1 /* 2 * Copyright (c) 2015-2019, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <assert.h> 8 9 #include <arch.h> 10 #include <arch_helpers.h> 11 #include <common/debug.h> 12 #include <common/interrupt_props.h> 13 #include <drivers/arm/gicv3.h> 14 #include <lib/spinlock.h> 15 16 #include "gicv3_private.h" 17 18 const gicv3_driver_data_t *gicv3_driver_data; 19 static unsigned int gicv2_compat; 20 21 /* 22 * Spinlock to guard registers needing read-modify-write. APIs protected by this 23 * spinlock are used either at boot time (when only a single CPU is active), or 24 * when the system is fully coherent. 25 */ 26 static spinlock_t gic_lock; 27 28 /* 29 * Redistributor power operations are weakly bound so that they can be 30 * overridden 31 */ 32 #pragma weak gicv3_rdistif_off 33 #pragma weak gicv3_rdistif_on 34 35 36 /* Helper macros to save and restore GICD registers to and from the context */ 37 #define RESTORE_GICD_REGS(base, ctx, intr_num, reg, REG) \ 38 do { \ 39 for (unsigned int int_id = MIN_SPI_ID; int_id < (intr_num); \ 40 int_id += (1U << REG##_SHIFT)) { \ 41 gicd_write_##reg(base, int_id, \ 42 ctx->gicd_##reg[(int_id - MIN_SPI_ID) >> REG##_SHIFT]); \ 43 } \ 44 } while (false) 45 46 #define SAVE_GICD_REGS(base, ctx, intr_num, reg, REG) \ 47 do { \ 48 for (unsigned int int_id = MIN_SPI_ID; int_id < (intr_num); \ 49 int_id += (1U << REG##_SHIFT)) { \ 50 ctx->gicd_##reg[(int_id - MIN_SPI_ID) >> REG##_SHIFT] =\ 51 gicd_read_##reg(base, int_id); \ 52 } \ 53 } while (false) 54 55 56 /******************************************************************************* 57 * This function initialises the ARM GICv3 driver in EL3 with provided platform 58 * inputs. 59 ******************************************************************************/ 60 void __init gicv3_driver_init(const gicv3_driver_data_t *plat_driver_data) 61 { 62 unsigned int gic_version; 63 64 assert(plat_driver_data != NULL); 65 assert(plat_driver_data->gicd_base != 0U); 66 assert(plat_driver_data->gicr_base != 0U); 67 assert(plat_driver_data->rdistif_num != 0U); 68 assert(plat_driver_data->rdistif_base_addrs != NULL); 69 70 assert(IS_IN_EL3()); 71 72 assert(plat_driver_data->interrupt_props_num > 0 ? 73 plat_driver_data->interrupt_props != NULL : 1); 74 75 /* Check for system register support */ 76 #ifdef __aarch64__ 77 assert((read_id_aa64pfr0_el1() & 78 (ID_AA64PFR0_GIC_MASK << ID_AA64PFR0_GIC_SHIFT)) != 0U); 79 #else 80 assert((read_id_pfr1() & (ID_PFR1_GIC_MASK << ID_PFR1_GIC_SHIFT)) != 0U); 81 #endif /* __aarch64__ */ 82 83 /* The GIC version should be 3.0 */ 84 gic_version = gicd_read_pidr2(plat_driver_data->gicd_base); 85 gic_version >>= PIDR2_ARCH_REV_SHIFT; 86 gic_version &= PIDR2_ARCH_REV_MASK; 87 assert(gic_version == ARCH_REV_GICV3); 88 89 /* 90 * Find out whether the GIC supports the GICv2 compatibility mode. The 91 * ARE_S bit resets to 0 if supported 92 */ 93 gicv2_compat = gicd_read_ctlr(plat_driver_data->gicd_base); 94 gicv2_compat >>= CTLR_ARE_S_SHIFT; 95 gicv2_compat = !(gicv2_compat & CTLR_ARE_S_MASK); 96 97 /* 98 * Find the base address of each implemented Redistributor interface. 99 * The number of interfaces should be equal to the number of CPUs in the 100 * system. The memory for saving these addresses has to be allocated by 101 * the platform port 102 */ 103 gicv3_rdistif_base_addrs_probe(plat_driver_data->rdistif_base_addrs, 104 plat_driver_data->rdistif_num, 105 plat_driver_data->gicr_base, 106 plat_driver_data->mpidr_to_core_pos); 107 108 gicv3_driver_data = plat_driver_data; 109 110 /* 111 * The GIC driver data is initialized by the primary CPU with caches 112 * enabled. When the secondary CPU boots up, it initializes the 113 * GICC/GICR interface with the caches disabled. Hence flush the 114 * driver data to ensure coherency. This is not required if the 115 * platform has HW_ASSISTED_COHERENCY or WARMBOOT_ENABLE_DCACHE_EARLY 116 * enabled. 117 */ 118 #if !(HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY) 119 flush_dcache_range((uintptr_t) &gicv3_driver_data, 120 sizeof(gicv3_driver_data)); 121 flush_dcache_range((uintptr_t) gicv3_driver_data, 122 sizeof(*gicv3_driver_data)); 123 #endif 124 125 INFO("GICv3 %s legacy support detected." 126 " ARM GICV3 driver initialized in EL3\n", 127 gicv2_compat ? "with" : "without"); 128 } 129 130 /******************************************************************************* 131 * This function initialises the GIC distributor interface based upon the data 132 * provided by the platform while initialising the driver. 133 ******************************************************************************/ 134 void __init gicv3_distif_init(void) 135 { 136 unsigned int bitmap = 0; 137 138 assert(gicv3_driver_data != NULL); 139 assert(gicv3_driver_data->gicd_base != 0U); 140 141 assert(IS_IN_EL3()); 142 143 /* 144 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring 145 * the ARE_S bit. The Distributor might generate a system error 146 * otherwise. 147 */ 148 gicd_clr_ctlr(gicv3_driver_data->gicd_base, 149 CTLR_ENABLE_G0_BIT | 150 CTLR_ENABLE_G1S_BIT | 151 CTLR_ENABLE_G1NS_BIT, 152 RWP_TRUE); 153 154 /* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */ 155 gicd_set_ctlr(gicv3_driver_data->gicd_base, 156 CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE); 157 158 /* Set the default attribute of all SPIs */ 159 gicv3_spis_config_defaults(gicv3_driver_data->gicd_base); 160 161 bitmap = gicv3_secure_spis_config_props( 162 gicv3_driver_data->gicd_base, 163 gicv3_driver_data->interrupt_props, 164 gicv3_driver_data->interrupt_props_num); 165 166 /* Enable the secure SPIs now that they have been configured */ 167 gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE); 168 } 169 170 /******************************************************************************* 171 * This function initialises the GIC Redistributor interface of the calling CPU 172 * (identified by the 'proc_num' parameter) based upon the data provided by the 173 * platform while initialising the driver. 174 ******************************************************************************/ 175 void gicv3_rdistif_init(unsigned int proc_num) 176 { 177 uintptr_t gicr_base; 178 unsigned int bitmap = 0U; 179 uint32_t ctlr; 180 181 assert(gicv3_driver_data != NULL); 182 assert(proc_num < gicv3_driver_data->rdistif_num); 183 assert(gicv3_driver_data->rdistif_base_addrs != NULL); 184 assert(gicv3_driver_data->gicd_base != 0U); 185 186 ctlr = gicd_read_ctlr(gicv3_driver_data->gicd_base); 187 assert((ctlr & CTLR_ARE_S_BIT) != 0U); 188 189 assert(IS_IN_EL3()); 190 191 /* Power on redistributor */ 192 gicv3_rdistif_on(proc_num); 193 194 gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num]; 195 196 /* Set the default attribute of all SGIs and PPIs */ 197 gicv3_ppi_sgi_config_defaults(gicr_base); 198 199 bitmap = gicv3_secure_ppi_sgi_config_props(gicr_base, 200 gicv3_driver_data->interrupt_props, 201 gicv3_driver_data->interrupt_props_num); 202 203 /* Enable interrupt groups as required, if not already */ 204 if ((ctlr & bitmap) != bitmap) 205 gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE); 206 } 207 208 /******************************************************************************* 209 * Functions to perform power operations on GIC Redistributor 210 ******************************************************************************/ 211 void gicv3_rdistif_off(unsigned int proc_num) 212 { 213 return; 214 } 215 216 void gicv3_rdistif_on(unsigned int proc_num) 217 { 218 return; 219 } 220 221 /******************************************************************************* 222 * This function enables the GIC CPU interface of the calling CPU using only 223 * system register accesses. 224 ******************************************************************************/ 225 void gicv3_cpuif_enable(unsigned int proc_num) 226 { 227 uintptr_t gicr_base; 228 unsigned int scr_el3; 229 unsigned int icc_sre_el3; 230 231 assert(gicv3_driver_data != NULL); 232 assert(proc_num < gicv3_driver_data->rdistif_num); 233 assert(gicv3_driver_data->rdistif_base_addrs != NULL); 234 assert(IS_IN_EL3()); 235 236 /* Mark the connected core as awake */ 237 gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num]; 238 gicv3_rdistif_mark_core_awake(gicr_base); 239 240 /* Disable the legacy interrupt bypass */ 241 icc_sre_el3 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT; 242 243 /* 244 * Enable system register access for EL3 and allow lower exception 245 * levels to configure the same for themselves. If the legacy mode is 246 * not supported, the SRE bit is RAO/WI 247 */ 248 icc_sre_el3 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT); 249 write_icc_sre_el3(read_icc_sre_el3() | icc_sre_el3); 250 251 scr_el3 = (uint32_t) read_scr_el3(); 252 253 /* 254 * Switch to NS state to write Non secure ICC_SRE_EL1 and 255 * ICC_SRE_EL2 registers. 256 */ 257 write_scr_el3(scr_el3 | SCR_NS_BIT); 258 isb(); 259 260 write_icc_sre_el2(read_icc_sre_el2() | icc_sre_el3); 261 write_icc_sre_el1(ICC_SRE_SRE_BIT); 262 isb(); 263 264 /* Switch to secure state. */ 265 write_scr_el3(scr_el3 & (~SCR_NS_BIT)); 266 isb(); 267 268 /* Write the secure ICC_SRE_EL1 register */ 269 write_icc_sre_el1(ICC_SRE_SRE_BIT); 270 isb(); 271 272 /* Program the idle priority in the PMR */ 273 write_icc_pmr_el1(GIC_PRI_MASK); 274 275 /* Enable Group0 interrupts */ 276 write_icc_igrpen0_el1(IGRPEN1_EL1_ENABLE_G0_BIT); 277 278 /* Enable Group1 Secure interrupts */ 279 write_icc_igrpen1_el3(read_icc_igrpen1_el3() | 280 IGRPEN1_EL3_ENABLE_G1S_BIT); 281 isb(); 282 } 283 284 /******************************************************************************* 285 * This function disables the GIC CPU interface of the calling CPU using 286 * only system register accesses. 287 ******************************************************************************/ 288 void gicv3_cpuif_disable(unsigned int proc_num) 289 { 290 uintptr_t gicr_base; 291 292 assert(gicv3_driver_data != NULL); 293 assert(proc_num < gicv3_driver_data->rdistif_num); 294 assert(gicv3_driver_data->rdistif_base_addrs != NULL); 295 296 assert(IS_IN_EL3()); 297 298 /* Disable legacy interrupt bypass */ 299 write_icc_sre_el3(read_icc_sre_el3() | 300 (ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT)); 301 302 /* Disable Group0 interrupts */ 303 write_icc_igrpen0_el1(read_icc_igrpen0_el1() & 304 ~IGRPEN1_EL1_ENABLE_G0_BIT); 305 306 /* Disable Group1 Secure and Non-Secure interrupts */ 307 write_icc_igrpen1_el3(read_icc_igrpen1_el3() & 308 ~(IGRPEN1_EL3_ENABLE_G1NS_BIT | 309 IGRPEN1_EL3_ENABLE_G1S_BIT)); 310 311 /* Synchronise accesses to group enable registers */ 312 isb(); 313 314 /* Mark the connected core as asleep */ 315 gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num]; 316 gicv3_rdistif_mark_core_asleep(gicr_base); 317 } 318 319 /******************************************************************************* 320 * This function returns the id of the highest priority pending interrupt at 321 * the GIC cpu interface. 322 ******************************************************************************/ 323 unsigned int gicv3_get_pending_interrupt_id(void) 324 { 325 unsigned int id; 326 327 assert(IS_IN_EL3()); 328 id = (uint32_t)read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK; 329 330 /* 331 * If the ID is special identifier corresponding to G1S or G1NS 332 * interrupt, then read the highest pending group 1 interrupt. 333 */ 334 if ((id == PENDING_G1S_INTID) || (id == PENDING_G1NS_INTID)) 335 return (uint32_t)read_icc_hppir1_el1() & HPPIR1_EL1_INTID_MASK; 336 337 return id; 338 } 339 340 /******************************************************************************* 341 * This function returns the type of the highest priority pending interrupt at 342 * the GIC cpu interface. The return values can be one of the following : 343 * PENDING_G1S_INTID : The interrupt type is secure Group 1. 344 * PENDING_G1NS_INTID : The interrupt type is non secure Group 1. 345 * 0 - 1019 : The interrupt type is secure Group 0. 346 * GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with 347 * sufficient priority to be signaled 348 ******************************************************************************/ 349 unsigned int gicv3_get_pending_interrupt_type(void) 350 { 351 assert(IS_IN_EL3()); 352 return (uint32_t)read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK; 353 } 354 355 /******************************************************************************* 356 * This function returns the type of the interrupt id depending upon the group 357 * this interrupt has been configured under by the interrupt controller i.e. 358 * group0 or group1 Secure / Non Secure. The return value can be one of the 359 * following : 360 * INTR_GROUP0 : The interrupt type is a Secure Group 0 interrupt 361 * INTR_GROUP1S : The interrupt type is a Secure Group 1 secure interrupt 362 * INTR_GROUP1NS: The interrupt type is a Secure Group 1 non secure 363 * interrupt. 364 ******************************************************************************/ 365 unsigned int gicv3_get_interrupt_type(unsigned int id, 366 unsigned int proc_num) 367 { 368 unsigned int igroup, grpmodr; 369 uintptr_t gicr_base; 370 371 assert(IS_IN_EL3()); 372 assert(gicv3_driver_data != NULL); 373 374 /* Ensure the parameters are valid */ 375 assert((id < PENDING_G1S_INTID) || (id >= MIN_LPI_ID)); 376 assert(proc_num < gicv3_driver_data->rdistif_num); 377 378 /* All LPI interrupts are Group 1 non secure */ 379 if (id >= MIN_LPI_ID) 380 return INTR_GROUP1NS; 381 382 if (id < MIN_SPI_ID) { 383 assert(gicv3_driver_data->rdistif_base_addrs != NULL); 384 gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num]; 385 igroup = gicr_get_igroupr0(gicr_base, id); 386 grpmodr = gicr_get_igrpmodr0(gicr_base, id); 387 } else { 388 assert(gicv3_driver_data->gicd_base != 0U); 389 igroup = gicd_get_igroupr(gicv3_driver_data->gicd_base, id); 390 grpmodr = gicd_get_igrpmodr(gicv3_driver_data->gicd_base, id); 391 } 392 393 /* 394 * If the IGROUP bit is set, then it is a Group 1 Non secure 395 * interrupt 396 */ 397 if (igroup != 0U) 398 return INTR_GROUP1NS; 399 400 /* If the GRPMOD bit is set, then it is a Group 1 Secure interrupt */ 401 if (grpmodr != 0U) 402 return INTR_GROUP1S; 403 404 /* Else it is a Group 0 Secure interrupt */ 405 return INTR_GROUP0; 406 } 407 408 /***************************************************************************** 409 * Function to save and disable the GIC ITS register context. The power 410 * management of GIC ITS is implementation-defined and this function doesn't 411 * save any memory structures required to support ITS. As the sequence to save 412 * this state is implementation defined, it should be executed in platform 413 * specific code. Calling this function alone and then powering down the GIC and 414 * ITS without implementing the aforementioned platform specific code will 415 * corrupt the ITS state. 416 * 417 * This function must be invoked after the GIC CPU interface is disabled. 418 *****************************************************************************/ 419 void gicv3_its_save_disable(uintptr_t gits_base, gicv3_its_ctx_t * const its_ctx) 420 { 421 unsigned int i; 422 423 assert(gicv3_driver_data != NULL); 424 assert(IS_IN_EL3()); 425 assert(its_ctx != NULL); 426 assert(gits_base != 0U); 427 428 its_ctx->gits_ctlr = gits_read_ctlr(gits_base); 429 430 /* Disable the ITS */ 431 gits_write_ctlr(gits_base, its_ctx->gits_ctlr & 432 (~GITS_CTLR_ENABLED_BIT)); 433 434 /* Wait for quiescent state */ 435 gits_wait_for_quiescent_bit(gits_base); 436 437 its_ctx->gits_cbaser = gits_read_cbaser(gits_base); 438 its_ctx->gits_cwriter = gits_read_cwriter(gits_base); 439 440 for (i = 0; i < ARRAY_SIZE(its_ctx->gits_baser); i++) 441 its_ctx->gits_baser[i] = gits_read_baser(gits_base, i); 442 } 443 444 /***************************************************************************** 445 * Function to restore the GIC ITS register context. The power 446 * management of GIC ITS is implementation defined and this function doesn't 447 * restore any memory structures required to support ITS. The assumption is 448 * that these structures are in memory and are retained during system suspend. 449 * 450 * This must be invoked before the GIC CPU interface is enabled. 451 *****************************************************************************/ 452 void gicv3_its_restore(uintptr_t gits_base, const gicv3_its_ctx_t * const its_ctx) 453 { 454 unsigned int i; 455 456 assert(gicv3_driver_data != NULL); 457 assert(IS_IN_EL3()); 458 assert(its_ctx != NULL); 459 assert(gits_base != 0U); 460 461 /* Assert that the GITS is disabled and quiescent */ 462 assert((gits_read_ctlr(gits_base) & GITS_CTLR_ENABLED_BIT) == 0U); 463 assert((gits_read_ctlr(gits_base) & GITS_CTLR_QUIESCENT_BIT) != 0U); 464 465 gits_write_cbaser(gits_base, its_ctx->gits_cbaser); 466 gits_write_cwriter(gits_base, its_ctx->gits_cwriter); 467 468 for (i = 0; i < ARRAY_SIZE(its_ctx->gits_baser); i++) 469 gits_write_baser(gits_base, i, its_ctx->gits_baser[i]); 470 471 /* Restore the ITS CTLR but leave the ITS disabled */ 472 gits_write_ctlr(gits_base, its_ctx->gits_ctlr & 473 (~GITS_CTLR_ENABLED_BIT)); 474 } 475 476 /***************************************************************************** 477 * Function to save the GIC Redistributor register context. This function 478 * must be invoked after CPU interface disable and prior to Distributor save. 479 *****************************************************************************/ 480 void gicv3_rdistif_save(unsigned int proc_num, gicv3_redist_ctx_t * const rdist_ctx) 481 { 482 uintptr_t gicr_base; 483 unsigned int int_id; 484 485 assert(gicv3_driver_data != NULL); 486 assert(proc_num < gicv3_driver_data->rdistif_num); 487 assert(gicv3_driver_data->rdistif_base_addrs != NULL); 488 assert(IS_IN_EL3()); 489 assert(rdist_ctx != NULL); 490 491 gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num]; 492 493 /* 494 * Wait for any write to GICR_CTLR to complete before trying to save any 495 * state. 496 */ 497 gicr_wait_for_pending_write(gicr_base); 498 499 rdist_ctx->gicr_ctlr = gicr_read_ctlr(gicr_base); 500 501 rdist_ctx->gicr_propbaser = gicr_read_propbaser(gicr_base); 502 rdist_ctx->gicr_pendbaser = gicr_read_pendbaser(gicr_base); 503 504 rdist_ctx->gicr_igroupr0 = gicr_read_igroupr0(gicr_base); 505 rdist_ctx->gicr_isenabler0 = gicr_read_isenabler0(gicr_base); 506 rdist_ctx->gicr_ispendr0 = gicr_read_ispendr0(gicr_base); 507 rdist_ctx->gicr_isactiver0 = gicr_read_isactiver0(gicr_base); 508 rdist_ctx->gicr_icfgr0 = gicr_read_icfgr0(gicr_base); 509 rdist_ctx->gicr_icfgr1 = gicr_read_icfgr1(gicr_base); 510 rdist_ctx->gicr_igrpmodr0 = gicr_read_igrpmodr0(gicr_base); 511 rdist_ctx->gicr_nsacr = gicr_read_nsacr(gicr_base); 512 for (int_id = MIN_SGI_ID; int_id < TOTAL_PCPU_INTR_NUM; 513 int_id += (1U << IPRIORITYR_SHIFT)) { 514 rdist_ctx->gicr_ipriorityr[(int_id - MIN_SGI_ID) >> IPRIORITYR_SHIFT] = 515 gicr_read_ipriorityr(gicr_base, int_id); 516 } 517 518 519 /* 520 * Call the pre-save hook that implements the IMP DEF sequence that may 521 * be required on some GIC implementations. As this may need to access 522 * the Redistributor registers, we pass it proc_num. 523 */ 524 gicv3_distif_pre_save(proc_num); 525 } 526 527 /***************************************************************************** 528 * Function to restore the GIC Redistributor register context. We disable 529 * LPI and per-cpu interrupts before we start restore of the Redistributor. 530 * This function must be invoked after Distributor restore but prior to 531 * CPU interface enable. The pending and active interrupts are restored 532 * after the interrupts are fully configured and enabled. 533 *****************************************************************************/ 534 void gicv3_rdistif_init_restore(unsigned int proc_num, 535 const gicv3_redist_ctx_t * const rdist_ctx) 536 { 537 uintptr_t gicr_base; 538 unsigned int int_id; 539 540 assert(gicv3_driver_data != NULL); 541 assert(proc_num < gicv3_driver_data->rdistif_num); 542 assert(gicv3_driver_data->rdistif_base_addrs != NULL); 543 assert(IS_IN_EL3()); 544 assert(rdist_ctx != NULL); 545 546 gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num]; 547 548 /* Power on redistributor */ 549 gicv3_rdistif_on(proc_num); 550 551 /* 552 * Call the post-restore hook that implements the IMP DEF sequence that 553 * may be required on some GIC implementations. As this may need to 554 * access the Redistributor registers, we pass it proc_num. 555 */ 556 gicv3_distif_post_restore(proc_num); 557 558 /* 559 * Disable all SGIs (imp. def.)/PPIs before configuring them. This is a 560 * more scalable approach as it avoids clearing the enable bits in the 561 * GICD_CTLR 562 */ 563 gicr_write_icenabler0(gicr_base, ~0U); 564 /* Wait for pending writes to GICR_ICENABLER */ 565 gicr_wait_for_pending_write(gicr_base); 566 567 /* 568 * Disable the LPIs to avoid unpredictable behavior when writing to 569 * GICR_PROPBASER and GICR_PENDBASER. 570 */ 571 gicr_write_ctlr(gicr_base, 572 rdist_ctx->gicr_ctlr & ~(GICR_CTLR_EN_LPIS_BIT)); 573 574 /* Restore registers' content */ 575 gicr_write_propbaser(gicr_base, rdist_ctx->gicr_propbaser); 576 gicr_write_pendbaser(gicr_base, rdist_ctx->gicr_pendbaser); 577 578 gicr_write_igroupr0(gicr_base, rdist_ctx->gicr_igroupr0); 579 580 for (int_id = MIN_SGI_ID; int_id < TOTAL_PCPU_INTR_NUM; 581 int_id += (1U << IPRIORITYR_SHIFT)) { 582 gicr_write_ipriorityr(gicr_base, int_id, 583 rdist_ctx->gicr_ipriorityr[ 584 (int_id - MIN_SGI_ID) >> IPRIORITYR_SHIFT]); 585 } 586 587 gicr_write_icfgr0(gicr_base, rdist_ctx->gicr_icfgr0); 588 gicr_write_icfgr1(gicr_base, rdist_ctx->gicr_icfgr1); 589 gicr_write_igrpmodr0(gicr_base, rdist_ctx->gicr_igrpmodr0); 590 gicr_write_nsacr(gicr_base, rdist_ctx->gicr_nsacr); 591 592 /* Restore after group and priorities are set */ 593 gicr_write_ispendr0(gicr_base, rdist_ctx->gicr_ispendr0); 594 gicr_write_isactiver0(gicr_base, rdist_ctx->gicr_isactiver0); 595 596 /* 597 * Wait for all writes to the Distributor to complete before enabling 598 * the SGI and PPIs. 599 */ 600 gicr_wait_for_upstream_pending_write(gicr_base); 601 gicr_write_isenabler0(gicr_base, rdist_ctx->gicr_isenabler0); 602 603 /* 604 * Restore GICR_CTLR.Enable_LPIs bit and wait for pending writes in case 605 * the first write to GICR_CTLR was still in flight (this write only 606 * restores GICR_CTLR.Enable_LPIs and no waiting is required for this 607 * bit). 608 */ 609 gicr_write_ctlr(gicr_base, rdist_ctx->gicr_ctlr); 610 gicr_wait_for_pending_write(gicr_base); 611 } 612 613 /***************************************************************************** 614 * Function to save the GIC Distributor register context. This function 615 * must be invoked after CPU interface disable and Redistributor save. 616 *****************************************************************************/ 617 void gicv3_distif_save(gicv3_dist_ctx_t * const dist_ctx) 618 { 619 unsigned int num_ints; 620 621 assert(gicv3_driver_data != NULL); 622 assert(gicv3_driver_data->gicd_base != 0U); 623 assert(IS_IN_EL3()); 624 assert(dist_ctx != NULL); 625 626 uintptr_t gicd_base = gicv3_driver_data->gicd_base; 627 628 num_ints = gicd_read_typer(gicd_base); 629 num_ints &= TYPER_IT_LINES_NO_MASK; 630 num_ints = (num_ints + 1U) << 5; 631 632 assert(num_ints <= (MAX_SPI_ID + 1U)); 633 634 /* Wait for pending write to complete */ 635 gicd_wait_for_pending_write(gicd_base); 636 637 /* Save the GICD_CTLR */ 638 dist_ctx->gicd_ctlr = gicd_read_ctlr(gicd_base); 639 640 /* Save GICD_IGROUPR for INTIDs 32 - 1020 */ 641 SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUPR); 642 643 /* Save GICD_ISENABLER for INT_IDs 32 - 1020 */ 644 SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLER); 645 646 /* Save GICD_ISPENDR for INTIDs 32 - 1020 */ 647 SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPENDR); 648 649 /* Save GICD_ISACTIVER for INTIDs 32 - 1020 */ 650 SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVER); 651 652 /* Save GICD_IPRIORITYR for INTIDs 32 - 1020 */ 653 SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITYR); 654 655 /* Save GICD_ICFGR for INTIDs 32 - 1020 */ 656 SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFGR); 657 658 /* Save GICD_IGRPMODR for INTIDs 32 - 1020 */ 659 SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMODR); 660 661 /* Save GICD_NSACR for INTIDs 32 - 1020 */ 662 SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSACR); 663 664 /* Save GICD_IROUTER for INTIDs 32 - 1024 */ 665 SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTER); 666 667 /* 668 * GICD_ITARGETSR<n> and GICD_SPENDSGIR<n> are RAZ/WI when 669 * GICD_CTLR.ARE_(S|NS) bits are set which is the case for our GICv3 670 * driver. 671 */ 672 } 673 674 /***************************************************************************** 675 * Function to restore the GIC Distributor register context. We disable G0, G1S 676 * and G1NS interrupt groups before we start restore of the Distributor. This 677 * function must be invoked prior to Redistributor restore and CPU interface 678 * enable. The pending and active interrupts are restored after the interrupts 679 * are fully configured and enabled. 680 *****************************************************************************/ 681 void gicv3_distif_init_restore(const gicv3_dist_ctx_t * const dist_ctx) 682 { 683 unsigned int num_ints = 0U; 684 685 assert(gicv3_driver_data != NULL); 686 assert(gicv3_driver_data->gicd_base != 0U); 687 assert(IS_IN_EL3()); 688 assert(dist_ctx != NULL); 689 690 uintptr_t gicd_base = gicv3_driver_data->gicd_base; 691 692 /* 693 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring 694 * the ARE_S bit. The Distributor might generate a system error 695 * otherwise. 696 */ 697 gicd_clr_ctlr(gicd_base, 698 CTLR_ENABLE_G0_BIT | 699 CTLR_ENABLE_G1S_BIT | 700 CTLR_ENABLE_G1NS_BIT, 701 RWP_TRUE); 702 703 /* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */ 704 gicd_set_ctlr(gicd_base, CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE); 705 706 num_ints = gicd_read_typer(gicd_base); 707 num_ints &= TYPER_IT_LINES_NO_MASK; 708 num_ints = (num_ints + 1U) << 5; 709 710 assert(num_ints <= (MAX_SPI_ID + 1U)); 711 712 /* Restore GICD_IGROUPR for INTIDs 32 - 1020 */ 713 RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUPR); 714 715 /* Restore GICD_IPRIORITYR for INTIDs 32 - 1020 */ 716 RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITYR); 717 718 /* Restore GICD_ICFGR for INTIDs 32 - 1020 */ 719 RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFGR); 720 721 /* Restore GICD_IGRPMODR for INTIDs 32 - 1020 */ 722 RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMODR); 723 724 /* Restore GICD_NSACR for INTIDs 32 - 1020 */ 725 RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSACR); 726 727 /* Restore GICD_IROUTER for INTIDs 32 - 1020 */ 728 RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTER); 729 730 /* 731 * Restore ISENABLER, ISPENDR and ISACTIVER after the interrupts are 732 * configured. 733 */ 734 735 /* Restore GICD_ISENABLER for INT_IDs 32 - 1020 */ 736 RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLER); 737 738 /* Restore GICD_ISPENDR for INTIDs 32 - 1020 */ 739 RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPENDR); 740 741 /* Restore GICD_ISACTIVER for INTIDs 32 - 1020 */ 742 RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVER); 743 744 /* Restore the GICD_CTLR */ 745 gicd_write_ctlr(gicd_base, dist_ctx->gicd_ctlr); 746 gicd_wait_for_pending_write(gicd_base); 747 748 } 749 750 /******************************************************************************* 751 * This function gets the priority of the interrupt the processor is currently 752 * servicing. 753 ******************************************************************************/ 754 unsigned int gicv3_get_running_priority(void) 755 { 756 return (unsigned int)read_icc_rpr_el1(); 757 } 758 759 /******************************************************************************* 760 * This function checks if the interrupt identified by id is active (whether the 761 * state is either active, or active and pending). The proc_num is used if the 762 * interrupt is SGI or PPI and programs the corresponding Redistributor 763 * interface. 764 ******************************************************************************/ 765 unsigned int gicv3_get_interrupt_active(unsigned int id, unsigned int proc_num) 766 { 767 unsigned int value; 768 769 assert(gicv3_driver_data != NULL); 770 assert(gicv3_driver_data->gicd_base != 0U); 771 assert(proc_num < gicv3_driver_data->rdistif_num); 772 assert(gicv3_driver_data->rdistif_base_addrs != NULL); 773 assert(id <= MAX_SPI_ID); 774 775 if (id < MIN_SPI_ID) { 776 /* For SGIs and PPIs */ 777 value = gicr_get_isactiver0( 778 gicv3_driver_data->rdistif_base_addrs[proc_num], id); 779 } else { 780 value = gicd_get_isactiver(gicv3_driver_data->gicd_base, id); 781 } 782 783 return value; 784 } 785 786 /******************************************************************************* 787 * This function enables the interrupt identified by id. The proc_num 788 * is used if the interrupt is SGI or PPI, and programs the corresponding 789 * Redistributor interface. 790 ******************************************************************************/ 791 void gicv3_enable_interrupt(unsigned int id, unsigned int proc_num) 792 { 793 assert(gicv3_driver_data != NULL); 794 assert(gicv3_driver_data->gicd_base != 0U); 795 assert(proc_num < gicv3_driver_data->rdistif_num); 796 assert(gicv3_driver_data->rdistif_base_addrs != NULL); 797 assert(id <= MAX_SPI_ID); 798 799 /* 800 * Ensure that any shared variable updates depending on out of band 801 * interrupt trigger are observed before enabling interrupt. 802 */ 803 dsbishst(); 804 if (id < MIN_SPI_ID) { 805 /* For SGIs and PPIs */ 806 gicr_set_isenabler0( 807 gicv3_driver_data->rdistif_base_addrs[proc_num], 808 id); 809 } else { 810 gicd_set_isenabler(gicv3_driver_data->gicd_base, id); 811 } 812 } 813 814 /******************************************************************************* 815 * This function disables the interrupt identified by id. The proc_num 816 * is used if the interrupt is SGI or PPI, and programs the corresponding 817 * Redistributor interface. 818 ******************************************************************************/ 819 void gicv3_disable_interrupt(unsigned int id, unsigned int proc_num) 820 { 821 assert(gicv3_driver_data != NULL); 822 assert(gicv3_driver_data->gicd_base != 0U); 823 assert(proc_num < gicv3_driver_data->rdistif_num); 824 assert(gicv3_driver_data->rdistif_base_addrs != NULL); 825 assert(id <= MAX_SPI_ID); 826 827 /* 828 * Disable interrupt, and ensure that any shared variable updates 829 * depending on out of band interrupt trigger are observed afterwards. 830 */ 831 if (id < MIN_SPI_ID) { 832 /* For SGIs and PPIs */ 833 gicr_set_icenabler0( 834 gicv3_driver_data->rdistif_base_addrs[proc_num], 835 id); 836 837 /* Write to clear enable requires waiting for pending writes */ 838 gicr_wait_for_pending_write( 839 gicv3_driver_data->rdistif_base_addrs[proc_num]); 840 } else { 841 gicd_set_icenabler(gicv3_driver_data->gicd_base, id); 842 843 /* Write to clear enable requires waiting for pending writes */ 844 gicd_wait_for_pending_write(gicv3_driver_data->gicd_base); 845 } 846 847 dsbishst(); 848 } 849 850 /******************************************************************************* 851 * This function sets the interrupt priority as supplied for the given interrupt 852 * id. 853 ******************************************************************************/ 854 void gicv3_set_interrupt_priority(unsigned int id, unsigned int proc_num, 855 unsigned int priority) 856 { 857 uintptr_t gicr_base; 858 859 assert(gicv3_driver_data != NULL); 860 assert(gicv3_driver_data->gicd_base != 0U); 861 assert(proc_num < gicv3_driver_data->rdistif_num); 862 assert(gicv3_driver_data->rdistif_base_addrs != NULL); 863 assert(id <= MAX_SPI_ID); 864 865 if (id < MIN_SPI_ID) { 866 gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num]; 867 gicr_set_ipriorityr(gicr_base, id, priority); 868 } else { 869 gicd_set_ipriorityr(gicv3_driver_data->gicd_base, id, priority); 870 } 871 } 872 873 /******************************************************************************* 874 * This function assigns group for the interrupt identified by id. The proc_num 875 * is used if the interrupt is SGI or PPI, and programs the corresponding 876 * Redistributor interface. The group can be any of GICV3_INTR_GROUP* 877 ******************************************************************************/ 878 void gicv3_set_interrupt_type(unsigned int id, unsigned int proc_num, 879 unsigned int type) 880 { 881 bool igroup = false, grpmod = false; 882 uintptr_t gicr_base; 883 884 assert(gicv3_driver_data != NULL); 885 assert(gicv3_driver_data->gicd_base != 0U); 886 assert(proc_num < gicv3_driver_data->rdistif_num); 887 assert(gicv3_driver_data->rdistif_base_addrs != NULL); 888 889 switch (type) { 890 case INTR_GROUP1S: 891 igroup = false; 892 grpmod = true; 893 break; 894 case INTR_GROUP0: 895 igroup = false; 896 grpmod = false; 897 break; 898 case INTR_GROUP1NS: 899 igroup = true; 900 grpmod = false; 901 break; 902 default: 903 assert(false); 904 break; 905 } 906 907 if (id < MIN_SPI_ID) { 908 gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num]; 909 if (igroup) 910 gicr_set_igroupr0(gicr_base, id); 911 else 912 gicr_clr_igroupr0(gicr_base, id); 913 914 if (grpmod) 915 gicr_set_igrpmodr0(gicr_base, id); 916 else 917 gicr_clr_igrpmodr0(gicr_base, id); 918 } else { 919 /* Serialize read-modify-write to Distributor registers */ 920 spin_lock(&gic_lock); 921 if (igroup) 922 gicd_set_igroupr(gicv3_driver_data->gicd_base, id); 923 else 924 gicd_clr_igroupr(gicv3_driver_data->gicd_base, id); 925 926 if (grpmod) 927 gicd_set_igrpmodr(gicv3_driver_data->gicd_base, id); 928 else 929 gicd_clr_igrpmodr(gicv3_driver_data->gicd_base, id); 930 spin_unlock(&gic_lock); 931 } 932 } 933 934 /******************************************************************************* 935 * This function raises the specified Secure Group 0 SGI. 936 * 937 * The target parameter must be a valid MPIDR in the system. 938 ******************************************************************************/ 939 void gicv3_raise_secure_g0_sgi(unsigned int sgi_num, u_register_t target) 940 { 941 unsigned int tgt, aff3, aff2, aff1, aff0; 942 uint64_t sgi_val; 943 944 /* Verify interrupt number is in the SGI range */ 945 assert((sgi_num >= MIN_SGI_ID) && (sgi_num < MIN_PPI_ID)); 946 947 /* Extract affinity fields from target */ 948 aff0 = MPIDR_AFFLVL0_VAL(target); 949 aff1 = MPIDR_AFFLVL1_VAL(target); 950 aff2 = MPIDR_AFFLVL2_VAL(target); 951 aff3 = MPIDR_AFFLVL3_VAL(target); 952 953 /* 954 * Make target list from affinity 0, and ensure GICv3 SGI can target 955 * this PE. 956 */ 957 assert(aff0 < GICV3_MAX_SGI_TARGETS); 958 tgt = BIT_32(aff0); 959 960 /* Raise SGI to PE specified by its affinity */ 961 sgi_val = GICV3_SGIR_VALUE(aff3, aff2, aff1, sgi_num, SGIR_IRM_TO_AFF, 962 tgt); 963 964 /* 965 * Ensure that any shared variable updates depending on out of band 966 * interrupt trigger are observed before raising SGI. 967 */ 968 dsbishst(); 969 write_icc_sgi0r_el1(sgi_val); 970 isb(); 971 } 972 973 /******************************************************************************* 974 * This function sets the interrupt routing for the given SPI interrupt id. 975 * The interrupt routing is specified in routing mode and mpidr. 976 * 977 * The routing mode can be either of: 978 * - GICV3_IRM_ANY 979 * - GICV3_IRM_PE 980 * 981 * The mpidr is the affinity of the PE to which the interrupt will be routed, 982 * and is ignored for routing mode GICV3_IRM_ANY. 983 ******************************************************************************/ 984 void gicv3_set_spi_routing(unsigned int id, unsigned int irm, u_register_t mpidr) 985 { 986 unsigned long long aff; 987 uint64_t router; 988 989 assert(gicv3_driver_data != NULL); 990 assert(gicv3_driver_data->gicd_base != 0U); 991 992 assert((irm == GICV3_IRM_ANY) || (irm == GICV3_IRM_PE)); 993 assert((id >= MIN_SPI_ID) && (id <= MAX_SPI_ID)); 994 995 aff = gicd_irouter_val_from_mpidr(mpidr, irm); 996 gicd_write_irouter(gicv3_driver_data->gicd_base, id, aff); 997 998 /* 999 * In implementations that do not require 1 of N distribution of SPIs, 1000 * IRM might be RAZ/WI. Read back and verify IRM bit. 1001 */ 1002 if (irm == GICV3_IRM_ANY) { 1003 router = gicd_read_irouter(gicv3_driver_data->gicd_base, id); 1004 if (((router >> IROUTER_IRM_SHIFT) & IROUTER_IRM_MASK) == 0U) { 1005 ERROR("GICv3 implementation doesn't support routing ANY\n"); 1006 panic(); 1007 } 1008 } 1009 } 1010 1011 /******************************************************************************* 1012 * This function clears the pending status of an interrupt identified by id. 1013 * The proc_num is used if the interrupt is SGI or PPI, and programs the 1014 * corresponding Redistributor interface. 1015 ******************************************************************************/ 1016 void gicv3_clear_interrupt_pending(unsigned int id, unsigned int proc_num) 1017 { 1018 assert(gicv3_driver_data != NULL); 1019 assert(gicv3_driver_data->gicd_base != 0U); 1020 assert(proc_num < gicv3_driver_data->rdistif_num); 1021 assert(gicv3_driver_data->rdistif_base_addrs != NULL); 1022 1023 /* 1024 * Clear pending interrupt, and ensure that any shared variable updates 1025 * depending on out of band interrupt trigger are observed afterwards. 1026 */ 1027 if (id < MIN_SPI_ID) { 1028 /* For SGIs and PPIs */ 1029 gicr_set_icpendr0(gicv3_driver_data->rdistif_base_addrs[proc_num], 1030 id); 1031 } else { 1032 gicd_set_icpendr(gicv3_driver_data->gicd_base, id); 1033 } 1034 dsbishst(); 1035 } 1036 1037 /******************************************************************************* 1038 * This function sets the pending status of an interrupt identified by id. 1039 * The proc_num is used if the interrupt is SGI or PPI and programs the 1040 * corresponding Redistributor interface. 1041 ******************************************************************************/ 1042 void gicv3_set_interrupt_pending(unsigned int id, unsigned int proc_num) 1043 { 1044 assert(gicv3_driver_data != NULL); 1045 assert(gicv3_driver_data->gicd_base != 0U); 1046 assert(proc_num < gicv3_driver_data->rdistif_num); 1047 assert(gicv3_driver_data->rdistif_base_addrs != NULL); 1048 1049 /* 1050 * Ensure that any shared variable updates depending on out of band 1051 * interrupt trigger are observed before setting interrupt pending. 1052 */ 1053 dsbishst(); 1054 if (id < MIN_SPI_ID) { 1055 /* For SGIs and PPIs */ 1056 gicr_set_ispendr0(gicv3_driver_data->rdistif_base_addrs[proc_num], 1057 id); 1058 } else { 1059 gicd_set_ispendr(gicv3_driver_data->gicd_base, id); 1060 } 1061 } 1062 1063 /******************************************************************************* 1064 * This function sets the PMR register with the supplied value. Returns the 1065 * original PMR. 1066 ******************************************************************************/ 1067 unsigned int gicv3_set_pmr(unsigned int mask) 1068 { 1069 unsigned int old_mask; 1070 1071 old_mask = (uint32_t) read_icc_pmr_el1(); 1072 1073 /* 1074 * Order memory updates w.r.t. PMR write, and ensure they're visible 1075 * before potential out of band interrupt trigger because of PMR update. 1076 * PMR system register writes are self-synchronizing, so no ISB required 1077 * thereafter. 1078 */ 1079 dsbishst(); 1080 write_icc_pmr_el1(mask); 1081 1082 return old_mask; 1083 } 1084