xref: /rk3399_ARM-atf/drivers/arm/gic/v3/gicv3_main.c (revision 994421a6dea5f6dbcdf2114026ce0549c810bd9b)
1 /*
2  * Copyright (c) 2015-2020, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 
9 #include <arch.h>
10 #include <arch_helpers.h>
11 #include <common/debug.h>
12 #include <common/interrupt_props.h>
13 #include <drivers/arm/gicv3.h>
14 #include <lib/spinlock.h>
15 
16 #include "gicv3_private.h"
17 
18 const gicv3_driver_data_t *gicv3_driver_data;
19 
20 /*
21  * Spinlock to guard registers needing read-modify-write. APIs protected by this
22  * spinlock are used either at boot time (when only a single CPU is active), or
23  * when the system is fully coherent.
24  */
25 static spinlock_t gic_lock;
26 
27 /*
28  * Redistributor power operations are weakly bound so that they can be
29  * overridden
30  */
31 #pragma weak gicv3_rdistif_off
32 #pragma weak gicv3_rdistif_on
33 
34 /* Check interrupt ID for SGI/(E)PPI and (E)SPIs */
35 static bool is_sgi_ppi(unsigned int id);
36 
37 /*
38  * Helper macros to save and restore GICR and GICD registers
39  * corresponding to their numbers to and from the context
40  */
41 #define RESTORE_GICR_REG(base, ctx, name, i)	\
42 	gicr_write_##name((base), (i), (ctx)->gicr_##name[(i)])
43 
44 #define SAVE_GICR_REG(base, ctx, name, i)	\
45 	(ctx)->gicr_##name[(i)] = gicr_read_##name((base), (i))
46 
47 /* Helper macros to save and restore GICD registers to and from the context */
48 #define RESTORE_GICD_REGS(base, ctx, intr_num, reg, REG)		\
49 	do {								\
50 		for (unsigned int int_id = MIN_SPI_ID; int_id < (intr_num);\
51 				int_id += (1U << REG##R_SHIFT)) {	\
52 			gicd_write_##reg((base), int_id,		\
53 				(ctx)->gicd_##reg[(int_id - MIN_SPI_ID) >> \
54 							REG##R_SHIFT]);	\
55 		}							\
56 	} while (false)
57 
58 #define SAVE_GICD_REGS(base, ctx, intr_num, reg, REG)			\
59 	do {								\
60 		for (unsigned int int_id = MIN_SPI_ID; int_id < (intr_num);\
61 				int_id += (1U << REG##R_SHIFT)) {	\
62 			(ctx)->gicd_##reg[(int_id - MIN_SPI_ID) >>	\
63 			REG##R_SHIFT] = gicd_read_##reg((base), int_id); \
64 		}							\
65 	} while (false)
66 
67 #if GIC_EXT_INTID
68 #define RESTORE_GICD_EREGS(base, ctx, intr_num, reg, REG)		\
69 	do {								\
70 		for (unsigned int int_id = MIN_ESPI_ID; int_id < (intr_num);\
71 				int_id += (1U << REG##R_SHIFT)) {	\
72 			gicd_write_##reg((base), int_id,		\
73 			(ctx)->gicd_##reg[(int_id - (MIN_ESPI_ID - MIN_SPI_ID))\
74 						>> REG##R_SHIFT]);	\
75 		}							\
76 	} while (false)
77 
78 #define SAVE_GICD_EREGS(base, ctx, intr_num, reg, REG)			\
79 	do {								\
80 		for (unsigned int int_id = MIN_ESPI_ID; int_id < (intr_num);\
81 				int_id += (1U << REG##R_SHIFT)) {	\
82 			(ctx)->gicd_##reg[(int_id - (MIN_ESPI_ID - MIN_SPI_ID))\
83 			>> REG##R_SHIFT] = gicd_read_##reg((base), int_id);\
84 		}							\
85 	} while (false)
86 #else
87 #define SAVE_GICD_EREGS(base, ctx, intr_num, reg, REG)
88 #define RESTORE_GICD_EREGS(base, ctx, intr_num, reg, REG)
89 #endif /* GIC_EXT_INTID */
90 
91 /*******************************************************************************
92  * This function initialises the ARM GICv3 driver in EL3 with provided platform
93  * inputs.
94  ******************************************************************************/
95 void __init gicv3_driver_init(const gicv3_driver_data_t *plat_driver_data)
96 {
97 	unsigned int gic_version;
98 	unsigned int gicv2_compat;
99 
100 	assert(plat_driver_data != NULL);
101 	assert(plat_driver_data->gicd_base != 0U);
102 	assert(plat_driver_data->rdistif_num != 0U);
103 	assert(plat_driver_data->rdistif_base_addrs != NULL);
104 
105 	assert(IS_IN_EL3());
106 
107 	assert((plat_driver_data->interrupt_props_num != 0U) ?
108 	       (plat_driver_data->interrupt_props != NULL) : 1);
109 
110 	/* Check for system register support */
111 #ifndef __aarch64__
112 	assert((read_id_pfr1() &
113 			(ID_PFR1_GIC_MASK << ID_PFR1_GIC_SHIFT)) != 0U);
114 #else
115 	assert((read_id_aa64pfr0_el1() &
116 			(ID_AA64PFR0_GIC_MASK << ID_AA64PFR0_GIC_SHIFT)) != 0U);
117 #endif /* !__aarch64__ */
118 
119 	gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
120 	gic_version >>= PIDR2_ARCH_REV_SHIFT;
121 	gic_version &= PIDR2_ARCH_REV_MASK;
122 
123 	/* Check GIC version */
124 #if GIC_ENABLE_V4_EXTN
125 	assert(gic_version == ARCH_REV_GICV4);
126 
127 	/* GICv4 supports Direct Virtual LPI injection */
128 	assert((gicd_read_typer(plat_driver_data->gicd_base)
129 					& TYPER_DVIS) != 0);
130 #else
131 	assert(gic_version == ARCH_REV_GICV3);
132 #endif
133 	/*
134 	 * Find out whether the GIC supports the GICv2 compatibility mode.
135 	 * The ARE_S bit resets to 0 if supported
136 	 */
137 	gicv2_compat = gicd_read_ctlr(plat_driver_data->gicd_base);
138 	gicv2_compat >>= CTLR_ARE_S_SHIFT;
139 	gicv2_compat = gicv2_compat & CTLR_ARE_S_MASK;
140 
141 	if (plat_driver_data->gicr_base != 0U) {
142 		/*
143 		 * Find the base address of each implemented Redistributor interface.
144 		 * The number of interfaces should be equal to the number of CPUs in the
145 		 * system. The memory for saving these addresses has to be allocated by
146 		 * the platform port
147 		 */
148 		gicv3_rdistif_base_addrs_probe(plat_driver_data->rdistif_base_addrs,
149 						   plat_driver_data->rdistif_num,
150 						   plat_driver_data->gicr_base,
151 						   plat_driver_data->mpidr_to_core_pos);
152 #if !HW_ASSISTED_COHERENCY
153 		/*
154 		 * Flush the rdistif_base_addrs[] contents linked to the GICv3 driver.
155 		 */
156 		flush_dcache_range((uintptr_t)(plat_driver_data->rdistif_base_addrs),
157 			plat_driver_data->rdistif_num *
158 			sizeof(*(plat_driver_data->rdistif_base_addrs)));
159 #endif
160 	}
161 	gicv3_driver_data = plat_driver_data;
162 
163 	/*
164 	 * The GIC driver data is initialized by the primary CPU with caches
165 	 * enabled. When the secondary CPU boots up, it initializes the
166 	 * GICC/GICR interface with the caches disabled. Hence flush the
167 	 * driver data to ensure coherency. This is not required if the
168 	 * platform has HW_ASSISTED_COHERENCY enabled.
169 	 */
170 #if !HW_ASSISTED_COHERENCY
171 	flush_dcache_range((uintptr_t)&gicv3_driver_data,
172 		sizeof(gicv3_driver_data));
173 	flush_dcache_range((uintptr_t)gicv3_driver_data,
174 		sizeof(*gicv3_driver_data));
175 #endif
176 	INFO("GICv%u with%s legacy support detected.\n", gic_version,
177 				(gicv2_compat == 0U) ? "" : "out");
178 	INFO("ARM GICv%u driver initialized in EL3\n", gic_version);
179 }
180 
181 /*******************************************************************************
182  * This function initialises the GIC distributor interface based upon the data
183  * provided by the platform while initialising the driver.
184  ******************************************************************************/
185 void __init gicv3_distif_init(void)
186 {
187 	unsigned int bitmap;
188 
189 	assert(gicv3_driver_data != NULL);
190 	assert(gicv3_driver_data->gicd_base != 0U);
191 
192 	assert(IS_IN_EL3());
193 
194 	/*
195 	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
196 	 * the ARE_S bit. The Distributor might generate a system error
197 	 * otherwise.
198 	 */
199 	gicd_clr_ctlr(gicv3_driver_data->gicd_base,
200 		      CTLR_ENABLE_G0_BIT |
201 		      CTLR_ENABLE_G1S_BIT |
202 		      CTLR_ENABLE_G1NS_BIT,
203 		      RWP_TRUE);
204 
205 	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
206 	gicd_set_ctlr(gicv3_driver_data->gicd_base,
207 			CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
208 
209 	/* Set the default attribute of all (E)SPIs */
210 	gicv3_spis_config_defaults(gicv3_driver_data->gicd_base);
211 
212 	bitmap = gicv3_secure_spis_config_props(
213 			gicv3_driver_data->gicd_base,
214 			gicv3_driver_data->interrupt_props,
215 			gicv3_driver_data->interrupt_props_num);
216 
217 	/* Enable the secure (E)SPIs now that they have been configured */
218 	gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE);
219 }
220 
221 /*******************************************************************************
222  * This function initialises the GIC Redistributor interface of the calling CPU
223  * (identified by the 'proc_num' parameter) based upon the data provided by the
224  * platform while initialising the driver.
225  ******************************************************************************/
226 void gicv3_rdistif_init(unsigned int proc_num)
227 {
228 	uintptr_t gicr_base;
229 	unsigned int bitmap;
230 	uint32_t ctlr;
231 
232 	assert(gicv3_driver_data != NULL);
233 	assert(proc_num < gicv3_driver_data->rdistif_num);
234 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
235 	assert(gicv3_driver_data->gicd_base != 0U);
236 
237 	ctlr = gicd_read_ctlr(gicv3_driver_data->gicd_base);
238 	assert((ctlr & CTLR_ARE_S_BIT) != 0U);
239 
240 	assert(IS_IN_EL3());
241 
242 	/* Power on redistributor */
243 	gicv3_rdistif_on(proc_num);
244 
245 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
246 	assert(gicr_base != 0U);
247 
248 	/* Set the default attribute of all SGIs and (E)PPIs */
249 	gicv3_ppi_sgi_config_defaults(gicr_base);
250 
251 	bitmap = gicv3_secure_ppi_sgi_config_props(gicr_base,
252 			gicv3_driver_data->interrupt_props,
253 			gicv3_driver_data->interrupt_props_num);
254 
255 	/* Enable interrupt groups as required, if not already */
256 	if ((ctlr & bitmap) != bitmap) {
257 		gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE);
258 	}
259 }
260 
261 /*******************************************************************************
262  * Functions to perform power operations on GIC Redistributor
263  ******************************************************************************/
264 void gicv3_rdistif_off(unsigned int proc_num)
265 {
266 }
267 
268 void gicv3_rdistif_on(unsigned int proc_num)
269 {
270 }
271 
272 /*******************************************************************************
273  * This function enables the GIC CPU interface of the calling CPU using only
274  * system register accesses.
275  ******************************************************************************/
276 void gicv3_cpuif_enable(unsigned int proc_num)
277 {
278 	uintptr_t gicr_base;
279 	u_register_t scr_el3;
280 	unsigned int icc_sre_el3;
281 
282 	assert(gicv3_driver_data != NULL);
283 	assert(proc_num < gicv3_driver_data->rdistif_num);
284 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
285 	assert(IS_IN_EL3());
286 
287 	/* Mark the connected core as awake */
288 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
289 	gicv3_rdistif_mark_core_awake(gicr_base);
290 
291 	/* Disable the legacy interrupt bypass */
292 	icc_sre_el3 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT;
293 
294 	/*
295 	 * Enable system register access for EL3 and allow lower exception
296 	 * levels to configure the same for themselves. If the legacy mode is
297 	 * not supported, the SRE bit is RAO/WI
298 	 */
299 	icc_sre_el3 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT);
300 	write_icc_sre_el3(read_icc_sre_el3() | icc_sre_el3);
301 
302 	scr_el3 = read_scr_el3();
303 
304 	/*
305 	 * Switch to NS state to write Non secure ICC_SRE_EL1 and
306 	 * ICC_SRE_EL2 registers.
307 	 */
308 	write_scr_el3(scr_el3 | SCR_NS_BIT);
309 	isb();
310 
311 	write_icc_sre_el2(read_icc_sre_el2() | icc_sre_el3);
312 	write_icc_sre_el1(ICC_SRE_SRE_BIT);
313 	isb();
314 
315 	/* Switch to secure state. */
316 	write_scr_el3(scr_el3 & (~SCR_NS_BIT));
317 	isb();
318 
319 	/* Write the secure ICC_SRE_EL1 register */
320 	write_icc_sre_el1(ICC_SRE_SRE_BIT);
321 	isb();
322 
323 	/* Program the idle priority in the PMR */
324 	write_icc_pmr_el1(GIC_PRI_MASK);
325 
326 	/* Enable Group0 interrupts */
327 	write_icc_igrpen0_el1(IGRPEN1_EL1_ENABLE_G0_BIT);
328 
329 	/* Enable Group1 Secure interrupts */
330 	write_icc_igrpen1_el3(read_icc_igrpen1_el3() |
331 				IGRPEN1_EL3_ENABLE_G1S_BIT);
332 	isb();
333 }
334 
335 /*******************************************************************************
336  * This function disables the GIC CPU interface of the calling CPU using
337  * only system register accesses.
338  ******************************************************************************/
339 void gicv3_cpuif_disable(unsigned int proc_num)
340 {
341 	uintptr_t gicr_base;
342 
343 	assert(gicv3_driver_data != NULL);
344 	assert(proc_num < gicv3_driver_data->rdistif_num);
345 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
346 
347 	assert(IS_IN_EL3());
348 
349 	/* Disable legacy interrupt bypass */
350 	write_icc_sre_el3(read_icc_sre_el3() |
351 			  (ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT));
352 
353 	/* Disable Group0 interrupts */
354 	write_icc_igrpen0_el1(read_icc_igrpen0_el1() &
355 			      ~IGRPEN1_EL1_ENABLE_G0_BIT);
356 
357 	/* Disable Group1 Secure and Non-Secure interrupts */
358 	write_icc_igrpen1_el3(read_icc_igrpen1_el3() &
359 			      ~(IGRPEN1_EL3_ENABLE_G1NS_BIT |
360 			      IGRPEN1_EL3_ENABLE_G1S_BIT));
361 
362 	/* Synchronise accesses to group enable registers */
363 	isb();
364 
365 	/* Mark the connected core as asleep */
366 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
367 	assert(gicr_base != 0U);
368 	gicv3_rdistif_mark_core_asleep(gicr_base);
369 }
370 
371 /*******************************************************************************
372  * This function returns the id of the highest priority pending interrupt at
373  * the GIC cpu interface.
374  ******************************************************************************/
375 unsigned int gicv3_get_pending_interrupt_id(void)
376 {
377 	unsigned int id;
378 
379 	assert(IS_IN_EL3());
380 	id = (uint32_t)read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
381 
382 	/*
383 	 * If the ID is special identifier corresponding to G1S or G1NS
384 	 * interrupt, then read the highest pending group 1 interrupt.
385 	 */
386 	if ((id == PENDING_G1S_INTID) || (id == PENDING_G1NS_INTID)) {
387 		return (uint32_t)read_icc_hppir1_el1() & HPPIR1_EL1_INTID_MASK;
388 	}
389 
390 	return id;
391 }
392 
393 /*******************************************************************************
394  * This function returns the type of the highest priority pending interrupt at
395  * the GIC cpu interface. The return values can be one of the following :
396  *   PENDING_G1S_INTID  : The interrupt type is secure Group 1.
397  *   PENDING_G1NS_INTID : The interrupt type is non secure Group 1.
398  *   0 - 1019           : The interrupt type is secure Group 0.
399  *   GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
400  *                            sufficient priority to be signaled
401  ******************************************************************************/
402 unsigned int gicv3_get_pending_interrupt_type(void)
403 {
404 	assert(IS_IN_EL3());
405 	return (uint32_t)read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
406 }
407 
408 /*******************************************************************************
409  * This function returns the type of the interrupt id depending upon the group
410  * this interrupt has been configured under by the interrupt controller i.e.
411  * group0 or group1 Secure / Non Secure. The return value can be one of the
412  * following :
413  *    INTR_GROUP0  : The interrupt type is a Secure Group 0 interrupt
414  *    INTR_GROUP1S : The interrupt type is a Secure Group 1 secure interrupt
415  *    INTR_GROUP1NS: The interrupt type is a Secure Group 1 non secure
416  *                   interrupt.
417  ******************************************************************************/
418 unsigned int gicv3_get_interrupt_type(unsigned int id, unsigned int proc_num)
419 {
420 	unsigned int igroup, grpmodr;
421 	uintptr_t gicr_base;
422 
423 	assert(IS_IN_EL3());
424 	assert(gicv3_driver_data != NULL);
425 
426 	/* Ensure the parameters are valid */
427 	assert((id < PENDING_G1S_INTID) || (id >= MIN_LPI_ID));
428 	assert(proc_num < gicv3_driver_data->rdistif_num);
429 
430 	/* All LPI interrupts are Group 1 non secure */
431 	if (id >= MIN_LPI_ID) {
432 		return INTR_GROUP1NS;
433 	}
434 
435 	/* Check interrupt ID */
436 	if (is_sgi_ppi(id)) {
437 		/* SGIs: 0-15, PPIs: 16-31, EPPIs: 1056-1119 */
438 		assert(gicv3_driver_data->rdistif_base_addrs != NULL);
439 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
440 		igroup = gicr_get_igroupr(gicr_base, id);
441 		grpmodr = gicr_get_igrpmodr(gicr_base, id);
442 	} else {
443 		/* SPIs: 32-1019, ESPIs: 4096-5119 */
444 		assert(gicv3_driver_data->gicd_base != 0U);
445 		igroup = gicd_get_igroupr(gicv3_driver_data->gicd_base, id);
446 		grpmodr = gicd_get_igrpmodr(gicv3_driver_data->gicd_base, id);
447 	}
448 
449 	/*
450 	 * If the IGROUP bit is set, then it is a Group 1 Non secure
451 	 * interrupt
452 	 */
453 	if (igroup != 0U) {
454 		return INTR_GROUP1NS;
455 	}
456 
457 	/* If the GRPMOD bit is set, then it is a Group 1 Secure interrupt */
458 	if (grpmodr != 0U) {
459 		return INTR_GROUP1S;
460 	}
461 
462 	/* Else it is a Group 0 Secure interrupt */
463 	return INTR_GROUP0;
464 }
465 
466 /*****************************************************************************
467  * Function to save and disable the GIC ITS register context. The power
468  * management of GIC ITS is implementation-defined and this function doesn't
469  * save any memory structures required to support ITS. As the sequence to save
470  * this state is implementation defined, it should be executed in platform
471  * specific code. Calling this function alone and then powering down the GIC and
472  * ITS without implementing the aforementioned platform specific code will
473  * corrupt the ITS state.
474  *
475  * This function must be invoked after the GIC CPU interface is disabled.
476  *****************************************************************************/
477 void gicv3_its_save_disable(uintptr_t gits_base,
478 				gicv3_its_ctx_t * const its_ctx)
479 {
480 	unsigned int i;
481 
482 	assert(gicv3_driver_data != NULL);
483 	assert(IS_IN_EL3());
484 	assert(its_ctx != NULL);
485 	assert(gits_base != 0U);
486 
487 	its_ctx->gits_ctlr = gits_read_ctlr(gits_base);
488 
489 	/* Disable the ITS */
490 	gits_write_ctlr(gits_base, its_ctx->gits_ctlr & ~GITS_CTLR_ENABLED_BIT);
491 
492 	/* Wait for quiescent state */
493 	gits_wait_for_quiescent_bit(gits_base);
494 
495 	its_ctx->gits_cbaser = gits_read_cbaser(gits_base);
496 	its_ctx->gits_cwriter = gits_read_cwriter(gits_base);
497 
498 	for (i = 0U; i < ARRAY_SIZE(its_ctx->gits_baser); i++) {
499 		its_ctx->gits_baser[i] = gits_read_baser(gits_base, i);
500 	}
501 }
502 
503 /*****************************************************************************
504  * Function to restore the GIC ITS register context. The power
505  * management of GIC ITS is implementation defined and this function doesn't
506  * restore any memory structures required to support ITS. The assumption is
507  * that these structures are in memory and are retained during system suspend.
508  *
509  * This must be invoked before the GIC CPU interface is enabled.
510  *****************************************************************************/
511 void gicv3_its_restore(uintptr_t gits_base,
512 			const gicv3_its_ctx_t * const its_ctx)
513 {
514 	unsigned int i;
515 
516 	assert(gicv3_driver_data != NULL);
517 	assert(IS_IN_EL3());
518 	assert(its_ctx != NULL);
519 	assert(gits_base != 0U);
520 
521 	/* Assert that the GITS is disabled and quiescent */
522 	assert((gits_read_ctlr(gits_base) & GITS_CTLR_ENABLED_BIT) == 0U);
523 	assert((gits_read_ctlr(gits_base) & GITS_CTLR_QUIESCENT_BIT) != 0U);
524 
525 	gits_write_cbaser(gits_base, its_ctx->gits_cbaser);
526 	gits_write_cwriter(gits_base, its_ctx->gits_cwriter);
527 
528 	for (i = 0U; i < ARRAY_SIZE(its_ctx->gits_baser); i++) {
529 		gits_write_baser(gits_base, i, its_ctx->gits_baser[i]);
530 	}
531 
532 	/* Restore the ITS CTLR but leave the ITS disabled */
533 	gits_write_ctlr(gits_base, its_ctx->gits_ctlr & ~GITS_CTLR_ENABLED_BIT);
534 }
535 
536 /*****************************************************************************
537  * Function to save the GIC Redistributor register context. This function
538  * must be invoked after CPU interface disable and prior to Distributor save.
539  *****************************************************************************/
540 void gicv3_rdistif_save(unsigned int proc_num,
541 			gicv3_redist_ctx_t * const rdist_ctx)
542 {
543 	uintptr_t gicr_base;
544 	unsigned int i, ppi_regs_num, regs_num;
545 
546 	assert(gicv3_driver_data != NULL);
547 	assert(proc_num < gicv3_driver_data->rdistif_num);
548 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
549 	assert(IS_IN_EL3());
550 	assert(rdist_ctx != NULL);
551 
552 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
553 
554 #if GIC_EXT_INTID
555 	/* Calculate number of PPI registers */
556 	ppi_regs_num = (unsigned int)((gicr_read_typer(gicr_base) >>
557 			TYPER_PPI_NUM_SHIFT) & TYPER_PPI_NUM_MASK) + 1;
558 	/* All other values except PPInum [0-2] are reserved */
559 	if (ppi_regs_num > 3U) {
560 		ppi_regs_num = 1U;
561 	}
562 #else
563 	ppi_regs_num = 1U;
564 #endif
565 	/*
566 	 * Wait for any write to GICR_CTLR to complete before trying to save any
567 	 * state.
568 	 */
569 	gicr_wait_for_pending_write(gicr_base);
570 
571 	rdist_ctx->gicr_ctlr = gicr_read_ctlr(gicr_base);
572 
573 	rdist_ctx->gicr_propbaser = gicr_read_propbaser(gicr_base);
574 	rdist_ctx->gicr_pendbaser = gicr_read_pendbaser(gicr_base);
575 
576 	/* 32 interrupt IDs per register */
577 	for (i = 0U; i < ppi_regs_num; ++i) {
578 		SAVE_GICR_REG(gicr_base, rdist_ctx, igroupr, i);
579 		SAVE_GICR_REG(gicr_base, rdist_ctx, isenabler, i);
580 		SAVE_GICR_REG(gicr_base, rdist_ctx, ispendr, i);
581 		SAVE_GICR_REG(gicr_base, rdist_ctx, isactiver, i);
582 		SAVE_GICR_REG(gicr_base, rdist_ctx, igrpmodr, i);
583 	}
584 
585 	/* 16 interrupt IDs per GICR_ICFGR register */
586 	regs_num = ppi_regs_num << 1;
587 	for (i = 0U; i < regs_num; ++i) {
588 		SAVE_GICR_REG(gicr_base, rdist_ctx, icfgr, i);
589 	}
590 
591 	rdist_ctx->gicr_nsacr = gicr_read_nsacr(gicr_base);
592 
593 	/* 4 interrupt IDs per GICR_IPRIORITYR register */
594 	regs_num = ppi_regs_num << 3;
595 	for (i = 0U; i < regs_num; ++i) {
596 		SAVE_GICR_REG(gicr_base, rdist_ctx, ipriorityr, i);
597 	}
598 
599 	/*
600 	 * Call the pre-save hook that implements the IMP DEF sequence that may
601 	 * be required on some GIC implementations. As this may need to access
602 	 * the Redistributor registers, we pass it proc_num.
603 	 */
604 	gicv3_distif_pre_save(proc_num);
605 }
606 
607 /*****************************************************************************
608  * Function to restore the GIC Redistributor register context. We disable
609  * LPI and per-cpu interrupts before we start restore of the Redistributor.
610  * This function must be invoked after Distributor restore but prior to
611  * CPU interface enable. The pending and active interrupts are restored
612  * after the interrupts are fully configured and enabled.
613  *****************************************************************************/
614 void gicv3_rdistif_init_restore(unsigned int proc_num,
615 				const gicv3_redist_ctx_t * const rdist_ctx)
616 {
617 	uintptr_t gicr_base;
618 	unsigned int i, ppi_regs_num, regs_num;
619 
620 	assert(gicv3_driver_data != NULL);
621 	assert(proc_num < gicv3_driver_data->rdistif_num);
622 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
623 	assert(IS_IN_EL3());
624 	assert(rdist_ctx != NULL);
625 
626 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
627 
628 #if GIC_EXT_INTID
629 	/* Calculate number of PPI registers */
630 	ppi_regs_num = (unsigned int)((gicr_read_typer(gicr_base) >>
631 			TYPER_PPI_NUM_SHIFT) & TYPER_PPI_NUM_MASK) + 1;
632 	/* All other values except PPInum [0-2] are reserved */
633 	if (ppi_regs_num > 3U) {
634 		ppi_regs_num = 1U;
635 	}
636 #else
637 	ppi_regs_num = 1U;
638 #endif
639 	/* Power on redistributor */
640 	gicv3_rdistif_on(proc_num);
641 
642 	/*
643 	 * Call the post-restore hook that implements the IMP DEF sequence that
644 	 * may be required on some GIC implementations. As this may need to
645 	 * access the Redistributor registers, we pass it proc_num.
646 	 */
647 	gicv3_distif_post_restore(proc_num);
648 
649 	/*
650 	 * Disable all SGIs (imp. def.)/(E)PPIs before configuring them.
651 	 * This is a more scalable approach as it avoids clearing the enable
652 	 * bits in the GICD_CTLR.
653 	 */
654 	for (i = 0U; i < ppi_regs_num; ++i) {
655 		gicr_write_icenabler(gicr_base, i, ~0U);
656 	}
657 
658 	/* Wait for pending writes to GICR_ICENABLER */
659 	gicr_wait_for_pending_write(gicr_base);
660 
661 	/*
662 	 * Disable the LPIs to avoid unpredictable behavior when writing to
663 	 * GICR_PROPBASER and GICR_PENDBASER.
664 	 */
665 	gicr_write_ctlr(gicr_base,
666 			rdist_ctx->gicr_ctlr & ~(GICR_CTLR_EN_LPIS_BIT));
667 
668 	/* Restore registers' content */
669 	gicr_write_propbaser(gicr_base, rdist_ctx->gicr_propbaser);
670 	gicr_write_pendbaser(gicr_base, rdist_ctx->gicr_pendbaser);
671 
672 	/* 32 interrupt IDs per register */
673 	for (i = 0U; i < ppi_regs_num; ++i) {
674 		RESTORE_GICR_REG(gicr_base, rdist_ctx, igroupr, i);
675 		RESTORE_GICR_REG(gicr_base, rdist_ctx, igrpmodr, i);
676 	}
677 
678 	/* 4 interrupt IDs per GICR_IPRIORITYR register */
679 	regs_num = ppi_regs_num << 3;
680 	for (i = 0U; i < regs_num; ++i) {
681 		RESTORE_GICR_REG(gicr_base, rdist_ctx, ipriorityr, i);
682 	}
683 
684 	/* 16 interrupt IDs per GICR_ICFGR register */
685 	regs_num = ppi_regs_num << 1;
686 	for (i = 0U; i < regs_num; ++i) {
687 		RESTORE_GICR_REG(gicr_base, rdist_ctx, icfgr, i);
688 	}
689 
690 	gicr_write_nsacr(gicr_base, rdist_ctx->gicr_nsacr);
691 
692 	/* Restore after group and priorities are set.
693 	 * 32 interrupt IDs per register
694 	 */
695 	for (i = 0U; i < ppi_regs_num; ++i) {
696 		RESTORE_GICR_REG(gicr_base, rdist_ctx, ispendr, i);
697 		RESTORE_GICR_REG(gicr_base, rdist_ctx, isactiver, i);
698 	}
699 
700 	/*
701 	 * Wait for all writes to the Distributor to complete before enabling
702 	 * the SGI and (E)PPIs.
703 	 */
704 	gicr_wait_for_upstream_pending_write(gicr_base);
705 
706 	/* 32 interrupt IDs per GICR_ISENABLER register */
707 	for (i = 0U; i < ppi_regs_num; ++i) {
708 		RESTORE_GICR_REG(gicr_base, rdist_ctx, isenabler, i);
709 	}
710 
711 	/*
712 	 * Restore GICR_CTLR.Enable_LPIs bit and wait for pending writes in case
713 	 * the first write to GICR_CTLR was still in flight (this write only
714 	 * restores GICR_CTLR.Enable_LPIs and no waiting is required for this
715 	 * bit).
716 	 */
717 	gicr_write_ctlr(gicr_base, rdist_ctx->gicr_ctlr);
718 	gicr_wait_for_pending_write(gicr_base);
719 }
720 
721 /*****************************************************************************
722  * Function to save the GIC Distributor register context. This function
723  * must be invoked after CPU interface disable and Redistributor save.
724  *****************************************************************************/
725 void gicv3_distif_save(gicv3_dist_ctx_t * const dist_ctx)
726 {
727 	unsigned int typer_reg, num_ints;
728 #if GIC_EXT_INTID
729 	unsigned int num_eints;
730 #endif
731 
732 	assert(gicv3_driver_data != NULL);
733 	assert(gicv3_driver_data->gicd_base != 0U);
734 	assert(IS_IN_EL3());
735 	assert(dist_ctx != NULL);
736 
737 	uintptr_t gicd_base = gicv3_driver_data->gicd_base;
738 
739 	typer_reg = gicd_read_typer(gicd_base);
740 
741 	/* Maximum SPI INTID is 32 * (GICD_TYPER.ITLinesNumber + 1) - 1 */
742 	num_ints = ((typer_reg & TYPER_IT_LINES_NO_MASK) + 1U) << 5;
743 
744 	/* Filter out special INTIDs 1020-1023 */
745 	if (num_ints > (MAX_SPI_ID + 1U)) {
746 		num_ints = MAX_SPI_ID + 1U;
747 	}
748 
749 #if GIC_EXT_INTID
750 	/* Check if extended SPI range is implemented */
751 	if ((typer_reg & TYPER_ESPI) != 0U) {
752 		/*
753 		 * Maximum ESPI INTID is 32 * (GICD_TYPER.ESPI_range + 1) + 4095
754 		 */
755 		num_eints = ((((typer_reg >> TYPER_ESPI_RANGE_SHIFT) &
756 			TYPER_ESPI_RANGE_MASK) + 1U) << 5) + MIN_ESPI_ID - 1;
757 	} else {
758 		num_eints = 0U;
759 	}
760 #endif
761 	/* Wait for pending write to complete */
762 	gicd_wait_for_pending_write(gicd_base);
763 
764 	/* Save the GICD_CTLR */
765 	dist_ctx->gicd_ctlr = gicd_read_ctlr(gicd_base);
766 
767 	/* Save GICD_IGROUPR for INTIDs 32 - 1019 */
768 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUP);
769 
770 	/* Save GICD_IGROUPRE for INTIDs 4096 - 5119 */
771 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igroupr, IGROUP);
772 
773 	/* Save GICD_ISENABLER for INT_IDs 32 - 1019 */
774 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLE);
775 
776 	/* Save GICD_ISENABLERE for INT_IDs 4096 - 5119 */
777 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isenabler, ISENABLE);
778 
779 	/* Save GICD_ISPENDR for INTIDs 32 - 1019 */
780 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPEND);
781 
782 	/* Save GICD_ISPENDRE for INTIDs 4096 - 5119 */
783 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints,	ispendr, ISPEND);
784 
785 	/* Save GICD_ISACTIVER for INTIDs 32 - 1019 */
786 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVE);
787 
788 	/* Save GICD_ISACTIVERE for INTIDs 4096 - 5119 */
789 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isactiver, ISACTIVE);
790 
791 	/* Save GICD_IPRIORITYR for INTIDs 32 - 1019 */
792 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITY);
793 
794 	/* Save GICD_IPRIORITYRE for INTIDs 4096 - 5119 */
795 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ipriorityr, IPRIORITY);
796 
797 	/* Save GICD_ICFGR for INTIDs 32 - 1019 */
798 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFG);
799 
800 	/* Save GICD_ICFGRE for INTIDs 4096 - 5119 */
801 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, icfgr, ICFG);
802 
803 	/* Save GICD_IGRPMODR for INTIDs 32 - 1019 */
804 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMOD);
805 
806 	/* Save GICD_IGRPMODRE for INTIDs 4096 - 5119 */
807 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igrpmodr, IGRPMOD);
808 
809 	/* Save GICD_NSACR for INTIDs 32 - 1019 */
810 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSAC);
811 
812 	/* Save GICD_NSACRE for INTIDs 4096 - 5119 */
813 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, nsacr, NSAC);
814 
815 	/* Save GICD_IROUTER for INTIDs 32 - 1019 */
816 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTE);
817 
818 	/* Save GICD_IROUTERE for INTIDs 4096 - 5119 */
819 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, irouter, IROUTE);
820 
821 	/*
822 	 * GICD_ITARGETSR<n> and GICD_SPENDSGIR<n> are RAZ/WI when
823 	 * GICD_CTLR.ARE_(S|NS) bits are set which is the case for our GICv3
824 	 * driver.
825 	 */
826 }
827 
828 /*****************************************************************************
829  * Function to restore the GIC Distributor register context. We disable G0, G1S
830  * and G1NS interrupt groups before we start restore of the Distributor. This
831  * function must be invoked prior to Redistributor restore and CPU interface
832  * enable. The pending and active interrupts are restored after the interrupts
833  * are fully configured and enabled.
834  *****************************************************************************/
835 void gicv3_distif_init_restore(const gicv3_dist_ctx_t * const dist_ctx)
836 {
837 	unsigned int typer_reg, num_ints;
838 #if GIC_EXT_INTID
839 	unsigned int num_eints;
840 #endif
841 
842 	assert(gicv3_driver_data != NULL);
843 	assert(gicv3_driver_data->gicd_base != 0U);
844 	assert(IS_IN_EL3());
845 	assert(dist_ctx != NULL);
846 
847 	uintptr_t gicd_base = gicv3_driver_data->gicd_base;
848 
849 	/*
850 	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
851 	 * the ARE_S bit. The Distributor might generate a system error
852 	 * otherwise.
853 	 */
854 	gicd_clr_ctlr(gicd_base,
855 		      CTLR_ENABLE_G0_BIT |
856 		      CTLR_ENABLE_G1S_BIT |
857 		      CTLR_ENABLE_G1NS_BIT,
858 		      RWP_TRUE);
859 
860 	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
861 	gicd_set_ctlr(gicd_base, CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
862 
863 	typer_reg = gicd_read_typer(gicd_base);
864 
865 	/* Maximum SPI INTID is 32 * (GICD_TYPER.ITLinesNumber + 1) - 1 */
866 	num_ints = ((typer_reg & TYPER_IT_LINES_NO_MASK) + 1U) << 5;
867 
868 	/* Filter out special INTIDs 1020-1023 */
869 	if (num_ints > (MAX_SPI_ID + 1U)) {
870 		num_ints = MAX_SPI_ID + 1U;
871 	}
872 
873 #if GIC_EXT_INTID
874 	/* Check if extended SPI range is implemented */
875 	if ((typer_reg & TYPER_ESPI) != 0U) {
876 		/*
877 		 * Maximum ESPI INTID is 32 * (GICD_TYPER.ESPI_range + 1) + 4095
878 		 */
879 		num_eints = ((((typer_reg >> TYPER_ESPI_RANGE_SHIFT) &
880 			TYPER_ESPI_RANGE_MASK) + 1U) << 5) + MIN_ESPI_ID - 1;
881 	} else {
882 		num_eints = 0U;
883 	}
884 #endif
885 	/* Restore GICD_IGROUPR for INTIDs 32 - 1019 */
886 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUP);
887 
888 	/* Restore GICD_IGROUPRE for INTIDs 4096 - 5119 */
889 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igroupr, IGROUP);
890 
891 	/* Restore GICD_IPRIORITYR for INTIDs 32 - 1019 */
892 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITY);
893 
894 	/* Restore GICD_IPRIORITYRE for INTIDs 4096 - 5119 */
895 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ipriorityr, IPRIORITY);
896 
897 	/* Restore GICD_ICFGR for INTIDs 32 - 1019 */
898 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFG);
899 
900 	/* Restore GICD_ICFGRE for INTIDs 4096 - 5119 */
901 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, icfgr, ICFG);
902 
903 	/* Restore GICD_IGRPMODR for INTIDs 32 - 1019 */
904 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMOD);
905 
906 	/* Restore GICD_IGRPMODRE for INTIDs 4096 - 5119 */
907 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igrpmodr, IGRPMOD);
908 
909 	/* Restore GICD_NSACR for INTIDs 32 - 1019 */
910 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSAC);
911 
912 	/* Restore GICD_NSACRE for INTIDs 4096 - 5119 */
913 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, nsacr, NSAC);
914 
915 	/* Restore GICD_IROUTER for INTIDs 32 - 1019 */
916 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTE);
917 
918 	/* Restore GICD_IROUTERE for INTIDs 4096 - 5119 */
919 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, irouter, IROUTE);
920 
921 	/*
922 	 * Restore ISENABLER(E), ISPENDR(E) and ISACTIVER(E) after
923 	 * the interrupts are configured.
924 	 */
925 
926 	/* Restore GICD_ISENABLER for INT_IDs 32 - 1019 */
927 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLE);
928 
929 	/* Restore GICD_ISENABLERE for INT_IDs 4096 - 5119 */
930 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isenabler, ISENABLE);
931 
932 	/* Restore GICD_ISPENDR for INTIDs 32 - 1019 */
933 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPEND);
934 
935 	/* Restore GICD_ISPENDRE for INTIDs 4096 - 5119 */
936 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ispendr, ISPEND);
937 
938 	/* Restore GICD_ISACTIVER for INTIDs 32 - 1019 */
939 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVE);
940 
941 	/* Restore GICD_ISACTIVERE for INTIDs 4096 - 5119 */
942 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isactiver, ISACTIVE);
943 
944 	/* Restore the GICD_CTLR */
945 	gicd_write_ctlr(gicd_base, dist_ctx->gicd_ctlr);
946 	gicd_wait_for_pending_write(gicd_base);
947 }
948 
949 /*******************************************************************************
950  * This function gets the priority of the interrupt the processor is currently
951  * servicing.
952  ******************************************************************************/
953 unsigned int gicv3_get_running_priority(void)
954 {
955 	return (unsigned int)read_icc_rpr_el1();
956 }
957 
958 /*******************************************************************************
959  * This function checks if the interrupt identified by id is active (whether the
960  * state is either active, or active and pending). The proc_num is used if the
961  * interrupt is SGI or (E)PPI and programs the corresponding Redistributor
962  * interface.
963  ******************************************************************************/
964 unsigned int gicv3_get_interrupt_active(unsigned int id, unsigned int proc_num)
965 {
966 	assert(gicv3_driver_data != NULL);
967 	assert(gicv3_driver_data->gicd_base != 0U);
968 	assert(proc_num < gicv3_driver_data->rdistif_num);
969 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
970 
971 	/* Check interrupt ID */
972 	if (is_sgi_ppi(id)) {
973 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
974 		return gicr_get_isactiver(
975 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
976 	}
977 
978 	/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
979 	return gicd_get_isactiver(gicv3_driver_data->gicd_base, id);
980 }
981 
982 /*******************************************************************************
983  * This function enables the interrupt identified by id. The proc_num
984  * is used if the interrupt is SGI or PPI, and programs the corresponding
985  * Redistributor interface.
986  ******************************************************************************/
987 void gicv3_enable_interrupt(unsigned int id, unsigned int proc_num)
988 {
989 	assert(gicv3_driver_data != NULL);
990 	assert(gicv3_driver_data->gicd_base != 0U);
991 	assert(proc_num < gicv3_driver_data->rdistif_num);
992 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
993 
994 	/*
995 	 * Ensure that any shared variable updates depending on out of band
996 	 * interrupt trigger are observed before enabling interrupt.
997 	 */
998 	dsbishst();
999 
1000 	/* Check interrupt ID */
1001 	if (is_sgi_ppi(id)) {
1002 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1003 		gicr_set_isenabler(
1004 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
1005 	} else {
1006 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1007 		gicd_set_isenabler(gicv3_driver_data->gicd_base, id);
1008 	}
1009 }
1010 
1011 /*******************************************************************************
1012  * This function disables the interrupt identified by id. The proc_num
1013  * is used if the interrupt is SGI or PPI, and programs the corresponding
1014  * Redistributor interface.
1015  ******************************************************************************/
1016 void gicv3_disable_interrupt(unsigned int id, unsigned int proc_num)
1017 {
1018 	assert(gicv3_driver_data != NULL);
1019 	assert(gicv3_driver_data->gicd_base != 0U);
1020 	assert(proc_num < gicv3_driver_data->rdistif_num);
1021 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1022 
1023 	/*
1024 	 * Disable interrupt, and ensure that any shared variable updates
1025 	 * depending on out of band interrupt trigger are observed afterwards.
1026 	 */
1027 
1028 	/* Check interrupt ID */
1029 	if (is_sgi_ppi(id)) {
1030 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1031 		gicr_set_icenabler(
1032 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
1033 
1034 		/* Write to clear enable requires waiting for pending writes */
1035 		gicr_wait_for_pending_write(
1036 			gicv3_driver_data->rdistif_base_addrs[proc_num]);
1037 	} else {
1038 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1039 		gicd_set_icenabler(gicv3_driver_data->gicd_base, id);
1040 
1041 		/* Write to clear enable requires waiting for pending writes */
1042 		gicd_wait_for_pending_write(gicv3_driver_data->gicd_base);
1043 	}
1044 
1045 	dsbishst();
1046 }
1047 
1048 /*******************************************************************************
1049  * This function sets the interrupt priority as supplied for the given interrupt
1050  * id.
1051  ******************************************************************************/
1052 void gicv3_set_interrupt_priority(unsigned int id, unsigned int proc_num,
1053 		unsigned int priority)
1054 {
1055 	uintptr_t gicr_base;
1056 
1057 	assert(gicv3_driver_data != NULL);
1058 	assert(gicv3_driver_data->gicd_base != 0U);
1059 	assert(proc_num < gicv3_driver_data->rdistif_num);
1060 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1061 
1062 	/* Check interrupt ID */
1063 	if (is_sgi_ppi(id)) {
1064 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1065 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
1066 		gicr_set_ipriorityr(gicr_base, id, priority);
1067 	} else {
1068 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1069 		gicd_set_ipriorityr(gicv3_driver_data->gicd_base, id, priority);
1070 	}
1071 }
1072 
1073 /*******************************************************************************
1074  * This function assigns group for the interrupt identified by id. The proc_num
1075  * is used if the interrupt is SGI or (E)PPI, and programs the corresponding
1076  * Redistributor interface. The group can be any of GICV3_INTR_GROUP*
1077  ******************************************************************************/
1078 void gicv3_set_interrupt_type(unsigned int id, unsigned int proc_num,
1079 		unsigned int type)
1080 {
1081 	bool igroup = false, grpmod = false;
1082 	uintptr_t gicr_base;
1083 
1084 	assert(gicv3_driver_data != NULL);
1085 	assert(gicv3_driver_data->gicd_base != 0U);
1086 	assert(proc_num < gicv3_driver_data->rdistif_num);
1087 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1088 
1089 	switch (type) {
1090 	case INTR_GROUP1S:
1091 		igroup = false;
1092 		grpmod = true;
1093 		break;
1094 	case INTR_GROUP0:
1095 		igroup = false;
1096 		grpmod = false;
1097 		break;
1098 	case INTR_GROUP1NS:
1099 		igroup = true;
1100 		grpmod = false;
1101 		break;
1102 	default:
1103 		assert(false);
1104 		break;
1105 	}
1106 
1107 	/* Check interrupt ID */
1108 	if (is_sgi_ppi(id)) {
1109 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1110 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
1111 
1112 		igroup ? gicr_set_igroupr(gicr_base, id) :
1113 			 gicr_clr_igroupr(gicr_base, id);
1114 		grpmod ? gicr_set_igrpmodr(gicr_base, id) :
1115 			 gicr_clr_igrpmodr(gicr_base, id);
1116 	} else {
1117 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1118 
1119 		/* Serialize read-modify-write to Distributor registers */
1120 		spin_lock(&gic_lock);
1121 
1122 		igroup ? gicd_set_igroupr(gicv3_driver_data->gicd_base, id) :
1123 			 gicd_clr_igroupr(gicv3_driver_data->gicd_base, id);
1124 		grpmod ? gicd_set_igrpmodr(gicv3_driver_data->gicd_base, id) :
1125 			 gicd_clr_igrpmodr(gicv3_driver_data->gicd_base, id);
1126 
1127 		spin_unlock(&gic_lock);
1128 	}
1129 }
1130 
1131 /*******************************************************************************
1132  * This function raises the specified Secure Group 0 SGI.
1133  *
1134  * The target parameter must be a valid MPIDR in the system.
1135  ******************************************************************************/
1136 void gicv3_raise_secure_g0_sgi(unsigned int sgi_num, u_register_t target)
1137 {
1138 	unsigned int tgt, aff3, aff2, aff1, aff0;
1139 	uint64_t sgi_val;
1140 
1141 	/* Verify interrupt number is in the SGI range */
1142 	assert((sgi_num >= MIN_SGI_ID) && (sgi_num < MIN_PPI_ID));
1143 
1144 	/* Extract affinity fields from target */
1145 	aff0 = MPIDR_AFFLVL0_VAL(target);
1146 	aff1 = MPIDR_AFFLVL1_VAL(target);
1147 	aff2 = MPIDR_AFFLVL2_VAL(target);
1148 	aff3 = MPIDR_AFFLVL3_VAL(target);
1149 
1150 	/*
1151 	 * Make target list from affinity 0, and ensure GICv3 SGI can target
1152 	 * this PE.
1153 	 */
1154 	assert(aff0 < GICV3_MAX_SGI_TARGETS);
1155 	tgt = BIT_32(aff0);
1156 
1157 	/* Raise SGI to PE specified by its affinity */
1158 	sgi_val = GICV3_SGIR_VALUE(aff3, aff2, aff1, sgi_num, SGIR_IRM_TO_AFF,
1159 			tgt);
1160 
1161 	/*
1162 	 * Ensure that any shared variable updates depending on out of band
1163 	 * interrupt trigger are observed before raising SGI.
1164 	 */
1165 	dsbishst();
1166 	write_icc_sgi0r_el1(sgi_val);
1167 	isb();
1168 }
1169 
1170 /*******************************************************************************
1171  * This function sets the interrupt routing for the given (E)SPI interrupt id.
1172  * The interrupt routing is specified in routing mode and mpidr.
1173  *
1174  * The routing mode can be either of:
1175  *  - GICV3_IRM_ANY
1176  *  - GICV3_IRM_PE
1177  *
1178  * The mpidr is the affinity of the PE to which the interrupt will be routed,
1179  * and is ignored for routing mode GICV3_IRM_ANY.
1180  ******************************************************************************/
1181 void gicv3_set_spi_routing(unsigned int id, unsigned int irm, u_register_t mpidr)
1182 {
1183 	unsigned long long aff;
1184 	uint64_t router;
1185 
1186 	assert(gicv3_driver_data != NULL);
1187 	assert(gicv3_driver_data->gicd_base != 0U);
1188 
1189 	assert((irm == GICV3_IRM_ANY) || (irm == GICV3_IRM_PE));
1190 
1191 	assert(IS_SPI(id));
1192 
1193 	aff = gicd_irouter_val_from_mpidr(mpidr, irm);
1194 	gicd_write_irouter(gicv3_driver_data->gicd_base, id, aff);
1195 
1196 	/*
1197 	 * In implementations that do not require 1 of N distribution of SPIs,
1198 	 * IRM might be RAZ/WI. Read back and verify IRM bit.
1199 	 */
1200 	if (irm == GICV3_IRM_ANY) {
1201 		router = gicd_read_irouter(gicv3_driver_data->gicd_base, id);
1202 		if (((router >> IROUTER_IRM_SHIFT) & IROUTER_IRM_MASK) == 0U) {
1203 			ERROR("GICv3 implementation doesn't support routing ANY\n");
1204 			panic();
1205 		}
1206 	}
1207 }
1208 
1209 /*******************************************************************************
1210  * This function clears the pending status of an interrupt identified by id.
1211  * The proc_num is used if the interrupt is SGI or (E)PPI, and programs the
1212  * corresponding Redistributor interface.
1213  ******************************************************************************/
1214 void gicv3_clear_interrupt_pending(unsigned int id, unsigned int proc_num)
1215 {
1216 	assert(gicv3_driver_data != NULL);
1217 	assert(gicv3_driver_data->gicd_base != 0U);
1218 	assert(proc_num < gicv3_driver_data->rdistif_num);
1219 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1220 
1221 	/*
1222 	 * Clear pending interrupt, and ensure that any shared variable updates
1223 	 * depending on out of band interrupt trigger are observed afterwards.
1224 	 */
1225 
1226 	/* Check interrupt ID */
1227 	if (is_sgi_ppi(id)) {
1228 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1229 		gicr_set_icpendr(
1230 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
1231 	} else {
1232 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1233 		gicd_set_icpendr(gicv3_driver_data->gicd_base, id);
1234 	}
1235 
1236 	dsbishst();
1237 }
1238 
1239 /*******************************************************************************
1240  * This function sets the pending status of an interrupt identified by id.
1241  * The proc_num is used if the interrupt is SGI or PPI and programs the
1242  * corresponding Redistributor interface.
1243  ******************************************************************************/
1244 void gicv3_set_interrupt_pending(unsigned int id, unsigned int proc_num)
1245 {
1246 	assert(gicv3_driver_data != NULL);
1247 	assert(gicv3_driver_data->gicd_base != 0U);
1248 	assert(proc_num < gicv3_driver_data->rdistif_num);
1249 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1250 
1251 	/*
1252 	 * Ensure that any shared variable updates depending on out of band
1253 	 * interrupt trigger are observed before setting interrupt pending.
1254 	 */
1255 	dsbishst();
1256 
1257 	/* Check interrupt ID */
1258 	if (is_sgi_ppi(id)) {
1259 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1260 		gicr_set_ispendr(
1261 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
1262 	} else {
1263 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1264 		gicd_set_ispendr(gicv3_driver_data->gicd_base, id);
1265 	}
1266 }
1267 
1268 /*******************************************************************************
1269  * This function sets the PMR register with the supplied value. Returns the
1270  * original PMR.
1271  ******************************************************************************/
1272 unsigned int gicv3_set_pmr(unsigned int mask)
1273 {
1274 	unsigned int old_mask;
1275 
1276 	old_mask = (unsigned int)read_icc_pmr_el1();
1277 
1278 	/*
1279 	 * Order memory updates w.r.t. PMR write, and ensure they're visible
1280 	 * before potential out of band interrupt trigger because of PMR update.
1281 	 * PMR system register writes are self-synchronizing, so no ISB required
1282 	 * thereafter.
1283 	 */
1284 	dsbishst();
1285 	write_icc_pmr_el1(mask);
1286 
1287 	return old_mask;
1288 }
1289 
1290 /*******************************************************************************
1291  * This function delegates the responsibility of discovering the corresponding
1292  * Redistributor frames to each CPU itself. It is a modified version of
1293  * gicv3_rdistif_base_addrs_probe() and is executed by each CPU in the platform
1294  * unlike the previous way in which only the Primary CPU did the discovery of
1295  * all the Redistributor frames for every CPU. It also handles the scenario in
1296  * which the frames of various CPUs are not contiguous in physical memory.
1297  ******************************************************************************/
1298 int gicv3_rdistif_probe(const uintptr_t gicr_frame)
1299 {
1300 	u_register_t mpidr;
1301 	unsigned int proc_num, proc_self;
1302 	uint64_t typer_val;
1303 	uintptr_t rdistif_base;
1304 	bool gicr_frame_found = false;
1305 
1306 	assert(gicv3_driver_data->gicr_base == 0U);
1307 
1308 	/* Ensure this function is called with Data Cache enabled */
1309 #ifndef __aarch64__
1310 	assert((read_sctlr() & SCTLR_C_BIT) != 0U);
1311 #else
1312 	assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
1313 #endif /* !__aarch64__ */
1314 
1315 	proc_self = gicv3_driver_data->mpidr_to_core_pos(read_mpidr_el1());
1316 	rdistif_base = gicr_frame;
1317 	do {
1318 		typer_val = gicr_read_typer(rdistif_base);
1319 		if (gicv3_driver_data->mpidr_to_core_pos != NULL) {
1320 			mpidr = mpidr_from_gicr_typer(typer_val);
1321 			proc_num = gicv3_driver_data->mpidr_to_core_pos(mpidr);
1322 		} else {
1323 			proc_num = (unsigned int)(typer_val >>
1324 				TYPER_PROC_NUM_SHIFT) & TYPER_PROC_NUM_MASK;
1325 		}
1326 		if (proc_num == proc_self) {
1327 			/* The base address doesn't need to be initialized on
1328 			 * every warm boot.
1329 			 */
1330 			if (gicv3_driver_data->rdistif_base_addrs[proc_num]
1331 								!= 0U) {
1332 				return 0;
1333 			}
1334 			gicv3_driver_data->rdistif_base_addrs[proc_num] =
1335 			rdistif_base;
1336 			gicr_frame_found = true;
1337 			break;
1338 		}
1339 		rdistif_base += (uintptr_t)(ULL(1) << GICR_PCPUBASE_SHIFT);
1340 	} while ((typer_val & TYPER_LAST_BIT) == 0U);
1341 
1342 	if (!gicr_frame_found) {
1343 		return -1;
1344 	}
1345 
1346 	/*
1347 	 * Flush the driver data to ensure coherency. This is
1348 	 * not required if platform has HW_ASSISTED_COHERENCY
1349 	 * enabled.
1350 	 */
1351 #if !HW_ASSISTED_COHERENCY
1352 	/*
1353 	 * Flush the rdistif_base_addrs[] contents linked to the GICv3 driver.
1354 	 */
1355 	flush_dcache_range((uintptr_t)&(gicv3_driver_data->rdistif_base_addrs[proc_num]),
1356 		sizeof(*(gicv3_driver_data->rdistif_base_addrs)));
1357 #endif
1358 	return 0; /* Found matching GICR frame */
1359 }
1360 
1361 /******************************************************************************
1362  * This function checks the interrupt ID and returns true for SGIs and (E)PPIs
1363  * and false for (E)SPIs IDs.
1364  *****************************************************************************/
1365 static bool is_sgi_ppi(unsigned int id)
1366 {
1367 	/* SGIs: 0-15, PPIs: 16-31, EPPIs: 1056-1119 */
1368 	if (IS_SGI_PPI(id)) {
1369 		return true;
1370 	}
1371 
1372 	/* SPIs: 32-1019, ESPIs: 4096-5119 */
1373 	if (IS_SPI(id)) {
1374 		return false;
1375 	}
1376 
1377 	assert(false);
1378 	panic();
1379 }
1380