xref: /rk3399_ARM-atf/drivers/arm/gic/v3/gicv3_main.c (revision f363deb6d409e64de70d25af868a91edb94c186c)
1 /*
2  * Copyright (c) 2015-2019, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 
9 #include <arch.h>
10 #include <arch_helpers.h>
11 #include <common/debug.h>
12 #include <common/interrupt_props.h>
13 #include <drivers/arm/gicv3.h>
14 #include <lib/spinlock.h>
15 
16 #include "gicv3_private.h"
17 
18 const gicv3_driver_data_t *gicv3_driver_data;
19 static unsigned int gicv2_compat;
20 
21 /*
22  * Spinlock to guard registers needing read-modify-write. APIs protected by this
23  * spinlock are used either at boot time (when only a single CPU is active), or
24  * when the system is fully coherent.
25  */
26 static spinlock_t gic_lock;
27 
28 /*
29  * Redistributor power operations are weakly bound so that they can be
30  * overridden
31  */
32 #pragma weak gicv3_rdistif_off
33 #pragma weak gicv3_rdistif_on
34 
35 
36 /* Helper macros to save and restore GICD registers to and from the context */
37 #define RESTORE_GICD_REGS(base, ctx, intr_num, reg, REG)		\
38 	do {								\
39 		for (unsigned int int_id = MIN_SPI_ID; int_id < (intr_num); \
40 				int_id += (1U << REG##_SHIFT)) {	\
41 			gicd_write_##reg(base, int_id,			\
42 				ctx->gicd_##reg[(int_id - MIN_SPI_ID) >> REG##_SHIFT]); \
43 		}							\
44 	} while (false)
45 
46 #define SAVE_GICD_REGS(base, ctx, intr_num, reg, REG)			\
47 	do {								\
48 		for (unsigned int int_id = MIN_SPI_ID; int_id < (intr_num); \
49 				int_id += (1U << REG##_SHIFT)) {	\
50 			ctx->gicd_##reg[(int_id - MIN_SPI_ID) >> REG##_SHIFT] =\
51 					gicd_read_##reg(base, int_id);	\
52 		}							\
53 	} while (false)
54 
55 
56 /*******************************************************************************
57  * This function initialises the ARM GICv3 driver in EL3 with provided platform
58  * inputs.
59  ******************************************************************************/
60 void __init gicv3_driver_init(const gicv3_driver_data_t *plat_driver_data)
61 {
62 	unsigned int gic_version;
63 
64 	assert(plat_driver_data != NULL);
65 	assert(plat_driver_data->gicd_base != 0U);
66 	assert(plat_driver_data->gicr_base != 0U);
67 	assert(plat_driver_data->rdistif_num != 0U);
68 	assert(plat_driver_data->rdistif_base_addrs != NULL);
69 
70 	assert(IS_IN_EL3());
71 
72 	assert(plat_driver_data->interrupt_props_num > 0 ?
73 	       plat_driver_data->interrupt_props != NULL : 1);
74 
75 	/* Check for system register support */
76 #ifdef AARCH32
77 	assert((read_id_pfr1() & (ID_PFR1_GIC_MASK << ID_PFR1_GIC_SHIFT)) != 0U);
78 #else
79 	assert((read_id_aa64pfr0_el1() &
80 			(ID_AA64PFR0_GIC_MASK << ID_AA64PFR0_GIC_SHIFT)) != 0U);
81 #endif /* AARCH32 */
82 
83 	/* The GIC version should be 3.0 */
84 	gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
85 	gic_version >>=	PIDR2_ARCH_REV_SHIFT;
86 	gic_version &= PIDR2_ARCH_REV_MASK;
87 	assert(gic_version == ARCH_REV_GICV3);
88 
89 	/*
90 	 * Find out whether the GIC supports the GICv2 compatibility mode. The
91 	 * ARE_S bit resets to 0 if supported
92 	 */
93 	gicv2_compat = gicd_read_ctlr(plat_driver_data->gicd_base);
94 	gicv2_compat >>= CTLR_ARE_S_SHIFT;
95 	gicv2_compat = !(gicv2_compat & CTLR_ARE_S_MASK);
96 
97 	/*
98 	 * Find the base address of each implemented Redistributor interface.
99 	 * The number of interfaces should be equal to the number of CPUs in the
100 	 * system. The memory for saving these addresses has to be allocated by
101 	 * the platform port
102 	 */
103 	gicv3_rdistif_base_addrs_probe(plat_driver_data->rdistif_base_addrs,
104 					   plat_driver_data->rdistif_num,
105 					   plat_driver_data->gicr_base,
106 					   plat_driver_data->mpidr_to_core_pos);
107 
108 	gicv3_driver_data = plat_driver_data;
109 
110 	/*
111 	 * The GIC driver data is initialized by the primary CPU with caches
112 	 * enabled. When the secondary CPU boots up, it initializes the
113 	 * GICC/GICR interface with the caches disabled. Hence flush the
114 	 * driver data to ensure coherency. This is not required if the
115 	 * platform has HW_ASSISTED_COHERENCY or WARMBOOT_ENABLE_DCACHE_EARLY
116 	 * enabled.
117 	 */
118 #if !(HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
119 	flush_dcache_range((uintptr_t) &gicv3_driver_data,
120 			sizeof(gicv3_driver_data));
121 	flush_dcache_range((uintptr_t) gicv3_driver_data,
122 			sizeof(*gicv3_driver_data));
123 #endif
124 
125 	INFO("GICv3 %s legacy support detected."
126 			" ARM GICV3 driver initialized in EL3\n",
127 			gicv2_compat ? "with" : "without");
128 }
129 
130 /*******************************************************************************
131  * This function initialises the GIC distributor interface based upon the data
132  * provided by the platform while initialising the driver.
133  ******************************************************************************/
134 void __init gicv3_distif_init(void)
135 {
136 	unsigned int bitmap = 0;
137 
138 	assert(gicv3_driver_data != NULL);
139 	assert(gicv3_driver_data->gicd_base != 0U);
140 
141 	assert(IS_IN_EL3());
142 
143 	/*
144 	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
145 	 * the ARE_S bit. The Distributor might generate a system error
146 	 * otherwise.
147 	 */
148 	gicd_clr_ctlr(gicv3_driver_data->gicd_base,
149 		      CTLR_ENABLE_G0_BIT |
150 		      CTLR_ENABLE_G1S_BIT |
151 		      CTLR_ENABLE_G1NS_BIT,
152 		      RWP_TRUE);
153 
154 	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
155 	gicd_set_ctlr(gicv3_driver_data->gicd_base,
156 			CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
157 
158 	/* Set the default attribute of all SPIs */
159 	gicv3_spis_config_defaults(gicv3_driver_data->gicd_base);
160 
161 	bitmap = gicv3_secure_spis_config_props(
162 			gicv3_driver_data->gicd_base,
163 			gicv3_driver_data->interrupt_props,
164 			gicv3_driver_data->interrupt_props_num);
165 
166 	/* Enable the secure SPIs now that they have been configured */
167 	gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE);
168 }
169 
170 /*******************************************************************************
171  * This function initialises the GIC Redistributor interface of the calling CPU
172  * (identified by the 'proc_num' parameter) based upon the data provided by the
173  * platform while initialising the driver.
174  ******************************************************************************/
175 void gicv3_rdistif_init(unsigned int proc_num)
176 {
177 	uintptr_t gicr_base;
178 	unsigned int bitmap = 0U;
179 	uint32_t ctlr;
180 
181 	assert(gicv3_driver_data != NULL);
182 	assert(proc_num < gicv3_driver_data->rdistif_num);
183 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
184 	assert(gicv3_driver_data->gicd_base != 0U);
185 
186 	ctlr = gicd_read_ctlr(gicv3_driver_data->gicd_base);
187 	assert((ctlr & CTLR_ARE_S_BIT) != 0U);
188 
189 	assert(IS_IN_EL3());
190 
191 	/* Power on redistributor */
192 	gicv3_rdistif_on(proc_num);
193 
194 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
195 
196 	/* Set the default attribute of all SGIs and PPIs */
197 	gicv3_ppi_sgi_config_defaults(gicr_base);
198 
199 	bitmap = gicv3_secure_ppi_sgi_config_props(gicr_base,
200 			gicv3_driver_data->interrupt_props,
201 			gicv3_driver_data->interrupt_props_num);
202 
203 	/* Enable interrupt groups as required, if not already */
204 	if ((ctlr & bitmap) != bitmap)
205 		gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE);
206 }
207 
208 /*******************************************************************************
209  * Functions to perform power operations on GIC Redistributor
210  ******************************************************************************/
211 void gicv3_rdistif_off(unsigned int proc_num)
212 {
213 	return;
214 }
215 
216 void gicv3_rdistif_on(unsigned int proc_num)
217 {
218 	return;
219 }
220 
221 /*******************************************************************************
222  * This function enables the GIC CPU interface of the calling CPU using only
223  * system register accesses.
224  ******************************************************************************/
225 void gicv3_cpuif_enable(unsigned int proc_num)
226 {
227 	uintptr_t gicr_base;
228 	unsigned int scr_el3;
229 	unsigned int icc_sre_el3;
230 
231 	assert(gicv3_driver_data != NULL);
232 	assert(proc_num < gicv3_driver_data->rdistif_num);
233 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
234 	assert(IS_IN_EL3());
235 
236 	/* Mark the connected core as awake */
237 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
238 	gicv3_rdistif_mark_core_awake(gicr_base);
239 
240 	/* Disable the legacy interrupt bypass */
241 	icc_sre_el3 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT;
242 
243 	/*
244 	 * Enable system register access for EL3 and allow lower exception
245 	 * levels to configure the same for themselves. If the legacy mode is
246 	 * not supported, the SRE bit is RAO/WI
247 	 */
248 	icc_sre_el3 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT);
249 	write_icc_sre_el3(read_icc_sre_el3() | icc_sre_el3);
250 
251 	scr_el3 = (uint32_t) read_scr_el3();
252 
253 	/*
254 	 * Switch to NS state to write Non secure ICC_SRE_EL1 and
255 	 * ICC_SRE_EL2 registers.
256 	 */
257 	write_scr_el3(scr_el3 | SCR_NS_BIT);
258 	isb();
259 
260 	write_icc_sre_el2(read_icc_sre_el2() | icc_sre_el3);
261 	write_icc_sre_el1(ICC_SRE_SRE_BIT);
262 	isb();
263 
264 	/* Switch to secure state. */
265 	write_scr_el3(scr_el3 & (~SCR_NS_BIT));
266 	isb();
267 
268 	/* Write the secure ICC_SRE_EL1 register */
269 	write_icc_sre_el1(ICC_SRE_SRE_BIT);
270 	isb();
271 
272 	/* Program the idle priority in the PMR */
273 	write_icc_pmr_el1(GIC_PRI_MASK);
274 
275 	/* Enable Group0 interrupts */
276 	write_icc_igrpen0_el1(IGRPEN1_EL1_ENABLE_G0_BIT);
277 
278 	/* Enable Group1 Secure interrupts */
279 	write_icc_igrpen1_el3(read_icc_igrpen1_el3() |
280 				IGRPEN1_EL3_ENABLE_G1S_BIT);
281 	isb();
282 }
283 
284 /*******************************************************************************
285  * This function disables the GIC CPU interface of the calling CPU using
286  * only system register accesses.
287  ******************************************************************************/
288 void gicv3_cpuif_disable(unsigned int proc_num)
289 {
290 	uintptr_t gicr_base;
291 
292 	assert(gicv3_driver_data != NULL);
293 	assert(proc_num < gicv3_driver_data->rdistif_num);
294 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
295 
296 	assert(IS_IN_EL3());
297 
298 	/* Disable legacy interrupt bypass */
299 	write_icc_sre_el3(read_icc_sre_el3() |
300 			  (ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT));
301 
302 	/* Disable Group0 interrupts */
303 	write_icc_igrpen0_el1(read_icc_igrpen0_el1() &
304 			      ~IGRPEN1_EL1_ENABLE_G0_BIT);
305 
306 	/* Disable Group1 Secure and Non-Secure interrupts */
307 	write_icc_igrpen1_el3(read_icc_igrpen1_el3() &
308 			      ~(IGRPEN1_EL3_ENABLE_G1NS_BIT |
309 			      IGRPEN1_EL3_ENABLE_G1S_BIT));
310 
311 	/* Synchronise accesses to group enable registers */
312 	isb();
313 
314 	/* Mark the connected core as asleep */
315 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
316 	gicv3_rdistif_mark_core_asleep(gicr_base);
317 }
318 
319 /*******************************************************************************
320  * This function returns the id of the highest priority pending interrupt at
321  * the GIC cpu interface.
322  ******************************************************************************/
323 unsigned int gicv3_get_pending_interrupt_id(void)
324 {
325 	unsigned int id;
326 
327 	assert(IS_IN_EL3());
328 	id = (uint32_t)read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
329 
330 	/*
331 	 * If the ID is special identifier corresponding to G1S or G1NS
332 	 * interrupt, then read the highest pending group 1 interrupt.
333 	 */
334 	if ((id == PENDING_G1S_INTID) || (id == PENDING_G1NS_INTID))
335 		return (uint32_t)read_icc_hppir1_el1() & HPPIR1_EL1_INTID_MASK;
336 
337 	return id;
338 }
339 
340 /*******************************************************************************
341  * This function returns the type of the highest priority pending interrupt at
342  * the GIC cpu interface. The return values can be one of the following :
343  *   PENDING_G1S_INTID  : The interrupt type is secure Group 1.
344  *   PENDING_G1NS_INTID : The interrupt type is non secure Group 1.
345  *   0 - 1019           : The interrupt type is secure Group 0.
346  *   GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
347  *                            sufficient priority to be signaled
348  ******************************************************************************/
349 unsigned int gicv3_get_pending_interrupt_type(void)
350 {
351 	assert(IS_IN_EL3());
352 	return (uint32_t)read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
353 }
354 
355 /*******************************************************************************
356  * This function returns the type of the interrupt id depending upon the group
357  * this interrupt has been configured under by the interrupt controller i.e.
358  * group0 or group1 Secure / Non Secure. The return value can be one of the
359  * following :
360  *    INTR_GROUP0  : The interrupt type is a Secure Group 0 interrupt
361  *    INTR_GROUP1S : The interrupt type is a Secure Group 1 secure interrupt
362  *    INTR_GROUP1NS: The interrupt type is a Secure Group 1 non secure
363  *                   interrupt.
364  ******************************************************************************/
365 unsigned int gicv3_get_interrupt_type(unsigned int id,
366 					  unsigned int proc_num)
367 {
368 	unsigned int igroup, grpmodr;
369 	uintptr_t gicr_base;
370 
371 	assert(IS_IN_EL3());
372 	assert(gicv3_driver_data != NULL);
373 
374 	/* Ensure the parameters are valid */
375 	assert((id < PENDING_G1S_INTID) || (id >= MIN_LPI_ID));
376 	assert(proc_num < gicv3_driver_data->rdistif_num);
377 
378 	/* All LPI interrupts are Group 1 non secure */
379 	if (id >= MIN_LPI_ID)
380 		return INTR_GROUP1NS;
381 
382 	if (id < MIN_SPI_ID) {
383 		assert(gicv3_driver_data->rdistif_base_addrs != NULL);
384 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
385 		igroup = gicr_get_igroupr0(gicr_base, id);
386 		grpmodr = gicr_get_igrpmodr0(gicr_base, id);
387 	} else {
388 		assert(gicv3_driver_data->gicd_base != 0U);
389 		igroup = gicd_get_igroupr(gicv3_driver_data->gicd_base, id);
390 		grpmodr = gicd_get_igrpmodr(gicv3_driver_data->gicd_base, id);
391 	}
392 
393 	/*
394 	 * If the IGROUP bit is set, then it is a Group 1 Non secure
395 	 * interrupt
396 	 */
397 	if (igroup != 0U)
398 		return INTR_GROUP1NS;
399 
400 	/* If the GRPMOD bit is set, then it is a Group 1 Secure interrupt */
401 	if (grpmodr != 0U)
402 		return INTR_GROUP1S;
403 
404 	/* Else it is a Group 0 Secure interrupt */
405 	return INTR_GROUP0;
406 }
407 
408 /*****************************************************************************
409  * Function to save and disable the GIC ITS register context. The power
410  * management of GIC ITS is implementation-defined and this function doesn't
411  * save any memory structures required to support ITS. As the sequence to save
412  * this state is implementation defined, it should be executed in platform
413  * specific code. Calling this function alone and then powering down the GIC and
414  * ITS without implementing the aforementioned platform specific code will
415  * corrupt the ITS state.
416  *
417  * This function must be invoked after the GIC CPU interface is disabled.
418  *****************************************************************************/
419 void gicv3_its_save_disable(uintptr_t gits_base, gicv3_its_ctx_t * const its_ctx)
420 {
421 	unsigned int i;
422 
423 	assert(gicv3_driver_data != NULL);
424 	assert(IS_IN_EL3());
425 	assert(its_ctx != NULL);
426 	assert(gits_base != 0U);
427 
428 	its_ctx->gits_ctlr = gits_read_ctlr(gits_base);
429 
430 	/* Disable the ITS */
431 	gits_write_ctlr(gits_base, its_ctx->gits_ctlr &
432 					(~GITS_CTLR_ENABLED_BIT));
433 
434 	/* Wait for quiescent state */
435 	gits_wait_for_quiescent_bit(gits_base);
436 
437 	its_ctx->gits_cbaser = gits_read_cbaser(gits_base);
438 	its_ctx->gits_cwriter = gits_read_cwriter(gits_base);
439 
440 	for (i = 0; i < ARRAY_SIZE(its_ctx->gits_baser); i++)
441 		its_ctx->gits_baser[i] = gits_read_baser(gits_base, i);
442 }
443 
444 /*****************************************************************************
445  * Function to restore the GIC ITS register context. The power
446  * management of GIC ITS is implementation defined and this function doesn't
447  * restore any memory structures required to support ITS. The assumption is
448  * that these structures are in memory and are retained during system suspend.
449  *
450  * This must be invoked before the GIC CPU interface is enabled.
451  *****************************************************************************/
452 void gicv3_its_restore(uintptr_t gits_base, const gicv3_its_ctx_t * const its_ctx)
453 {
454 	unsigned int i;
455 
456 	assert(gicv3_driver_data != NULL);
457 	assert(IS_IN_EL3());
458 	assert(its_ctx != NULL);
459 	assert(gits_base != 0U);
460 
461 	/* Assert that the GITS is disabled and quiescent */
462 	assert((gits_read_ctlr(gits_base) & GITS_CTLR_ENABLED_BIT) == 0U);
463 	assert((gits_read_ctlr(gits_base) & GITS_CTLR_QUIESCENT_BIT) != 0U);
464 
465 	gits_write_cbaser(gits_base, its_ctx->gits_cbaser);
466 	gits_write_cwriter(gits_base, its_ctx->gits_cwriter);
467 
468 	for (i = 0; i < ARRAY_SIZE(its_ctx->gits_baser); i++)
469 		gits_write_baser(gits_base, i, its_ctx->gits_baser[i]);
470 
471 	/* Restore the ITS CTLR but leave the ITS disabled */
472 	gits_write_ctlr(gits_base, its_ctx->gits_ctlr &
473 			(~GITS_CTLR_ENABLED_BIT));
474 }
475 
476 /*****************************************************************************
477  * Function to save the GIC Redistributor register context. This function
478  * must be invoked after CPU interface disable and prior to Distributor save.
479  *****************************************************************************/
480 void gicv3_rdistif_save(unsigned int proc_num, gicv3_redist_ctx_t * const rdist_ctx)
481 {
482 	uintptr_t gicr_base;
483 	unsigned int int_id;
484 
485 	assert(gicv3_driver_data != NULL);
486 	assert(proc_num < gicv3_driver_data->rdistif_num);
487 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
488 	assert(IS_IN_EL3());
489 	assert(rdist_ctx != NULL);
490 
491 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
492 
493 	/*
494 	 * Wait for any write to GICR_CTLR to complete before trying to save any
495 	 * state.
496 	 */
497 	gicr_wait_for_pending_write(gicr_base);
498 
499 	rdist_ctx->gicr_ctlr = gicr_read_ctlr(gicr_base);
500 
501 	rdist_ctx->gicr_propbaser = gicr_read_propbaser(gicr_base);
502 	rdist_ctx->gicr_pendbaser = gicr_read_pendbaser(gicr_base);
503 
504 	rdist_ctx->gicr_igroupr0 = gicr_read_igroupr0(gicr_base);
505 	rdist_ctx->gicr_isenabler0 = gicr_read_isenabler0(gicr_base);
506 	rdist_ctx->gicr_ispendr0 = gicr_read_ispendr0(gicr_base);
507 	rdist_ctx->gicr_isactiver0 = gicr_read_isactiver0(gicr_base);
508 	rdist_ctx->gicr_icfgr0 = gicr_read_icfgr0(gicr_base);
509 	rdist_ctx->gicr_icfgr1 = gicr_read_icfgr1(gicr_base);
510 	rdist_ctx->gicr_igrpmodr0 = gicr_read_igrpmodr0(gicr_base);
511 	rdist_ctx->gicr_nsacr = gicr_read_nsacr(gicr_base);
512 	for (int_id = MIN_SGI_ID; int_id < TOTAL_PCPU_INTR_NUM;
513 			int_id += (1U << IPRIORITYR_SHIFT)) {
514 		rdist_ctx->gicr_ipriorityr[(int_id - MIN_SGI_ID) >> IPRIORITYR_SHIFT] =
515 				gicr_read_ipriorityr(gicr_base, int_id);
516 	}
517 
518 
519 	/*
520 	 * Call the pre-save hook that implements the IMP DEF sequence that may
521 	 * be required on some GIC implementations. As this may need to access
522 	 * the Redistributor registers, we pass it proc_num.
523 	 */
524 	gicv3_distif_pre_save(proc_num);
525 }
526 
527 /*****************************************************************************
528  * Function to restore the GIC Redistributor register context. We disable
529  * LPI and per-cpu interrupts before we start restore of the Redistributor.
530  * This function must be invoked after Distributor restore but prior to
531  * CPU interface enable. The pending and active interrupts are restored
532  * after the interrupts are fully configured and enabled.
533  *****************************************************************************/
534 void gicv3_rdistif_init_restore(unsigned int proc_num,
535 				const gicv3_redist_ctx_t * const rdist_ctx)
536 {
537 	uintptr_t gicr_base;
538 	unsigned int int_id;
539 
540 	assert(gicv3_driver_data != NULL);
541 	assert(proc_num < gicv3_driver_data->rdistif_num);
542 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
543 	assert(IS_IN_EL3());
544 	assert(rdist_ctx != NULL);
545 
546 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
547 
548 	/* Power on redistributor */
549 	gicv3_rdistif_on(proc_num);
550 
551 	/*
552 	 * Call the post-restore hook that implements the IMP DEF sequence that
553 	 * may be required on some GIC implementations. As this may need to
554 	 * access the Redistributor registers, we pass it proc_num.
555 	 */
556 	gicv3_distif_post_restore(proc_num);
557 
558 	/*
559 	 * Disable all SGIs (imp. def.)/PPIs before configuring them. This is a
560 	 * more scalable approach as it avoids clearing the enable bits in the
561 	 * GICD_CTLR
562 	 */
563 	gicr_write_icenabler0(gicr_base, ~0U);
564 	/* Wait for pending writes to GICR_ICENABLER */
565 	gicr_wait_for_pending_write(gicr_base);
566 
567 	/*
568 	 * Disable the LPIs to avoid unpredictable behavior when writing to
569 	 * GICR_PROPBASER and GICR_PENDBASER.
570 	 */
571 	gicr_write_ctlr(gicr_base,
572 			rdist_ctx->gicr_ctlr & ~(GICR_CTLR_EN_LPIS_BIT));
573 
574 	/* Restore registers' content */
575 	gicr_write_propbaser(gicr_base, rdist_ctx->gicr_propbaser);
576 	gicr_write_pendbaser(gicr_base, rdist_ctx->gicr_pendbaser);
577 
578 	gicr_write_igroupr0(gicr_base, rdist_ctx->gicr_igroupr0);
579 
580 	for (int_id = MIN_SGI_ID; int_id < TOTAL_PCPU_INTR_NUM;
581 			int_id += (1U << IPRIORITYR_SHIFT)) {
582 		gicr_write_ipriorityr(gicr_base, int_id,
583 		rdist_ctx->gicr_ipriorityr[
584 				(int_id - MIN_SGI_ID) >> IPRIORITYR_SHIFT]);
585 	}
586 
587 	gicr_write_icfgr0(gicr_base, rdist_ctx->gicr_icfgr0);
588 	gicr_write_icfgr1(gicr_base, rdist_ctx->gicr_icfgr1);
589 	gicr_write_igrpmodr0(gicr_base, rdist_ctx->gicr_igrpmodr0);
590 	gicr_write_nsacr(gicr_base, rdist_ctx->gicr_nsacr);
591 
592 	/* Restore after group and priorities are set */
593 	gicr_write_ispendr0(gicr_base, rdist_ctx->gicr_ispendr0);
594 	gicr_write_isactiver0(gicr_base, rdist_ctx->gicr_isactiver0);
595 
596 	/*
597 	 * Wait for all writes to the Distributor to complete before enabling
598 	 * the SGI and PPIs.
599 	 */
600 	gicr_wait_for_upstream_pending_write(gicr_base);
601 	gicr_write_isenabler0(gicr_base, rdist_ctx->gicr_isenabler0);
602 
603 	/*
604 	 * Restore GICR_CTLR.Enable_LPIs bit and wait for pending writes in case
605 	 * the first write to GICR_CTLR was still in flight (this write only
606 	 * restores GICR_CTLR.Enable_LPIs and no waiting is required for this
607 	 * bit).
608 	 */
609 	gicr_write_ctlr(gicr_base, rdist_ctx->gicr_ctlr);
610 	gicr_wait_for_pending_write(gicr_base);
611 }
612 
613 /*****************************************************************************
614  * Function to save the GIC Distributor register context. This function
615  * must be invoked after CPU interface disable and Redistributor save.
616  *****************************************************************************/
617 void gicv3_distif_save(gicv3_dist_ctx_t * const dist_ctx)
618 {
619 	unsigned int num_ints;
620 
621 	assert(gicv3_driver_data != NULL);
622 	assert(gicv3_driver_data->gicd_base != 0U);
623 	assert(IS_IN_EL3());
624 	assert(dist_ctx != NULL);
625 
626 	uintptr_t gicd_base = gicv3_driver_data->gicd_base;
627 
628 	num_ints = gicd_read_typer(gicd_base);
629 	num_ints &= TYPER_IT_LINES_NO_MASK;
630 	num_ints = (num_ints + 1U) << 5;
631 
632 	assert(num_ints <= (MAX_SPI_ID + 1U));
633 
634 	/* Wait for pending write to complete */
635 	gicd_wait_for_pending_write(gicd_base);
636 
637 	/* Save the GICD_CTLR */
638 	dist_ctx->gicd_ctlr = gicd_read_ctlr(gicd_base);
639 
640 	/* Save GICD_IGROUPR for INTIDs 32 - 1020 */
641 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUPR);
642 
643 	/* Save GICD_ISENABLER for INT_IDs 32 - 1020 */
644 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLER);
645 
646 	/* Save GICD_ISPENDR for INTIDs 32 - 1020 */
647 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPENDR);
648 
649 	/* Save GICD_ISACTIVER for INTIDs 32 - 1020 */
650 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVER);
651 
652 	/* Save GICD_IPRIORITYR for INTIDs 32 - 1020 */
653 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITYR);
654 
655 	/* Save GICD_ICFGR for INTIDs 32 - 1020 */
656 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFGR);
657 
658 	/* Save GICD_IGRPMODR for INTIDs 32 - 1020 */
659 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMODR);
660 
661 	/* Save GICD_NSACR for INTIDs 32 - 1020 */
662 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSACR);
663 
664 	/* Save GICD_IROUTER for INTIDs 32 - 1024 */
665 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTER);
666 
667 	/*
668 	 * GICD_ITARGETSR<n> and GICD_SPENDSGIR<n> are RAZ/WI when
669 	 * GICD_CTLR.ARE_(S|NS) bits are set which is the case for our GICv3
670 	 * driver.
671 	 */
672 }
673 
674 /*****************************************************************************
675  * Function to restore the GIC Distributor register context. We disable G0, G1S
676  * and G1NS interrupt groups before we start restore of the Distributor. This
677  * function must be invoked prior to Redistributor restore and CPU interface
678  * enable. The pending and active interrupts are restored after the interrupts
679  * are fully configured and enabled.
680  *****************************************************************************/
681 void gicv3_distif_init_restore(const gicv3_dist_ctx_t * const dist_ctx)
682 {
683 	unsigned int num_ints = 0U;
684 
685 	assert(gicv3_driver_data != NULL);
686 	assert(gicv3_driver_data->gicd_base != 0U);
687 	assert(IS_IN_EL3());
688 	assert(dist_ctx != NULL);
689 
690 	uintptr_t gicd_base = gicv3_driver_data->gicd_base;
691 
692 	/*
693 	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
694 	 * the ARE_S bit. The Distributor might generate a system error
695 	 * otherwise.
696 	 */
697 	gicd_clr_ctlr(gicd_base,
698 		      CTLR_ENABLE_G0_BIT |
699 		      CTLR_ENABLE_G1S_BIT |
700 		      CTLR_ENABLE_G1NS_BIT,
701 		      RWP_TRUE);
702 
703 	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
704 	gicd_set_ctlr(gicd_base, CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
705 
706 	num_ints = gicd_read_typer(gicd_base);
707 	num_ints &= TYPER_IT_LINES_NO_MASK;
708 	num_ints = (num_ints + 1U) << 5;
709 
710 	assert(num_ints <= (MAX_SPI_ID + 1U));
711 
712 	/* Restore GICD_IGROUPR for INTIDs 32 - 1020 */
713 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUPR);
714 
715 	/* Restore GICD_IPRIORITYR for INTIDs 32 - 1020 */
716 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITYR);
717 
718 	/* Restore GICD_ICFGR for INTIDs 32 - 1020 */
719 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFGR);
720 
721 	/* Restore GICD_IGRPMODR for INTIDs 32 - 1020 */
722 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMODR);
723 
724 	/* Restore GICD_NSACR for INTIDs 32 - 1020 */
725 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSACR);
726 
727 	/* Restore GICD_IROUTER for INTIDs 32 - 1020 */
728 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTER);
729 
730 	/*
731 	 * Restore ISENABLER, ISPENDR and ISACTIVER after the interrupts are
732 	 * configured.
733 	 */
734 
735 	/* Restore GICD_ISENABLER for INT_IDs 32 - 1020 */
736 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLER);
737 
738 	/* Restore GICD_ISPENDR for INTIDs 32 - 1020 */
739 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPENDR);
740 
741 	/* Restore GICD_ISACTIVER for INTIDs 32 - 1020 */
742 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVER);
743 
744 	/* Restore the GICD_CTLR */
745 	gicd_write_ctlr(gicd_base, dist_ctx->gicd_ctlr);
746 	gicd_wait_for_pending_write(gicd_base);
747 
748 }
749 
750 /*******************************************************************************
751  * This function gets the priority of the interrupt the processor is currently
752  * servicing.
753  ******************************************************************************/
754 unsigned int gicv3_get_running_priority(void)
755 {
756 	return (unsigned int)read_icc_rpr_el1();
757 }
758 
759 /*******************************************************************************
760  * This function checks if the interrupt identified by id is active (whether the
761  * state is either active, or active and pending). The proc_num is used if the
762  * interrupt is SGI or PPI and programs the corresponding Redistributor
763  * interface.
764  ******************************************************************************/
765 unsigned int gicv3_get_interrupt_active(unsigned int id, unsigned int proc_num)
766 {
767 	unsigned int value;
768 
769 	assert(gicv3_driver_data != NULL);
770 	assert(gicv3_driver_data->gicd_base != 0U);
771 	assert(proc_num < gicv3_driver_data->rdistif_num);
772 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
773 	assert(id <= MAX_SPI_ID);
774 
775 	if (id < MIN_SPI_ID) {
776 		/* For SGIs and PPIs */
777 		value = gicr_get_isactiver0(
778 				gicv3_driver_data->rdistif_base_addrs[proc_num], id);
779 	} else {
780 		value = gicd_get_isactiver(gicv3_driver_data->gicd_base, id);
781 	}
782 
783 	return value;
784 }
785 
786 /*******************************************************************************
787  * This function enables the interrupt identified by id. The proc_num
788  * is used if the interrupt is SGI or PPI, and programs the corresponding
789  * Redistributor interface.
790  ******************************************************************************/
791 void gicv3_enable_interrupt(unsigned int id, unsigned int proc_num)
792 {
793 	assert(gicv3_driver_data != NULL);
794 	assert(gicv3_driver_data->gicd_base != 0U);
795 	assert(proc_num < gicv3_driver_data->rdistif_num);
796 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
797 	assert(id <= MAX_SPI_ID);
798 
799 	/*
800 	 * Ensure that any shared variable updates depending on out of band
801 	 * interrupt trigger are observed before enabling interrupt.
802 	 */
803 	dsbishst();
804 	if (id < MIN_SPI_ID) {
805 		/* For SGIs and PPIs */
806 		gicr_set_isenabler0(
807 				gicv3_driver_data->rdistif_base_addrs[proc_num],
808 				id);
809 	} else {
810 		gicd_set_isenabler(gicv3_driver_data->gicd_base, id);
811 	}
812 }
813 
814 /*******************************************************************************
815  * This function disables the interrupt identified by id. The proc_num
816  * is used if the interrupt is SGI or PPI, and programs the corresponding
817  * Redistributor interface.
818  ******************************************************************************/
819 void gicv3_disable_interrupt(unsigned int id, unsigned int proc_num)
820 {
821 	assert(gicv3_driver_data != NULL);
822 	assert(gicv3_driver_data->gicd_base != 0U);
823 	assert(proc_num < gicv3_driver_data->rdistif_num);
824 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
825 	assert(id <= MAX_SPI_ID);
826 
827 	/*
828 	 * Disable interrupt, and ensure that any shared variable updates
829 	 * depending on out of band interrupt trigger are observed afterwards.
830 	 */
831 	if (id < MIN_SPI_ID) {
832 		/* For SGIs and PPIs */
833 		gicr_set_icenabler0(
834 				gicv3_driver_data->rdistif_base_addrs[proc_num],
835 				id);
836 
837 		/* Write to clear enable requires waiting for pending writes */
838 		gicr_wait_for_pending_write(
839 				gicv3_driver_data->rdistif_base_addrs[proc_num]);
840 	} else {
841 		gicd_set_icenabler(gicv3_driver_data->gicd_base, id);
842 
843 		/* Write to clear enable requires waiting for pending writes */
844 		gicd_wait_for_pending_write(gicv3_driver_data->gicd_base);
845 	}
846 
847 	dsbishst();
848 }
849 
850 /*******************************************************************************
851  * This function sets the interrupt priority as supplied for the given interrupt
852  * id.
853  ******************************************************************************/
854 void gicv3_set_interrupt_priority(unsigned int id, unsigned int proc_num,
855 		unsigned int priority)
856 {
857 	uintptr_t gicr_base;
858 
859 	assert(gicv3_driver_data != NULL);
860 	assert(gicv3_driver_data->gicd_base != 0U);
861 	assert(proc_num < gicv3_driver_data->rdistif_num);
862 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
863 	assert(id <= MAX_SPI_ID);
864 
865 	if (id < MIN_SPI_ID) {
866 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
867 		gicr_set_ipriorityr(gicr_base, id, priority);
868 	} else {
869 		gicd_set_ipriorityr(gicv3_driver_data->gicd_base, id, priority);
870 	}
871 }
872 
873 /*******************************************************************************
874  * This function assigns group for the interrupt identified by id. The proc_num
875  * is used if the interrupt is SGI or PPI, and programs the corresponding
876  * Redistributor interface. The group can be any of GICV3_INTR_GROUP*
877  ******************************************************************************/
878 void gicv3_set_interrupt_type(unsigned int id, unsigned int proc_num,
879 		unsigned int type)
880 {
881 	bool igroup = false, grpmod = false;
882 	uintptr_t gicr_base;
883 
884 	assert(gicv3_driver_data != NULL);
885 	assert(gicv3_driver_data->gicd_base != 0U);
886 	assert(proc_num < gicv3_driver_data->rdistif_num);
887 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
888 
889 	switch (type) {
890 	case INTR_GROUP1S:
891 		igroup = false;
892 		grpmod = true;
893 		break;
894 	case INTR_GROUP0:
895 		igroup = false;
896 		grpmod = false;
897 		break;
898 	case INTR_GROUP1NS:
899 		igroup = true;
900 		grpmod = false;
901 		break;
902 	default:
903 		assert(false);
904 		break;
905 	}
906 
907 	if (id < MIN_SPI_ID) {
908 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
909 		if (igroup)
910 			gicr_set_igroupr0(gicr_base, id);
911 		else
912 			gicr_clr_igroupr0(gicr_base, id);
913 
914 		if (grpmod)
915 			gicr_set_igrpmodr0(gicr_base, id);
916 		else
917 			gicr_clr_igrpmodr0(gicr_base, id);
918 	} else {
919 		/* Serialize read-modify-write to Distributor registers */
920 		spin_lock(&gic_lock);
921 		if (igroup)
922 			gicd_set_igroupr(gicv3_driver_data->gicd_base, id);
923 		else
924 			gicd_clr_igroupr(gicv3_driver_data->gicd_base, id);
925 
926 		if (grpmod)
927 			gicd_set_igrpmodr(gicv3_driver_data->gicd_base, id);
928 		else
929 			gicd_clr_igrpmodr(gicv3_driver_data->gicd_base, id);
930 		spin_unlock(&gic_lock);
931 	}
932 }
933 
934 /*******************************************************************************
935  * This function raises the specified Secure Group 0 SGI.
936  *
937  * The target parameter must be a valid MPIDR in the system.
938  ******************************************************************************/
939 void gicv3_raise_secure_g0_sgi(unsigned int sgi_num, u_register_t target)
940 {
941 	unsigned int tgt, aff3, aff2, aff1, aff0;
942 	uint64_t sgi_val;
943 
944 	/* Verify interrupt number is in the SGI range */
945 	assert((sgi_num >= MIN_SGI_ID) && (sgi_num < MIN_PPI_ID));
946 
947 	/* Extract affinity fields from target */
948 	aff0 = MPIDR_AFFLVL0_VAL(target);
949 	aff1 = MPIDR_AFFLVL1_VAL(target);
950 	aff2 = MPIDR_AFFLVL2_VAL(target);
951 	aff3 = MPIDR_AFFLVL3_VAL(target);
952 
953 	/*
954 	 * Make target list from affinity 0, and ensure GICv3 SGI can target
955 	 * this PE.
956 	 */
957 	assert(aff0 < GICV3_MAX_SGI_TARGETS);
958 	tgt = BIT_32(aff0);
959 
960 	/* Raise SGI to PE specified by its affinity */
961 	sgi_val = GICV3_SGIR_VALUE(aff3, aff2, aff1, sgi_num, SGIR_IRM_TO_AFF,
962 			tgt);
963 
964 	/*
965 	 * Ensure that any shared variable updates depending on out of band
966 	 * interrupt trigger are observed before raising SGI.
967 	 */
968 	dsbishst();
969 	write_icc_sgi0r_el1(sgi_val);
970 	isb();
971 }
972 
973 /*******************************************************************************
974  * This function sets the interrupt routing for the given SPI interrupt id.
975  * The interrupt routing is specified in routing mode and mpidr.
976  *
977  * The routing mode can be either of:
978  *  - GICV3_IRM_ANY
979  *  - GICV3_IRM_PE
980  *
981  * The mpidr is the affinity of the PE to which the interrupt will be routed,
982  * and is ignored for routing mode GICV3_IRM_ANY.
983  ******************************************************************************/
984 void gicv3_set_spi_routing(unsigned int id, unsigned int irm, u_register_t mpidr)
985 {
986 	unsigned long long aff;
987 	uint64_t router;
988 
989 	assert(gicv3_driver_data != NULL);
990 	assert(gicv3_driver_data->gicd_base != 0U);
991 
992 	assert((irm == GICV3_IRM_ANY) || (irm == GICV3_IRM_PE));
993 	assert((id >= MIN_SPI_ID) && (id <= MAX_SPI_ID));
994 
995 	aff = gicd_irouter_val_from_mpidr(mpidr, irm);
996 	gicd_write_irouter(gicv3_driver_data->gicd_base, id, aff);
997 
998 	/*
999 	 * In implementations that do not require 1 of N distribution of SPIs,
1000 	 * IRM might be RAZ/WI. Read back and verify IRM bit.
1001 	 */
1002 	if (irm == GICV3_IRM_ANY) {
1003 		router = gicd_read_irouter(gicv3_driver_data->gicd_base, id);
1004 		if (((router >> IROUTER_IRM_SHIFT) & IROUTER_IRM_MASK) == 0U) {
1005 			ERROR("GICv3 implementation doesn't support routing ANY\n");
1006 			panic();
1007 		}
1008 	}
1009 }
1010 
1011 /*******************************************************************************
1012  * This function clears the pending status of an interrupt identified by id.
1013  * The proc_num is used if the interrupt is SGI or PPI, and programs the
1014  * corresponding Redistributor interface.
1015  ******************************************************************************/
1016 void gicv3_clear_interrupt_pending(unsigned int id, unsigned int proc_num)
1017 {
1018 	assert(gicv3_driver_data != NULL);
1019 	assert(gicv3_driver_data->gicd_base != 0U);
1020 	assert(proc_num < gicv3_driver_data->rdistif_num);
1021 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1022 
1023 	/*
1024 	 * Clear pending interrupt, and ensure that any shared variable updates
1025 	 * depending on out of band interrupt trigger are observed afterwards.
1026 	 */
1027 	if (id < MIN_SPI_ID) {
1028 		/* For SGIs and PPIs */
1029 		gicr_set_icpendr0(gicv3_driver_data->rdistif_base_addrs[proc_num],
1030 				id);
1031 	} else {
1032 		gicd_set_icpendr(gicv3_driver_data->gicd_base, id);
1033 	}
1034 	dsbishst();
1035 }
1036 
1037 /*******************************************************************************
1038  * This function sets the pending status of an interrupt identified by id.
1039  * The proc_num is used if the interrupt is SGI or PPI and programs the
1040  * corresponding Redistributor interface.
1041  ******************************************************************************/
1042 void gicv3_set_interrupt_pending(unsigned int id, unsigned int proc_num)
1043 {
1044 	assert(gicv3_driver_data != NULL);
1045 	assert(gicv3_driver_data->gicd_base != 0U);
1046 	assert(proc_num < gicv3_driver_data->rdistif_num);
1047 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1048 
1049 	/*
1050 	 * Ensure that any shared variable updates depending on out of band
1051 	 * interrupt trigger are observed before setting interrupt pending.
1052 	 */
1053 	dsbishst();
1054 	if (id < MIN_SPI_ID) {
1055 		/* For SGIs and PPIs */
1056 		gicr_set_ispendr0(gicv3_driver_data->rdistif_base_addrs[proc_num],
1057 				id);
1058 	} else {
1059 		gicd_set_ispendr(gicv3_driver_data->gicd_base, id);
1060 	}
1061 }
1062 
1063 /*******************************************************************************
1064  * This function sets the PMR register with the supplied value. Returns the
1065  * original PMR.
1066  ******************************************************************************/
1067 unsigned int gicv3_set_pmr(unsigned int mask)
1068 {
1069 	unsigned int old_mask;
1070 
1071 	old_mask = (uint32_t) read_icc_pmr_el1();
1072 
1073 	/*
1074 	 * Order memory updates w.r.t. PMR write, and ensure they're visible
1075 	 * before potential out of band interrupt trigger because of PMR update.
1076 	 * PMR system register writes are self-synchronizing, so no ISB required
1077 	 * thereafter.
1078 	 */
1079 	dsbishst();
1080 	write_icc_pmr_el1(mask);
1081 
1082 	return old_mask;
1083 }
1084