xref: /rk3399_ARM-atf/drivers/arm/gic/v3/gicv3_main.c (revision cf9346cb83804feb083b56a668eb0a462983e038)
1 /*
2  * Copyright (c) 2015-2022, Arm Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 
9 #include <arch.h>
10 #include <arch_helpers.h>
11 #include <common/debug.h>
12 #include <common/interrupt_props.h>
13 #include <drivers/arm/gicv3.h>
14 #include <lib/spinlock.h>
15 #include <plat/common/platform.h>
16 
17 #include "gicv3_private.h"
18 
19 const gicv3_driver_data_t *gicv3_driver_data;
20 
21 /*
22  * Spinlock to guard registers needing read-modify-write. APIs protected by this
23  * spinlock are used either at boot time (when only a single CPU is active), or
24  * when the system is fully coherent.
25  */
26 static spinlock_t gic_lock;
27 
28 /*
29  * Redistributor power operations are weakly bound so that they can be
30  * overridden
31  */
32 #pragma weak gicv3_rdistif_off
33 #pragma weak gicv3_rdistif_on
34 
35 /* Check interrupt ID for SGI/(E)PPI and (E)SPIs */
36 static bool is_sgi_ppi(unsigned int id);
37 
38 /*
39  * Helper macros to save and restore GICR and GICD registers
40  * corresponding to their numbers to and from the context
41  */
42 #define RESTORE_GICR_REG(base, ctx, name, i)	\
43 	gicr_write_##name((base), (i), (ctx)->gicr_##name[(i)])
44 
45 #define SAVE_GICR_REG(base, ctx, name, i)	\
46 	(ctx)->gicr_##name[(i)] = gicr_read_##name((base), (i))
47 
48 /* Helper macros to save and restore GICD registers to and from the context */
49 #define RESTORE_GICD_REGS(base, ctx, intr_num, reg, REG)		\
50 	do {								\
51 		for (unsigned int int_id = MIN_SPI_ID; int_id < (intr_num);\
52 				int_id += (1U << REG##R_SHIFT)) {	\
53 			gicd_write_##reg((base), int_id,		\
54 				(ctx)->gicd_##reg[(int_id - MIN_SPI_ID) >> \
55 							REG##R_SHIFT]);	\
56 		}							\
57 	} while (false)
58 
59 #define SAVE_GICD_REGS(base, ctx, intr_num, reg, REG)			\
60 	do {								\
61 		for (unsigned int int_id = MIN_SPI_ID; int_id < (intr_num);\
62 				int_id += (1U << REG##R_SHIFT)) {	\
63 			(ctx)->gicd_##reg[(int_id - MIN_SPI_ID) >>	\
64 			REG##R_SHIFT] = gicd_read_##reg((base), int_id); \
65 		}							\
66 	} while (false)
67 
68 #if GIC_EXT_INTID
69 #define RESTORE_GICD_EREGS(base, ctx, intr_num, reg, REG)		\
70 	do {								\
71 		for (unsigned int int_id = MIN_ESPI_ID; int_id < (intr_num);\
72 				int_id += (1U << REG##R_SHIFT)) {	\
73 			gicd_write_##reg((base), int_id,		\
74 			(ctx)->gicd_##reg[(int_id - (MIN_ESPI_ID -	\
75 			round_up(TOTAL_SPI_INTR_NUM, 1U << REG##R_SHIFT)))\
76 						>> REG##R_SHIFT]);	\
77 		}							\
78 	} while (false)
79 
80 #define SAVE_GICD_EREGS(base, ctx, intr_num, reg, REG)			\
81 	do {								\
82 		for (unsigned int int_id = MIN_ESPI_ID; int_id < (intr_num);\
83 				int_id += (1U << REG##R_SHIFT)) {	\
84 			(ctx)->gicd_##reg[(int_id - (MIN_ESPI_ID -	\
85 			round_up(TOTAL_SPI_INTR_NUM, 1U << REG##R_SHIFT)))\
86 			>> REG##R_SHIFT] = gicd_read_##reg((base), int_id);\
87 		}							\
88 	} while (false)
89 #else
90 #define SAVE_GICD_EREGS(base, ctx, intr_num, reg, REG)
91 #define RESTORE_GICD_EREGS(base, ctx, intr_num, reg, REG)
92 #endif /* GIC_EXT_INTID */
93 
94 /*******************************************************************************
95  * This function initialises the ARM GICv3 driver in EL3 with provided platform
96  * inputs.
97  ******************************************************************************/
98 void __init gicv3_driver_init(const gicv3_driver_data_t *plat_driver_data)
99 {
100 	unsigned int gic_version;
101 	unsigned int gicv2_compat;
102 
103 	assert(plat_driver_data != NULL);
104 	assert(plat_driver_data->gicd_base != 0U);
105 	assert(plat_driver_data->rdistif_num != 0U);
106 	assert(plat_driver_data->rdistif_base_addrs != NULL);
107 
108 	assert(IS_IN_EL3());
109 
110 	assert((plat_driver_data->interrupt_props_num != 0U) ?
111 	       (plat_driver_data->interrupt_props != NULL) : 1);
112 
113 	/* Check for system register support */
114 #ifndef __aarch64__
115 	assert((read_id_pfr1() &
116 			(ID_PFR1_GIC_MASK << ID_PFR1_GIC_SHIFT)) != 0U);
117 #else
118 	assert((read_id_aa64pfr0_el1() &
119 			(ID_AA64PFR0_GIC_MASK << ID_AA64PFR0_GIC_SHIFT)) != 0U);
120 #endif /* !__aarch64__ */
121 
122 	gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
123 	gic_version >>= PIDR2_ARCH_REV_SHIFT;
124 	gic_version &= PIDR2_ARCH_REV_MASK;
125 
126 	/* Check GIC version */
127 #if !GIC_ENABLE_V4_EXTN
128 	assert(gic_version == ARCH_REV_GICV3);
129 #endif
130 	/*
131 	 * Find out whether the GIC supports the GICv2 compatibility mode.
132 	 * The ARE_S bit resets to 0 if supported
133 	 */
134 	gicv2_compat = gicd_read_ctlr(plat_driver_data->gicd_base);
135 	gicv2_compat >>= CTLR_ARE_S_SHIFT;
136 	gicv2_compat = gicv2_compat & CTLR_ARE_S_MASK;
137 
138 	if (plat_driver_data->gicr_base != 0U) {
139 		/*
140 		 * Find the base address of each implemented Redistributor interface.
141 		 * The number of interfaces should be equal to the number of CPUs in the
142 		 * system. The memory for saving these addresses has to be allocated by
143 		 * the platform port
144 		 */
145 		gicv3_rdistif_base_addrs_probe(plat_driver_data->rdistif_base_addrs,
146 						   plat_driver_data->rdistif_num,
147 						   plat_driver_data->gicr_base,
148 						   plat_driver_data->mpidr_to_core_pos);
149 #if !HW_ASSISTED_COHERENCY
150 		/*
151 		 * Flush the rdistif_base_addrs[] contents linked to the GICv3 driver.
152 		 */
153 		flush_dcache_range((uintptr_t)(plat_driver_data->rdistif_base_addrs),
154 			plat_driver_data->rdistif_num *
155 			sizeof(*(plat_driver_data->rdistif_base_addrs)));
156 #endif
157 	}
158 	gicv3_driver_data = plat_driver_data;
159 
160 	/*
161 	 * The GIC driver data is initialized by the primary CPU with caches
162 	 * enabled. When the secondary CPU boots up, it initializes the
163 	 * GICC/GICR interface with the caches disabled. Hence flush the
164 	 * driver data to ensure coherency. This is not required if the
165 	 * platform has HW_ASSISTED_COHERENCY enabled.
166 	 */
167 #if !HW_ASSISTED_COHERENCY
168 	flush_dcache_range((uintptr_t)&gicv3_driver_data,
169 		sizeof(gicv3_driver_data));
170 	flush_dcache_range((uintptr_t)gicv3_driver_data,
171 		sizeof(*gicv3_driver_data));
172 #endif
173 	gicv3_check_erratas_applies(plat_driver_data->gicd_base);
174 
175 	INFO("GICv%u with%s legacy support detected.\n", gic_version,
176 				(gicv2_compat == 0U) ? "" : "out");
177 	INFO("ARM GICv%u driver initialized in EL3\n", gic_version);
178 }
179 
180 /*******************************************************************************
181  * This function initialises the GIC distributor interface based upon the data
182  * provided by the platform while initialising the driver.
183  ******************************************************************************/
184 void __init gicv3_distif_init(void)
185 {
186 	unsigned int bitmap;
187 
188 	assert(gicv3_driver_data != NULL);
189 	assert(gicv3_driver_data->gicd_base != 0U);
190 
191 	assert(IS_IN_EL3());
192 
193 	/*
194 	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
195 	 * the ARE_S bit. The Distributor might generate a system error
196 	 * otherwise.
197 	 */
198 	gicd_clr_ctlr(gicv3_driver_data->gicd_base,
199 		      CTLR_ENABLE_G0_BIT |
200 		      CTLR_ENABLE_G1S_BIT |
201 		      CTLR_ENABLE_G1NS_BIT,
202 		      RWP_TRUE);
203 
204 	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
205 	gicd_set_ctlr(gicv3_driver_data->gicd_base,
206 			CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
207 
208 	/* Set the default attribute of all (E)SPIs */
209 	gicv3_spis_config_defaults(gicv3_driver_data->gicd_base);
210 
211 	bitmap = gicv3_secure_spis_config_props(
212 			gicv3_driver_data->gicd_base,
213 			gicv3_driver_data->interrupt_props,
214 			gicv3_driver_data->interrupt_props_num);
215 
216 	/* Enable the secure (E)SPIs now that they have been configured */
217 	gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE);
218 }
219 
220 /*******************************************************************************
221  * This function initialises the GIC Redistributor interface of the calling CPU
222  * (identified by the 'proc_num' parameter) based upon the data provided by the
223  * platform while initialising the driver.
224  ******************************************************************************/
225 void gicv3_rdistif_init(unsigned int proc_num)
226 {
227 	uintptr_t gicr_base;
228 	unsigned int bitmap;
229 	uint32_t ctlr;
230 
231 	assert(gicv3_driver_data != NULL);
232 	assert(proc_num < gicv3_driver_data->rdistif_num);
233 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
234 	assert(gicv3_driver_data->gicd_base != 0U);
235 
236 	ctlr = gicd_read_ctlr(gicv3_driver_data->gicd_base);
237 	assert((ctlr & CTLR_ARE_S_BIT) != 0U);
238 
239 	assert(IS_IN_EL3());
240 
241 	/* Power on redistributor */
242 	gicv3_rdistif_on(proc_num);
243 
244 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
245 	assert(gicr_base != 0U);
246 
247 	/* Set the default attribute of all SGIs and (E)PPIs */
248 	gicv3_ppi_sgi_config_defaults(gicr_base);
249 
250 	bitmap = gicv3_secure_ppi_sgi_config_props(gicr_base,
251 			gicv3_driver_data->interrupt_props,
252 			gicv3_driver_data->interrupt_props_num);
253 
254 	/* Enable interrupt groups as required, if not already */
255 	if ((ctlr & bitmap) != bitmap) {
256 		gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE);
257 	}
258 }
259 
260 /*******************************************************************************
261  * Functions to perform power operations on GIC Redistributor
262  ******************************************************************************/
263 void gicv3_rdistif_off(unsigned int proc_num)
264 {
265 }
266 
267 void gicv3_rdistif_on(unsigned int proc_num)
268 {
269 }
270 
271 /*******************************************************************************
272  * This function enables the GIC CPU interface of the calling CPU using only
273  * system register accesses.
274  ******************************************************************************/
275 void gicv3_cpuif_enable(unsigned int proc_num)
276 {
277 	uintptr_t gicr_base;
278 	u_register_t scr_el3;
279 	unsigned int icc_sre_el3;
280 
281 	assert(gicv3_driver_data != NULL);
282 	assert(proc_num < gicv3_driver_data->rdistif_num);
283 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
284 	assert(IS_IN_EL3());
285 
286 	/* Mark the connected core as awake */
287 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
288 	gicv3_rdistif_mark_core_awake(gicr_base);
289 
290 	/* Disable the legacy interrupt bypass */
291 	icc_sre_el3 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT;
292 
293 	/*
294 	 * Enable system register access for EL3 and allow lower exception
295 	 * levels to configure the same for themselves. If the legacy mode is
296 	 * not supported, the SRE bit is RAO/WI
297 	 */
298 	icc_sre_el3 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT);
299 	write_icc_sre_el3(read_icc_sre_el3() | icc_sre_el3);
300 
301 	scr_el3 = read_scr_el3();
302 
303 	/*
304 	 * Switch to NS state to write Non secure ICC_SRE_EL1 and
305 	 * ICC_SRE_EL2 registers.
306 	 */
307 	write_scr_el3(scr_el3 | SCR_NS_BIT);
308 	isb();
309 
310 	write_icc_sre_el2(read_icc_sre_el2() | icc_sre_el3);
311 	write_icc_sre_el1(ICC_SRE_SRE_BIT);
312 	isb();
313 
314 	/* Switch to secure state. */
315 	write_scr_el3(scr_el3 & (~SCR_NS_BIT));
316 	isb();
317 
318 	/* Write the secure ICC_SRE_EL1 register */
319 	write_icc_sre_el1(ICC_SRE_SRE_BIT);
320 	isb();
321 
322 	/* Program the idle priority in the PMR */
323 	write_icc_pmr_el1(GIC_PRI_MASK);
324 
325 	/* Enable Group0 interrupts */
326 	write_icc_igrpen0_el1(IGRPEN1_EL1_ENABLE_G0_BIT);
327 
328 	/* Enable Group1 Secure interrupts */
329 	write_icc_igrpen1_el3(read_icc_igrpen1_el3() |
330 				IGRPEN1_EL3_ENABLE_G1S_BIT);
331 	isb();
332 	/* Add DSB to ensure visibility of System register writes */
333 	dsb();
334 }
335 
336 /*******************************************************************************
337  * This function disables the GIC CPU interface of the calling CPU using
338  * only system register accesses.
339  ******************************************************************************/
340 void gicv3_cpuif_disable(unsigned int proc_num)
341 {
342 	uintptr_t gicr_base;
343 
344 	assert(gicv3_driver_data != NULL);
345 	assert(proc_num < gicv3_driver_data->rdistif_num);
346 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
347 
348 	assert(IS_IN_EL3());
349 
350 	/* Disable legacy interrupt bypass */
351 	write_icc_sre_el3(read_icc_sre_el3() |
352 			  (ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT));
353 
354 	/* Disable Group0 interrupts */
355 	write_icc_igrpen0_el1(read_icc_igrpen0_el1() &
356 			      ~IGRPEN1_EL1_ENABLE_G0_BIT);
357 
358 	/* Disable Group1 Secure and Non-Secure interrupts */
359 	write_icc_igrpen1_el3(read_icc_igrpen1_el3() &
360 			      ~(IGRPEN1_EL3_ENABLE_G1NS_BIT |
361 			      IGRPEN1_EL3_ENABLE_G1S_BIT));
362 
363 	/* Synchronise accesses to group enable registers */
364 	isb();
365 	/* Add DSB to ensure visibility of System register writes */
366 	dsb();
367 
368 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
369 	assert(gicr_base != 0UL);
370 
371 	/*
372 	 * dsb() already issued previously after clearing the CPU group
373 	 * enabled, apply below workaround to toggle the "DPG*"
374 	 * bits of GICR_CTLR register for unblocking event.
375 	 */
376 	gicv3_apply_errata_wa_2384374(gicr_base);
377 
378 	/* Mark the connected core as asleep */
379 	gicv3_rdistif_mark_core_asleep(gicr_base);
380 }
381 
382 /*******************************************************************************
383  * This function returns the id of the highest priority pending interrupt at
384  * the GIC cpu interface.
385  ******************************************************************************/
386 unsigned int gicv3_get_pending_interrupt_id(void)
387 {
388 	unsigned int id;
389 
390 	assert(IS_IN_EL3());
391 	id = (uint32_t)read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
392 
393 	/*
394 	 * If the ID is special identifier corresponding to G1S or G1NS
395 	 * interrupt, then read the highest pending group 1 interrupt.
396 	 */
397 	if ((id == PENDING_G1S_INTID) || (id == PENDING_G1NS_INTID)) {
398 		return (uint32_t)read_icc_hppir1_el1() & HPPIR1_EL1_INTID_MASK;
399 	}
400 
401 	return id;
402 }
403 
404 /*******************************************************************************
405  * This function returns the type of the highest priority pending interrupt at
406  * the GIC cpu interface. The return values can be one of the following :
407  *   PENDING_G1S_INTID  : The interrupt type is secure Group 1.
408  *   PENDING_G1NS_INTID : The interrupt type is non secure Group 1.
409  *   0 - 1019           : The interrupt type is secure Group 0.
410  *   GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
411  *                            sufficient priority to be signaled
412  ******************************************************************************/
413 unsigned int gicv3_get_pending_interrupt_type(void)
414 {
415 	assert(IS_IN_EL3());
416 	return (uint32_t)read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
417 }
418 
419 /*******************************************************************************
420  * This function returns the type of the interrupt id depending upon the group
421  * this interrupt has been configured under by the interrupt controller i.e.
422  * group0 or group1 Secure / Non Secure. The return value can be one of the
423  * following :
424  *    INTR_GROUP0  : The interrupt type is a Secure Group 0 interrupt
425  *    INTR_GROUP1S : The interrupt type is a Secure Group 1 secure interrupt
426  *    INTR_GROUP1NS: The interrupt type is a Secure Group 1 non secure
427  *                   interrupt.
428  ******************************************************************************/
429 unsigned int gicv3_get_interrupt_type(unsigned int id, unsigned int proc_num)
430 {
431 	unsigned int igroup, grpmodr;
432 	uintptr_t gicr_base;
433 
434 	assert(IS_IN_EL3());
435 	assert(gicv3_driver_data != NULL);
436 
437 	/* Ensure the parameters are valid */
438 	assert((id < PENDING_G1S_INTID) || (id >= MIN_LPI_ID));
439 	assert(proc_num < gicv3_driver_data->rdistif_num);
440 
441 	/* All LPI interrupts are Group 1 non secure */
442 	if (id >= MIN_LPI_ID) {
443 		return INTR_GROUP1NS;
444 	}
445 
446 	/* Check interrupt ID */
447 	if (is_sgi_ppi(id)) {
448 		/* SGIs: 0-15, PPIs: 16-31, EPPIs: 1056-1119 */
449 		assert(gicv3_driver_data->rdistif_base_addrs != NULL);
450 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
451 		igroup = gicr_get_igroupr(gicr_base, id);
452 		grpmodr = gicr_get_igrpmodr(gicr_base, id);
453 	} else {
454 		/* SPIs: 32-1019, ESPIs: 4096-5119 */
455 		assert(gicv3_driver_data->gicd_base != 0U);
456 		igroup = gicd_get_igroupr(gicv3_driver_data->gicd_base, id);
457 		grpmodr = gicd_get_igrpmodr(gicv3_driver_data->gicd_base, id);
458 	}
459 
460 	/*
461 	 * If the IGROUP bit is set, then it is a Group 1 Non secure
462 	 * interrupt
463 	 */
464 	if (igroup != 0U) {
465 		return INTR_GROUP1NS;
466 	}
467 
468 	/* If the GRPMOD bit is set, then it is a Group 1 Secure interrupt */
469 	if (grpmodr != 0U) {
470 		return INTR_GROUP1S;
471 	}
472 
473 	/* Else it is a Group 0 Secure interrupt */
474 	return INTR_GROUP0;
475 }
476 
477 /*****************************************************************************
478  * Function to save and disable the GIC ITS register context. The power
479  * management of GIC ITS is implementation-defined and this function doesn't
480  * save any memory structures required to support ITS. As the sequence to save
481  * this state is implementation defined, it should be executed in platform
482  * specific code. Calling this function alone and then powering down the GIC and
483  * ITS without implementing the aforementioned platform specific code will
484  * corrupt the ITS state.
485  *
486  * This function must be invoked after the GIC CPU interface is disabled.
487  *****************************************************************************/
488 void gicv3_its_save_disable(uintptr_t gits_base,
489 				gicv3_its_ctx_t * const its_ctx)
490 {
491 	unsigned int i;
492 
493 	assert(gicv3_driver_data != NULL);
494 	assert(IS_IN_EL3());
495 	assert(its_ctx != NULL);
496 	assert(gits_base != 0U);
497 
498 	its_ctx->gits_ctlr = gits_read_ctlr(gits_base);
499 
500 	/* Disable the ITS */
501 	gits_write_ctlr(gits_base, its_ctx->gits_ctlr & ~GITS_CTLR_ENABLED_BIT);
502 
503 	/* Wait for quiescent state */
504 	gits_wait_for_quiescent_bit(gits_base);
505 
506 	its_ctx->gits_cbaser = gits_read_cbaser(gits_base);
507 	its_ctx->gits_cwriter = gits_read_cwriter(gits_base);
508 
509 	for (i = 0U; i < ARRAY_SIZE(its_ctx->gits_baser); i++) {
510 		its_ctx->gits_baser[i] = gits_read_baser(gits_base, i);
511 	}
512 }
513 
514 /*****************************************************************************
515  * Function to restore the GIC ITS register context. The power
516  * management of GIC ITS is implementation defined and this function doesn't
517  * restore any memory structures required to support ITS. The assumption is
518  * that these structures are in memory and are retained during system suspend.
519  *
520  * This must be invoked before the GIC CPU interface is enabled.
521  *****************************************************************************/
522 void gicv3_its_restore(uintptr_t gits_base,
523 			const gicv3_its_ctx_t * const its_ctx)
524 {
525 	unsigned int i;
526 
527 	assert(gicv3_driver_data != NULL);
528 	assert(IS_IN_EL3());
529 	assert(its_ctx != NULL);
530 	assert(gits_base != 0U);
531 
532 	/* Assert that the GITS is disabled and quiescent */
533 	assert((gits_read_ctlr(gits_base) & GITS_CTLR_ENABLED_BIT) == 0U);
534 	assert((gits_read_ctlr(gits_base) & GITS_CTLR_QUIESCENT_BIT) != 0U);
535 
536 	gits_write_cbaser(gits_base, its_ctx->gits_cbaser);
537 	gits_write_cwriter(gits_base, its_ctx->gits_cwriter);
538 
539 	for (i = 0U; i < ARRAY_SIZE(its_ctx->gits_baser); i++) {
540 		gits_write_baser(gits_base, i, its_ctx->gits_baser[i]);
541 	}
542 
543 	/* Restore the ITS CTLR but leave the ITS disabled */
544 	gits_write_ctlr(gits_base, its_ctx->gits_ctlr & ~GITS_CTLR_ENABLED_BIT);
545 }
546 
547 /*****************************************************************************
548  * Function to save the GIC Redistributor register context. This function
549  * must be invoked after CPU interface disable and prior to Distributor save.
550  *****************************************************************************/
551 void gicv3_rdistif_save(unsigned int proc_num,
552 			gicv3_redist_ctx_t * const rdist_ctx)
553 {
554 	uintptr_t gicr_base;
555 	unsigned int i, ppi_regs_num, regs_num;
556 
557 	assert(gicv3_driver_data != NULL);
558 	assert(proc_num < gicv3_driver_data->rdistif_num);
559 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
560 	assert(IS_IN_EL3());
561 	assert(rdist_ctx != NULL);
562 
563 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
564 
565 #if GIC_EXT_INTID
566 	/* Calculate number of PPI registers */
567 	ppi_regs_num = (unsigned int)((gicr_read_typer(gicr_base) >>
568 			TYPER_PPI_NUM_SHIFT) & TYPER_PPI_NUM_MASK) + 1;
569 	/* All other values except PPInum [0-2] are reserved */
570 	if (ppi_regs_num > 3U) {
571 		ppi_regs_num = 1U;
572 	}
573 #else
574 	ppi_regs_num = 1U;
575 #endif
576 	/*
577 	 * Wait for any write to GICR_CTLR to complete before trying to save any
578 	 * state.
579 	 */
580 	gicr_wait_for_pending_write(gicr_base);
581 
582 	rdist_ctx->gicr_ctlr = gicr_read_ctlr(gicr_base);
583 
584 	rdist_ctx->gicr_propbaser = gicr_read_propbaser(gicr_base);
585 	rdist_ctx->gicr_pendbaser = gicr_read_pendbaser(gicr_base);
586 
587 	/* 32 interrupt IDs per register */
588 	for (i = 0U; i < ppi_regs_num; ++i) {
589 		SAVE_GICR_REG(gicr_base, rdist_ctx, igroupr, i);
590 		SAVE_GICR_REG(gicr_base, rdist_ctx, isenabler, i);
591 		SAVE_GICR_REG(gicr_base, rdist_ctx, ispendr, i);
592 		SAVE_GICR_REG(gicr_base, rdist_ctx, isactiver, i);
593 		SAVE_GICR_REG(gicr_base, rdist_ctx, igrpmodr, i);
594 	}
595 
596 	/* 16 interrupt IDs per GICR_ICFGR register */
597 	regs_num = ppi_regs_num << 1;
598 	for (i = 0U; i < regs_num; ++i) {
599 		SAVE_GICR_REG(gicr_base, rdist_ctx, icfgr, i);
600 	}
601 
602 	rdist_ctx->gicr_nsacr = gicr_read_nsacr(gicr_base);
603 
604 	/* 4 interrupt IDs per GICR_IPRIORITYR register */
605 	regs_num = ppi_regs_num << 3;
606 	for (i = 0U; i < regs_num; ++i) {
607 		rdist_ctx->gicr_ipriorityr[i] =
608 		gicr_ipriorityr_read(gicr_base, i);
609 	}
610 
611 	/*
612 	 * Call the pre-save hook that implements the IMP DEF sequence that may
613 	 * be required on some GIC implementations. As this may need to access
614 	 * the Redistributor registers, we pass it proc_num.
615 	 */
616 	gicv3_distif_pre_save(proc_num);
617 }
618 
619 /*****************************************************************************
620  * Function to restore the GIC Redistributor register context. We disable
621  * LPI and per-cpu interrupts before we start restore of the Redistributor.
622  * This function must be invoked after Distributor restore but prior to
623  * CPU interface enable. The pending and active interrupts are restored
624  * after the interrupts are fully configured and enabled.
625  *****************************************************************************/
626 void gicv3_rdistif_init_restore(unsigned int proc_num,
627 				const gicv3_redist_ctx_t * const rdist_ctx)
628 {
629 	uintptr_t gicr_base;
630 	unsigned int i, ppi_regs_num, regs_num;
631 
632 	assert(gicv3_driver_data != NULL);
633 	assert(proc_num < gicv3_driver_data->rdistif_num);
634 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
635 	assert(IS_IN_EL3());
636 	assert(rdist_ctx != NULL);
637 
638 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
639 
640 #if GIC_EXT_INTID
641 	/* Calculate number of PPI registers */
642 	ppi_regs_num = (unsigned int)((gicr_read_typer(gicr_base) >>
643 			TYPER_PPI_NUM_SHIFT) & TYPER_PPI_NUM_MASK) + 1;
644 	/* All other values except PPInum [0-2] are reserved */
645 	if (ppi_regs_num > 3U) {
646 		ppi_regs_num = 1U;
647 	}
648 #else
649 	ppi_regs_num = 1U;
650 #endif
651 	/* Power on redistributor */
652 	gicv3_rdistif_on(proc_num);
653 
654 	/*
655 	 * Call the post-restore hook that implements the IMP DEF sequence that
656 	 * may be required on some GIC implementations. As this may need to
657 	 * access the Redistributor registers, we pass it proc_num.
658 	 */
659 	gicv3_distif_post_restore(proc_num);
660 
661 	/*
662 	 * Disable all SGIs (imp. def.)/(E)PPIs before configuring them.
663 	 * This is a more scalable approach as it avoids clearing the enable
664 	 * bits in the GICD_CTLR.
665 	 */
666 	for (i = 0U; i < ppi_regs_num; ++i) {
667 		gicr_write_icenabler(gicr_base, i, ~0U);
668 	}
669 
670 	/* Wait for pending writes to GICR_ICENABLER */
671 	gicr_wait_for_pending_write(gicr_base);
672 
673 	/*
674 	 * Disable the LPIs to avoid unpredictable behavior when writing to
675 	 * GICR_PROPBASER and GICR_PENDBASER.
676 	 */
677 	gicr_write_ctlr(gicr_base,
678 			rdist_ctx->gicr_ctlr & ~(GICR_CTLR_EN_LPIS_BIT));
679 
680 	/* Restore registers' content */
681 	gicr_write_propbaser(gicr_base, rdist_ctx->gicr_propbaser);
682 	gicr_write_pendbaser(gicr_base, rdist_ctx->gicr_pendbaser);
683 
684 	/* 32 interrupt IDs per register */
685 	for (i = 0U; i < ppi_regs_num; ++i) {
686 		RESTORE_GICR_REG(gicr_base, rdist_ctx, igroupr, i);
687 		RESTORE_GICR_REG(gicr_base, rdist_ctx, igrpmodr, i);
688 	}
689 
690 	/* 4 interrupt IDs per GICR_IPRIORITYR register */
691 	regs_num = ppi_regs_num << 3;
692 	for (i = 0U; i < regs_num; ++i) {
693 		gicr_ipriorityr_write(gicr_base, i,
694 					rdist_ctx->gicr_ipriorityr[i]);
695 	}
696 
697 	/* 16 interrupt IDs per GICR_ICFGR register */
698 	regs_num = ppi_regs_num << 1;
699 	for (i = 0U; i < regs_num; ++i) {
700 		RESTORE_GICR_REG(gicr_base, rdist_ctx, icfgr, i);
701 	}
702 
703 	gicr_write_nsacr(gicr_base, rdist_ctx->gicr_nsacr);
704 
705 	/* Restore after group and priorities are set.
706 	 * 32 interrupt IDs per register
707 	 */
708 	for (i = 0U; i < ppi_regs_num; ++i) {
709 		RESTORE_GICR_REG(gicr_base, rdist_ctx, ispendr, i);
710 		RESTORE_GICR_REG(gicr_base, rdist_ctx, isactiver, i);
711 	}
712 
713 	/*
714 	 * Wait for all writes to the Distributor to complete before enabling
715 	 * the SGI and (E)PPIs.
716 	 */
717 	gicr_wait_for_upstream_pending_write(gicr_base);
718 
719 	/* 32 interrupt IDs per GICR_ISENABLER register */
720 	for (i = 0U; i < ppi_regs_num; ++i) {
721 		RESTORE_GICR_REG(gicr_base, rdist_ctx, isenabler, i);
722 	}
723 
724 	/*
725 	 * Restore GICR_CTLR.Enable_LPIs bit and wait for pending writes in case
726 	 * the first write to GICR_CTLR was still in flight (this write only
727 	 * restores GICR_CTLR.Enable_LPIs and no waiting is required for this
728 	 * bit).
729 	 */
730 	gicr_write_ctlr(gicr_base, rdist_ctx->gicr_ctlr);
731 	gicr_wait_for_pending_write(gicr_base);
732 }
733 
734 /*****************************************************************************
735  * Function to save the GIC Distributor register context. This function
736  * must be invoked after CPU interface disable and Redistributor save.
737  *****************************************************************************/
738 void gicv3_distif_save(gicv3_dist_ctx_t * const dist_ctx)
739 {
740 	assert(gicv3_driver_data != NULL);
741 	assert(gicv3_driver_data->gicd_base != 0U);
742 	assert(IS_IN_EL3());
743 	assert(dist_ctx != NULL);
744 
745 	uintptr_t gicd_base = gicv3_driver_data->gicd_base;
746 	unsigned int num_ints = gicv3_get_spi_limit(gicd_base);
747 #if GIC_EXT_INTID
748 	unsigned int num_eints = gicv3_get_espi_limit(gicd_base);
749 #endif
750 
751 	/* Wait for pending write to complete */
752 	gicd_wait_for_pending_write(gicd_base);
753 
754 	/* Save the GICD_CTLR */
755 	dist_ctx->gicd_ctlr = gicd_read_ctlr(gicd_base);
756 
757 	/* Save GICD_IGROUPR for INTIDs 32 - 1019 */
758 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUP);
759 
760 	/* Save GICD_IGROUPRE for INTIDs 4096 - 5119 */
761 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igroupr, IGROUP);
762 
763 	/* Save GICD_ISENABLER for INT_IDs 32 - 1019 */
764 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLE);
765 
766 	/* Save GICD_ISENABLERE for INT_IDs 4096 - 5119 */
767 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isenabler, ISENABLE);
768 
769 	/* Save GICD_ISPENDR for INTIDs 32 - 1019 */
770 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPEND);
771 
772 	/* Save GICD_ISPENDRE for INTIDs 4096 - 5119 */
773 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints,	ispendr, ISPEND);
774 
775 	/* Save GICD_ISACTIVER for INTIDs 32 - 1019 */
776 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVE);
777 
778 	/* Save GICD_ISACTIVERE for INTIDs 4096 - 5119 */
779 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isactiver, ISACTIVE);
780 
781 	/* Save GICD_IPRIORITYR for INTIDs 32 - 1019 */
782 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITY);
783 
784 	/* Save GICD_IPRIORITYRE for INTIDs 4096 - 5119 */
785 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ipriorityr, IPRIORITY);
786 
787 	/* Save GICD_ICFGR for INTIDs 32 - 1019 */
788 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFG);
789 
790 	/* Save GICD_ICFGRE for INTIDs 4096 - 5119 */
791 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, icfgr, ICFG);
792 
793 	/* Save GICD_IGRPMODR for INTIDs 32 - 1019 */
794 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMOD);
795 
796 	/* Save GICD_IGRPMODRE for INTIDs 4096 - 5119 */
797 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igrpmodr, IGRPMOD);
798 
799 	/* Save GICD_NSACR for INTIDs 32 - 1019 */
800 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSAC);
801 
802 	/* Save GICD_NSACRE for INTIDs 4096 - 5119 */
803 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, nsacr, NSAC);
804 
805 	/* Save GICD_IROUTER for INTIDs 32 - 1019 */
806 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTE);
807 
808 	/* Save GICD_IROUTERE for INTIDs 4096 - 5119 */
809 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, irouter, IROUTE);
810 
811 	/*
812 	 * GICD_ITARGETSR<n> and GICD_SPENDSGIR<n> are RAZ/WI when
813 	 * GICD_CTLR.ARE_(S|NS) bits are set which is the case for our GICv3
814 	 * driver.
815 	 */
816 }
817 
818 /*****************************************************************************
819  * Function to restore the GIC Distributor register context. We disable G0, G1S
820  * and G1NS interrupt groups before we start restore of the Distributor. This
821  * function must be invoked prior to Redistributor restore and CPU interface
822  * enable. The pending and active interrupts are restored after the interrupts
823  * are fully configured and enabled.
824  *****************************************************************************/
825 void gicv3_distif_init_restore(const gicv3_dist_ctx_t * const dist_ctx)
826 {
827 	assert(gicv3_driver_data != NULL);
828 	assert(gicv3_driver_data->gicd_base != 0U);
829 	assert(IS_IN_EL3());
830 	assert(dist_ctx != NULL);
831 
832 	uintptr_t gicd_base = gicv3_driver_data->gicd_base;
833 
834 	/*
835 	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
836 	 * the ARE_S bit. The Distributor might generate a system error
837 	 * otherwise.
838 	 */
839 	gicd_clr_ctlr(gicd_base,
840 		      CTLR_ENABLE_G0_BIT |
841 		      CTLR_ENABLE_G1S_BIT |
842 		      CTLR_ENABLE_G1NS_BIT,
843 		      RWP_TRUE);
844 
845 	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
846 	gicd_set_ctlr(gicd_base, CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
847 
848 	unsigned int num_ints = gicv3_get_spi_limit(gicd_base);
849 #if GIC_EXT_INTID
850 	unsigned int num_eints = gicv3_get_espi_limit(gicd_base);
851 #endif
852 	/* Restore GICD_IGROUPR for INTIDs 32 - 1019 */
853 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUP);
854 
855 	/* Restore GICD_IGROUPRE for INTIDs 4096 - 5119 */
856 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igroupr, IGROUP);
857 
858 	/* Restore GICD_IPRIORITYR for INTIDs 32 - 1019 */
859 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITY);
860 
861 	/* Restore GICD_IPRIORITYRE for INTIDs 4096 - 5119 */
862 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ipriorityr, IPRIORITY);
863 
864 	/* Restore GICD_ICFGR for INTIDs 32 - 1019 */
865 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFG);
866 
867 	/* Restore GICD_ICFGRE for INTIDs 4096 - 5119 */
868 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, icfgr, ICFG);
869 
870 	/* Restore GICD_IGRPMODR for INTIDs 32 - 1019 */
871 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMOD);
872 
873 	/* Restore GICD_IGRPMODRE for INTIDs 4096 - 5119 */
874 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igrpmodr, IGRPMOD);
875 
876 	/* Restore GICD_NSACR for INTIDs 32 - 1019 */
877 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSAC);
878 
879 	/* Restore GICD_NSACRE for INTIDs 4096 - 5119 */
880 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, nsacr, NSAC);
881 
882 	/* Restore GICD_IROUTER for INTIDs 32 - 1019 */
883 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTE);
884 
885 	/* Restore GICD_IROUTERE for INTIDs 4096 - 5119 */
886 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, irouter, IROUTE);
887 
888 	/*
889 	 * Restore ISENABLER(E), ISPENDR(E) and ISACTIVER(E) after
890 	 * the interrupts are configured.
891 	 */
892 
893 	/* Restore GICD_ISENABLER for INT_IDs 32 - 1019 */
894 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLE);
895 
896 	/* Restore GICD_ISENABLERE for INT_IDs 4096 - 5119 */
897 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isenabler, ISENABLE);
898 
899 	/* Restore GICD_ISPENDR for INTIDs 32 - 1019 */
900 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPEND);
901 
902 	/* Restore GICD_ISPENDRE for INTIDs 4096 - 5119 */
903 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ispendr, ISPEND);
904 
905 	/* Restore GICD_ISACTIVER for INTIDs 32 - 1019 */
906 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVE);
907 
908 	/* Restore GICD_ISACTIVERE for INTIDs 4096 - 5119 */
909 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isactiver, ISACTIVE);
910 
911 	/* Restore the GICD_CTLR */
912 	gicd_write_ctlr(gicd_base, dist_ctx->gicd_ctlr);
913 	gicd_wait_for_pending_write(gicd_base);
914 }
915 
916 /*******************************************************************************
917  * This function gets the priority of the interrupt the processor is currently
918  * servicing.
919  ******************************************************************************/
920 unsigned int gicv3_get_running_priority(void)
921 {
922 	return (unsigned int)read_icc_rpr_el1();
923 }
924 
925 /*******************************************************************************
926  * This function checks if the interrupt identified by id is active (whether the
927  * state is either active, or active and pending). The proc_num is used if the
928  * interrupt is SGI or (E)PPI and programs the corresponding Redistributor
929  * interface.
930  ******************************************************************************/
931 unsigned int gicv3_get_interrupt_active(unsigned int id, unsigned int proc_num)
932 {
933 	assert(gicv3_driver_data != NULL);
934 	assert(gicv3_driver_data->gicd_base != 0U);
935 	assert(proc_num < gicv3_driver_data->rdistif_num);
936 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
937 
938 	/* Check interrupt ID */
939 	if (is_sgi_ppi(id)) {
940 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
941 		return gicr_get_isactiver(
942 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
943 	}
944 
945 	/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
946 	return gicd_get_isactiver(gicv3_driver_data->gicd_base, id);
947 }
948 
949 /*******************************************************************************
950  * This function enables the interrupt identified by id. The proc_num
951  * is used if the interrupt is SGI or PPI, and programs the corresponding
952  * Redistributor interface.
953  ******************************************************************************/
954 void gicv3_enable_interrupt(unsigned int id, unsigned int proc_num)
955 {
956 	assert(gicv3_driver_data != NULL);
957 	assert(gicv3_driver_data->gicd_base != 0U);
958 	assert(proc_num < gicv3_driver_data->rdistif_num);
959 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
960 
961 	/*
962 	 * Ensure that any shared variable updates depending on out of band
963 	 * interrupt trigger are observed before enabling interrupt.
964 	 */
965 	dsbishst();
966 
967 	/* Check interrupt ID */
968 	if (is_sgi_ppi(id)) {
969 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
970 		gicr_set_isenabler(
971 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
972 	} else {
973 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
974 		gicd_set_isenabler(gicv3_driver_data->gicd_base, id);
975 	}
976 }
977 
978 /*******************************************************************************
979  * This function disables the interrupt identified by id. The proc_num
980  * is used if the interrupt is SGI or PPI, and programs the corresponding
981  * Redistributor interface.
982  ******************************************************************************/
983 void gicv3_disable_interrupt(unsigned int id, unsigned int proc_num)
984 {
985 	assert(gicv3_driver_data != NULL);
986 	assert(gicv3_driver_data->gicd_base != 0U);
987 	assert(proc_num < gicv3_driver_data->rdistif_num);
988 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
989 
990 	/*
991 	 * Disable interrupt, and ensure that any shared variable updates
992 	 * depending on out of band interrupt trigger are observed afterwards.
993 	 */
994 
995 	/* Check interrupt ID */
996 	if (is_sgi_ppi(id)) {
997 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
998 		gicr_set_icenabler(
999 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
1000 
1001 		/* Write to clear enable requires waiting for pending writes */
1002 		gicr_wait_for_pending_write(
1003 			gicv3_driver_data->rdistif_base_addrs[proc_num]);
1004 	} else {
1005 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1006 		gicd_set_icenabler(gicv3_driver_data->gicd_base, id);
1007 
1008 		/* Write to clear enable requires waiting for pending writes */
1009 		gicd_wait_for_pending_write(gicv3_driver_data->gicd_base);
1010 	}
1011 
1012 	dsbishst();
1013 }
1014 
1015 /*******************************************************************************
1016  * This function sets the interrupt priority as supplied for the given interrupt
1017  * id.
1018  ******************************************************************************/
1019 void gicv3_set_interrupt_priority(unsigned int id, unsigned int proc_num,
1020 		unsigned int priority)
1021 {
1022 	uintptr_t gicr_base;
1023 
1024 	assert(gicv3_driver_data != NULL);
1025 	assert(gicv3_driver_data->gicd_base != 0U);
1026 	assert(proc_num < gicv3_driver_data->rdistif_num);
1027 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1028 
1029 	/* Check interrupt ID */
1030 	if (is_sgi_ppi(id)) {
1031 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1032 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
1033 		gicr_set_ipriorityr(gicr_base, id, priority);
1034 	} else {
1035 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1036 		gicd_set_ipriorityr(gicv3_driver_data->gicd_base, id, priority);
1037 	}
1038 }
1039 
1040 /*******************************************************************************
1041  * This function assigns group for the interrupt identified by id. The proc_num
1042  * is used if the interrupt is SGI or (E)PPI, and programs the corresponding
1043  * Redistributor interface. The group can be any of GICV3_INTR_GROUP*
1044  ******************************************************************************/
1045 void gicv3_set_interrupt_type(unsigned int id, unsigned int proc_num,
1046 		unsigned int type)
1047 {
1048 	bool igroup = false, grpmod = false;
1049 	uintptr_t gicr_base;
1050 
1051 	assert(gicv3_driver_data != NULL);
1052 	assert(gicv3_driver_data->gicd_base != 0U);
1053 	assert(proc_num < gicv3_driver_data->rdistif_num);
1054 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1055 
1056 	switch (type) {
1057 	case INTR_GROUP1S:
1058 		igroup = false;
1059 		grpmod = true;
1060 		break;
1061 	case INTR_GROUP0:
1062 		igroup = false;
1063 		grpmod = false;
1064 		break;
1065 	case INTR_GROUP1NS:
1066 		igroup = true;
1067 		grpmod = false;
1068 		break;
1069 	default:
1070 		assert(false);
1071 		break;
1072 	}
1073 
1074 	/* Check interrupt ID */
1075 	if (is_sgi_ppi(id)) {
1076 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1077 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
1078 
1079 		igroup ? gicr_set_igroupr(gicr_base, id) :
1080 			 gicr_clr_igroupr(gicr_base, id);
1081 		grpmod ? gicr_set_igrpmodr(gicr_base, id) :
1082 			 gicr_clr_igrpmodr(gicr_base, id);
1083 	} else {
1084 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1085 
1086 		/* Serialize read-modify-write to Distributor registers */
1087 		spin_lock(&gic_lock);
1088 
1089 		igroup ? gicd_set_igroupr(gicv3_driver_data->gicd_base, id) :
1090 			 gicd_clr_igroupr(gicv3_driver_data->gicd_base, id);
1091 		grpmod ? gicd_set_igrpmodr(gicv3_driver_data->gicd_base, id) :
1092 			 gicd_clr_igrpmodr(gicv3_driver_data->gicd_base, id);
1093 
1094 		spin_unlock(&gic_lock);
1095 	}
1096 }
1097 
1098 /*******************************************************************************
1099  * This function raises the specified SGI of the specified group.
1100  *
1101  * The target parameter must be a valid MPIDR in the system.
1102  ******************************************************************************/
1103 void gicv3_raise_sgi(unsigned int sgi_num, gicv3_irq_group_t group,
1104 		u_register_t target)
1105 {
1106 	unsigned int tgt, aff3, aff2, aff1, aff0;
1107 	uint64_t sgi_val;
1108 
1109 	/* Verify interrupt number is in the SGI range */
1110 	assert((sgi_num >= MIN_SGI_ID) && (sgi_num < MIN_PPI_ID));
1111 
1112 	/* Extract affinity fields from target */
1113 	aff0 = MPIDR_AFFLVL0_VAL(target);
1114 	aff1 = MPIDR_AFFLVL1_VAL(target);
1115 	aff2 = MPIDR_AFFLVL2_VAL(target);
1116 	aff3 = MPIDR_AFFLVL3_VAL(target);
1117 
1118 	/*
1119 	 * Make target list from affinity 0, and ensure GICv3 SGI can target
1120 	 * this PE.
1121 	 */
1122 	assert(aff0 < GICV3_MAX_SGI_TARGETS);
1123 	tgt = BIT_32(aff0);
1124 
1125 	/* Raise SGI to PE specified by its affinity */
1126 	sgi_val = GICV3_SGIR_VALUE(aff3, aff2, aff1, sgi_num, SGIR_IRM_TO_AFF,
1127 			tgt);
1128 
1129 	/*
1130 	 * Ensure that any shared variable updates depending on out of band
1131 	 * interrupt trigger are observed before raising SGI.
1132 	 */
1133 	dsbishst();
1134 
1135 	switch (group) {
1136 	case GICV3_G0:
1137 		write_icc_sgi0r_el1(sgi_val);
1138 		break;
1139 	case GICV3_G1NS:
1140 		write_icc_asgi1r(sgi_val);
1141 		break;
1142 	case GICV3_G1S:
1143 		write_icc_sgi1r(sgi_val);
1144 		break;
1145 	default:
1146 		assert(false);
1147 		break;
1148 	}
1149 
1150 	isb();
1151 }
1152 
1153 /*******************************************************************************
1154  * This function sets the interrupt routing for the given (E)SPI interrupt id.
1155  * The interrupt routing is specified in routing mode and mpidr.
1156  *
1157  * The routing mode can be either of:
1158  *  - GICV3_IRM_ANY
1159  *  - GICV3_IRM_PE
1160  *
1161  * The mpidr is the affinity of the PE to which the interrupt will be routed,
1162  * and is ignored for routing mode GICV3_IRM_ANY.
1163  ******************************************************************************/
1164 void gicv3_set_spi_routing(unsigned int id, unsigned int irm, u_register_t mpidr)
1165 {
1166 	unsigned long long aff;
1167 	uint64_t router;
1168 
1169 	assert(gicv3_driver_data != NULL);
1170 	assert(gicv3_driver_data->gicd_base != 0U);
1171 
1172 	assert((irm == GICV3_IRM_ANY) || (irm == GICV3_IRM_PE));
1173 
1174 	assert(IS_SPI(id));
1175 
1176 	aff = gicd_irouter_val_from_mpidr(mpidr, irm);
1177 	gicd_write_irouter(gicv3_driver_data->gicd_base, id, aff);
1178 
1179 	/*
1180 	 * In implementations that do not require 1 of N distribution of SPIs,
1181 	 * IRM might be RAZ/WI. Read back and verify IRM bit.
1182 	 */
1183 	if (irm == GICV3_IRM_ANY) {
1184 		router = gicd_read_irouter(gicv3_driver_data->gicd_base, id);
1185 		if (((router >> IROUTER_IRM_SHIFT) & IROUTER_IRM_MASK) == 0U) {
1186 			ERROR("GICv3 implementation doesn't support routing ANY\n");
1187 			panic();
1188 		}
1189 	}
1190 }
1191 
1192 /*******************************************************************************
1193  * This function clears the pending status of an interrupt identified by id.
1194  * The proc_num is used if the interrupt is SGI or (E)PPI, and programs the
1195  * corresponding Redistributor interface.
1196  ******************************************************************************/
1197 void gicv3_clear_interrupt_pending(unsigned int id, unsigned int proc_num)
1198 {
1199 	assert(gicv3_driver_data != NULL);
1200 	assert(gicv3_driver_data->gicd_base != 0U);
1201 	assert(proc_num < gicv3_driver_data->rdistif_num);
1202 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1203 
1204 	/*
1205 	 * Clear pending interrupt, and ensure that any shared variable updates
1206 	 * depending on out of band interrupt trigger are observed afterwards.
1207 	 */
1208 
1209 	/* Check interrupt ID */
1210 	if (is_sgi_ppi(id)) {
1211 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1212 		gicr_set_icpendr(
1213 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
1214 	} else {
1215 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1216 		gicd_set_icpendr(gicv3_driver_data->gicd_base, id);
1217 	}
1218 
1219 	dsbishst();
1220 }
1221 
1222 /*******************************************************************************
1223  * This function sets the pending status of an interrupt identified by id.
1224  * The proc_num is used if the interrupt is SGI or PPI and programs the
1225  * corresponding Redistributor interface.
1226  ******************************************************************************/
1227 void gicv3_set_interrupt_pending(unsigned int id, unsigned int proc_num)
1228 {
1229 	assert(gicv3_driver_data != NULL);
1230 	assert(gicv3_driver_data->gicd_base != 0U);
1231 	assert(proc_num < gicv3_driver_data->rdistif_num);
1232 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1233 
1234 	/*
1235 	 * Ensure that any shared variable updates depending on out of band
1236 	 * interrupt trigger are observed before setting interrupt pending.
1237 	 */
1238 	dsbishst();
1239 
1240 	/* Check interrupt ID */
1241 	if (is_sgi_ppi(id)) {
1242 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1243 		gicr_set_ispendr(
1244 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
1245 	} else {
1246 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1247 		gicd_set_ispendr(gicv3_driver_data->gicd_base, id);
1248 	}
1249 }
1250 
1251 /*******************************************************************************
1252  * This function sets the PMR register with the supplied value. Returns the
1253  * original PMR.
1254  ******************************************************************************/
1255 unsigned int gicv3_set_pmr(unsigned int mask)
1256 {
1257 	unsigned int old_mask;
1258 
1259 	old_mask = (unsigned int)read_icc_pmr_el1();
1260 
1261 	/*
1262 	 * Order memory updates w.r.t. PMR write, and ensure they're visible
1263 	 * before potential out of band interrupt trigger because of PMR update.
1264 	 * PMR system register writes are self-synchronizing, so no ISB required
1265 	 * thereafter.
1266 	 */
1267 	dsbishst();
1268 	write_icc_pmr_el1(mask);
1269 
1270 	return old_mask;
1271 }
1272 
1273 /*******************************************************************************
1274  * This function delegates the responsibility of discovering the corresponding
1275  * Redistributor frames to each CPU itself. It is a modified version of
1276  * gicv3_rdistif_base_addrs_probe() and is executed by each CPU in the platform
1277  * unlike the previous way in which only the Primary CPU did the discovery of
1278  * all the Redistributor frames for every CPU. It also handles the scenario in
1279  * which the frames of various CPUs are not contiguous in physical memory.
1280  ******************************************************************************/
1281 int gicv3_rdistif_probe(const uintptr_t gicr_frame)
1282 {
1283 	u_register_t mpidr, mpidr_self;
1284 	unsigned int proc_num;
1285 	uint64_t typer_val;
1286 	uintptr_t rdistif_base;
1287 	bool gicr_frame_found = false;
1288 
1289 	assert(gicv3_driver_data->gicr_base == 0U);
1290 
1291 	if (plat_can_cmo()) {
1292 	/* Ensure this function is called with Data Cache enabled */
1293 #ifndef __aarch64__
1294 		assert((read_sctlr() & SCTLR_C_BIT) != 0U);
1295 #else
1296 		assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
1297 #endif /* !__aarch64__ */
1298 	}
1299 
1300 	mpidr_self = read_mpidr_el1() & MPIDR_AFFINITY_MASK;
1301 	rdistif_base = gicr_frame;
1302 	do {
1303 		typer_val = gicr_read_typer(rdistif_base);
1304 		mpidr = mpidr_from_gicr_typer(typer_val);
1305 		if (gicv3_driver_data->mpidr_to_core_pos != NULL) {
1306 			proc_num = gicv3_driver_data->mpidr_to_core_pos(mpidr);
1307 		} else {
1308 			proc_num = (unsigned int)(typer_val >>
1309 				TYPER_PROC_NUM_SHIFT) & TYPER_PROC_NUM_MASK;
1310 		}
1311 		if (mpidr == mpidr_self) {
1312 			/* The base address doesn't need to be initialized on
1313 			 * every warm boot.
1314 			 */
1315 			if (gicv3_driver_data->rdistif_base_addrs[proc_num]
1316 								!= 0U) {
1317 				return 0;
1318 			}
1319 			gicv3_driver_data->rdistif_base_addrs[proc_num] =
1320 			rdistif_base;
1321 			gicr_frame_found = true;
1322 			break;
1323 		}
1324 		rdistif_base += gicv3_redist_size(typer_val);
1325 	} while ((typer_val & TYPER_LAST_BIT) == 0U);
1326 
1327 	if (!gicr_frame_found) {
1328 		return -1;
1329 	}
1330 
1331 	/*
1332 	 * Flush the driver data to ensure coherency. This is
1333 	 * not required if platform has HW_ASSISTED_COHERENCY
1334 	 * enabled.
1335 	 */
1336 #if !HW_ASSISTED_COHERENCY
1337 	/*
1338 	 * Flush the rdistif_base_addrs[] contents linked to the GICv3 driver.
1339 	 */
1340 	flush_dcache_range((uintptr_t)&(gicv3_driver_data->rdistif_base_addrs[proc_num]),
1341 		sizeof(*(gicv3_driver_data->rdistif_base_addrs)));
1342 #endif
1343 	return 0; /* Found matching GICR frame */
1344 }
1345 
1346 /******************************************************************************
1347  * This function checks the interrupt ID and returns true for SGIs and (E)PPIs
1348  * and false for (E)SPIs IDs.
1349  *****************************************************************************/
1350 static bool is_sgi_ppi(unsigned int id)
1351 {
1352 	/* SGIs: 0-15, PPIs: 16-31, EPPIs: 1056-1119 */
1353 	if (IS_SGI_PPI(id)) {
1354 		return true;
1355 	}
1356 
1357 	/* SPIs: 32-1019, ESPIs: 4096-5119 */
1358 	if (IS_SPI(id)) {
1359 		return false;
1360 	}
1361 
1362 	assert(false);
1363 	panic();
1364 }
1365