct stm32_clk_priv *priv = clk_stm32_get_priv();
718 	unsigned int i;
719 
720 	for (i = 0U; i < priv->num; i++) {
721 		if (_stm32_clk_is_flags(priv, i, CLK_IS_CRITICAL)) {
722 			_clk_stm32_enable(priv, i);
723 		}
724 	}
725 }
726 
727 static void stm32_clk_register(void)
728 {
729 	clk_register(&stm32mp_clk_ops);
730 }
731 
732 uint32_t clk_stm32_div_get_value(struct stm32_clk_priv *priv, int div_id)
733 {
734 	const struct div_cfg *divider = &priv->div[div_id];
735 	uint32_t val = 0;
736 
737 	val = mmio_read_32(priv->base + divider->offset) >> divider->shift;
738 	val &= clk_div_mask(divider->width);
739 
740 	return val;
741 }
742 
743 unsigned long _clk_stm32_divider_recalc(struct stm32_clk_priv *priv,
744 					int div_id,
745 					unsigned long prate)
746 {
747 	const struct div_cfg *divider = &priv->div[div_id];
748 	uint32_t val = clk_stm32_div_get_value(priv, div_id);
749 	unsigned int div = 0U;
750 
751 	div = _get_div(divider->table, val, divider->flags, divider->width);
752 	if (div == 0U) {
753 		return prate;
754 	}
755 
756 	return div_round_up((uint64_t)prate, div);
757 }
758 
759 unsigned long clk_stm32_divider_recalc(struct stm32_clk_priv *priv, int id,
760 				       unsigned long prate)
761 {
762 	const struct clk_stm32 *clk = _clk_get(priv, id);
763 	struct clk_stm32_div_cfg *div_cfg = clk->clock_cfg;
764 
765 	return _clk_stm32_divider_recalc(priv, div_cfg->id, prate);
766 }
767 
768 const struct stm32_clk_ops clk_stm32_divider_ops = {
769 	.recalc_rate	= clk_stm32_divider_recalc,
770 };
771 
772 int clk_stm32_set_div(struct stm32_clk_priv *priv, uint32_t div_id, uint32_t value)
773 {
774 	const struct div_cfg *divider;
775 	uintptr_t address;
776 	uint64_t timeout;
777 	uint32_t mask;
778 
779 	if (div_id >= priv->nb_div) {
780 		panic();
781 	}
782 
783 	divider = &priv->div[div_id];
784 	address = priv->base + divider->offset;
785 
786 	mask = MASK_WIDTH_SHIFT(divider->width, divider->shift);
787 	mmio_clrsetbits_32(address, mask, (value << divider->shift) & mask);
788 
789 	if (divider->bitrdy == DIV_NO_BIT_RDY) {
790 		return 0;
791 	}
792 
793 	timeout = timeout_init_us(CLKSRC_TIMEOUT);
794 	mask = BIT(divider->bitrdy);
795 
796 	while ((mmio_read_32(address) & mask) == 0U) {
797 		if (timeout_elapsed(timeout)) {
798 			return -ETIMEDOUT;
799 		}
800 	}
801 
802 	return 0;
803 }
804 
805 int _clk_stm32_gate_wait_ready(struct stm32_clk_priv *priv, uint16_t gate_id,
806 			       bool ready_on)
807 {
808 	const struct gate_cfg *gate = &priv->gates[gate_id];
809 	uintptr_t address = priv->base + gate->offset;
810 	uint32_t mask_rdy = BIT(gate->bit_idx);
811 	uint64_t timeout;
812 	uint32_t mask_test;
813 
814 	if (ready_on) {
815 		mask_test = BIT(gate->bit_idx);
816 	} else {
817 		mask_test = 0U;
818 	}
819 
820 	timeout = timeout_init_us(OSCRDY_TIMEOUT);
821 
822 	while ((mmio_read_32(address) & mask_rdy) != mask_test) {
823 		if (timeout_elapsed(timeout)) {
824 			break;
825 		}
826 	}
827 
828 	if ((mmio_read_32(address) & mask_rdy) != mask_test)
829 		return -ETIMEDOUT;
830 
831 	return 0;
832 }
833 
834 int clk_stm32_gate_enable(struct stm32_clk_priv *priv, int id)
835 {
836 	const struct clk_stm32 *clk = _clk_get(priv, id);
837 	struct clk_stm32_gate_cfg *cfg = clk->clock_cfg;
838 	const struct gate_cfg *gate = &priv->gates[cfg->id];
839 	uintptr_t addr = priv->base + gate->offset;
840 
841 	if (gate->set_clr != 0U) {
842 		mmio_write_32(addr, BIT(gate->bit_idx));
843 
844 	} else {
845 		mmio_setbits_32(addr, BIT(gate->bit_idx));
846 	}
847 
848 	return 0;
849 }
850 
851 void clk_stm32_gate_disable(struct stm32_clk_priv *priv, int id)
852 {
853 	const struct clk_stm32 *clk = _clk_get(priv, id);
854 	struct clk_stm32_gate_cfg *cfg = clk->clock_cfg;
855 	const struct gate_cfg *gate = &priv->gates[cfg->id];
856 	uintptr_t addr = priv->base + gate->offset;
857 
858 	if (gate->set_clr != 0U) {
859 		mmio_write_32(addr + RCC_MP_ENCLRR_OFFSET, BIT(gate->bit_idx));
860 	} else {
861 		mmio_clrbits_32(addr, BIT(gate->bit_idx));
862 	}
863 }
864 
865 bool _clk_stm32_gate_is_enabled(struct stm32_clk_priv *priv, int gate_id)
866 {
867 	const struct gate_cfg *gate;
868 	uint32_t addr;
869 
870 	gate = &priv->gates[gate_id];
871 	addr = priv->base + gate->offset;
872 
873 	return ((mmio_read_32(addr) & BIT(gate->bit_idx)) != 0U);
874 }
875 
876 bool clk_stm32_gate_is_enabled(struct stm32_clk_priv *priv, int id)
877 {
878 	const struct clk_stm32 *clk = _clk_get(priv, id);
879 	struct clk_stm32_gate_cfg *cfg = clk->clock_cfg;
880 
881 	return _clk_stm32_gate_is_enabled(priv, cfg->id);
882 }
883 
884 const struct stm32_clk_ops clk_stm32_gate_ops = {
885 	.enable		= clk_stm32_gate_enable,
886 	.disable	= clk_stm32_gate_disable,
887 	.is_enabled	= clk_stm32_gate_is_enabled,
888 };
889 
890 const struct stm32_clk_ops clk_fixed_factor_ops = {
891 	.recalc_rate	= fixed_factor_recalc_rate,
892 };
893 
894 unsigned long fixed_factor_recalc_rate(struct stm32_clk_priv *priv,
895 				       int id, unsigned long prate)
896 {
897 	const struct clk_stm32 *clk = _clk_get(priv, id);
898 	const struct fixed_factor_cfg *cfg = clk->clock_cfg;
899 	unsigned long long rate;
900 
901 	rate = (unsigned long long)prate * cfg->mult;
902 
903 	if (cfg->div == 0U) {
904 		ERROR("division by zero\n");
905 		panic();
906 	}
907 
908 	return (unsigned long)(rate / cfg->div);
909 };
910 
911 #define APB_DIV_MASK	GENMASK(2, 0)
912 #define TIM_PRE_MASK	BIT(0)
913 
914 static unsigned long timer_recalc_rate(struct stm32_clk_priv *priv,
915 				       int id, unsigned long prate)
916 {
917 	const struct clk_stm32 *clk = _clk_get(priv, id);
918 	const struct clk_timer_cfg *cfg = clk->clock_cfg;
919 	uint32_t prescaler, timpre;
920 	uintptr_t rcc_base = priv->base;
921 
922 	prescaler = mmio_read_32(rcc_base + cfg->apbdiv) &
923 		APB_DIV_MASK;
924 
925 	timpre = mmio_read_32(rcc_base + cfg->timpre) &
926 		TIM_PRE_MASK;
927 
928 	if (prescaler == 0U) {
929 		return prate;
930 	}
931 
932 	return prate * (timpre + 1U) * 2U;
933 };
934 
935 const struct stm32_clk_ops clk_timer_ops = {
936 	.recalc_rate	= timer_recalc_rate,
937 };
938 
939 static unsigned long clk_fixed_rate_recalc(struct stm32_clk_priv *priv, int id,
940 					   unsigned long prate)
941 {
942 	const struct clk_stm32 *clk = _clk_get(priv, id);
943 	struct clk_stm32_fixed_rate_cfg *cfg = clk->clock_cfg;
944 
945 	return cfg->rate;
946 }
947 
948 const struct stm32_clk_ops clk_stm32_fixed_rate_ops = {
949 	.recalc_rate	= clk_fixed_rate_recalc,
950 };
951 
952 static unsigned long clk_stm32_osc_recalc_rate(struct stm32_clk_priv *priv,
953 					       int id, unsigned long prate)
954 {
955 	struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
956 
957 	return osc_data->frequency;
958 };
959 
960 bool clk_stm32_osc_gate_is_enabled(struct stm32_clk_priv *priv, int id)
961 {
962 	struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
963 
964 	return _clk_stm32_gate_is_enabled(priv, osc_data->gate_id);
965 
966 }
967 
968 int clk_stm32_osc_gate_enable(struct stm32_clk_priv *priv, int id)
969 {
970 	struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
971 
972 	_clk_stm32_gate_enable(priv, osc_data->gate_id);
973 
974 	if (_clk_stm32_gate_wait_ready(priv, osc_data->gate_rdy_id, true) != 0U) {
975 		ERROR("%s: %s (%d)\n", __func__, osc_data->name, __LINE__);
976 		panic();
977 	}
978 
979 	return 0;
980 }
981 
982 void clk_stm32_osc_gate_disable(struct stm32_clk_priv *priv, int id)
983 {
984 	struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
985 
986 	_clk_stm32_gate_disable(priv, osc_data->gate_id);
987 
988 	if (_clk_stm32_gate_wait_ready(priv, osc_data->gate_rdy_id, false) != 0U) {
989 		ERROR("%s: %s (%d)\n", __func__, osc_data->name, __LINE__);
990 		panic();
991 	}
992 }
993 
994 static unsigned long clk_stm32_get_dt_oscillator_frequency(const char *name)
995 {
996 	void *fdt = NULL;
997 	int node = 0;
998 	int subnode = 0;
999 
1000 	if (fdt_get_address(&fdt) == 0) {
1001 		panic();
1002 	}
1003 
1004 	node = fdt_path_offset(fdt, "/clocks");
1005 	if (node < 0) {
1006 		return 0UL;
1007 	}
1008 
1009 	fdt_for_each_subnode(subnode, fdt, node) {
1010 		const char *cchar = NULL;
1011 		const fdt32_t *cuint = NULL;
1012 		int ret = 0;
1013 
1014 		cchar = fdt_get_name(fdt, subnode, &ret);
1015 		if (cchar == NULL) {
1016 			continue;
1017 		}
1018 
1019 		if (strncmp(cchar, name, (size_t)ret) ||
1020 		    fdt_get_status(subnode) == DT_DISABLED) {
1021 			continue;
1022 		}
1023 
1024 		cuint = fdt_getprop(fdt, subnode, "clock-frequency", &ret);
1025 		if (cuint == NULL) {
1026 			return 0UL;
1027 		}
1028 
1029 		return fdt32_to_cpu(*cuint);
1030 	}
1031 
1032 	return 0UL;
1033 }
1034 
1035 void clk_stm32_osc_init(struct stm32_clk_priv *priv, int id)
1036 {
1037 	struct clk_oscillator_data *osc_data = clk_oscillator_get_data(priv, id);
1038 	const char *name = osc_data->name;
1039 
1040 	osc_data->frequency = clk_stm32_get_dt_oscillator_frequency(name);
1041 }
1042 
1043 const struct stm32_clk_ops clk_stm32_osc_ops = {
1044 	.recalc_rate	= clk_stm32_osc_recalc_rate,
1045 	.is_enabled	= clk_stm32_osc_gate_is_enabled,
1046 	.enable		= clk_stm32_osc_gate_enable,
1047 	.disable	= clk_stm32_osc_gate_disable,
1048 	.init		= clk_stm32_osc_init,
1049 };
1050 
1051 const struct stm32_clk_ops clk_stm32_osc_nogate_ops = {
1052 	.recalc_rate	= clk_stm32_osc_recalc_rate,
1053 	.init		= clk_stm32_osc_init,
1054 };
1055 
1056 int stm32_clk_parse_fdt_by_name(void *fdt, int node, const char *name, uint32_t *tab, uint32_t *nb)
1057 {
1058 	const fdt32_t *cell;
1059 	int len = 0;
1060 	uint32_t i;
1061 
1062 	cell = fdt_getprop(fdt, node, name, &len);
1063 	if (cell != NULL) {
1064 		for (i = 0; i < ((uint32_t)len / sizeof(uint32_t)); i++) {
1065 			uint32_t val = fdt32_to_cpu(cell[i]);
1066 
1067 			tab[i] = val;
1068 		}
1069 	}
1070 
1071 	*nb = (uint32_t)len / sizeof(uint32_t);
1072 
1073 	return 0;
1074 }
1075 
1076 int clk_stm32_init(struct stm32_clk_priv *priv, uintptr_t base)
1077 {
1078 	unsigned int i;
1079 
1080 	stm32_clock_data = priv;
1081 
1082 	priv->base = base;
1083 
1084 	for (i = 0U; i < priv->num; i++) {
1085 		const struct clk_stm32 *clk = _clk_get(priv, i);
1086 
1087 		assert(clk->ops != NULL);
1088 
1089 		if (clk->ops->init != NULL) {
1090 			clk->ops->init(priv, i);
1091 		}
1092 	}
1093 
1094 	stm32_clk_register();
1095 
1096 	return 0;
1097 }
1098