xref: /rk3399_ARM-atf/drivers/arm/gic/v3/gicv3_main.c (revision 8f3ad7661400c1cf23276f8ffff905102c54329a)
1 /*
2  * Copyright (c) 2015-2020, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 
9 #include <arch.h>
10 #include <arch_helpers.h>
11 #include <common/debug.h>
12 #include <common/interrupt_props.h>
13 #include <drivers/arm/gicv3.h>
14 #include <lib/spinlock.h>
15 
16 #include "gicv3_private.h"
17 
18 const gicv3_driver_data_t *gicv3_driver_data;
19 
20 /*
21  * Spinlock to guard registers needing read-modify-write. APIs protected by this
22  * spinlock are used either at boot time (when only a single CPU is active), or
23  * when the system is fully coherent.
24  */
25 static spinlock_t gic_lock;
26 
27 /*
28  * Redistributor power operations are weakly bound so that they can be
29  * overridden
30  */
31 #pragma weak gicv3_rdistif_off
32 #pragma weak gicv3_rdistif_on
33 
34 /* Check interrupt ID for SGI/(E)PPI and (E)SPIs */
35 static bool is_sgi_ppi(unsigned int id);
36 
37 /*
38  * Helper macros to save and restore GICR and GICD registers
39  * corresponding to their numbers to and from the context
40  */
41 #define RESTORE_GICR_REG(base, ctx, name, i)	\
42 	gicr_write_##name((base), (i), (ctx)->gicr_##name[(i)])
43 
44 #define SAVE_GICR_REG(base, ctx, name, i)	\
45 	(ctx)->gicr_##name[(i)] = gicr_read_##name((base), (i))
46 
47 /* Helper macros to save and restore GICD registers to and from the context */
48 #define RESTORE_GICD_REGS(base, ctx, intr_num, reg, REG)		\
49 	do {								\
50 		for (unsigned int int_id = MIN_SPI_ID; int_id < (intr_num);\
51 				int_id += (1U << REG##R_SHIFT)) {	\
52 			gicd_write_##reg((base), int_id,		\
53 				(ctx)->gicd_##reg[(int_id - MIN_SPI_ID) >> \
54 							REG##R_SHIFT]);	\
55 		}							\
56 	} while (false)
57 
58 #define SAVE_GICD_REGS(base, ctx, intr_num, reg, REG)			\
59 	do {								\
60 		for (unsigned int int_id = MIN_SPI_ID; int_id < (intr_num);\
61 				int_id += (1U << REG##R_SHIFT)) {	\
62 			(ctx)->gicd_##reg[(int_id - MIN_SPI_ID) >>	\
63 			REG##R_SHIFT] = gicd_read_##reg((base), int_id); \
64 		}							\
65 	} while (false)
66 
67 #if GIC_EXT_INTID
68 #define RESTORE_GICD_EREGS(base, ctx, intr_num, reg, REG)		\
69 	do {								\
70 		for (unsigned int int_id = MIN_ESPI_ID; int_id < (intr_num);\
71 				int_id += (1U << REG##R_SHIFT)) {	\
72 			gicd_write_##reg((base), int_id,		\
73 			(ctx)->gicd_##reg[(int_id - (MIN_ESPI_ID - MIN_SPI_ID))\
74 						>> REG##R_SHIFT]);	\
75 		}							\
76 	} while (false)
77 
78 #define SAVE_GICD_EREGS(base, ctx, intr_num, reg, REG)			\
79 	do {								\
80 		for (unsigned int int_id = MIN_ESPI_ID; int_id < (intr_num);\
81 				int_id += (1U << REG##R_SHIFT)) {	\
82 			(ctx)->gicd_##reg[(int_id - (MIN_ESPI_ID - MIN_SPI_ID))\
83 			>> REG##R_SHIFT] = gicd_read_##reg((base), int_id);\
84 		}							\
85 	} while (false)
86 #else
87 #define SAVE_GICD_EREGS(base, ctx, intr_num, reg, REG)
88 #define RESTORE_GICD_EREGS(base, ctx, intr_num, reg, REG)
89 #endif /* GIC_EXT_INTID */
90 
91 /*******************************************************************************
92  * This function initialises the ARM GICv3 driver in EL3 with provided platform
93  * inputs.
94  ******************************************************************************/
95 void __init gicv3_driver_init(const gicv3_driver_data_t *plat_driver_data)
96 {
97 	unsigned int gic_version;
98 	unsigned int gicv2_compat;
99 
100 	assert(plat_driver_data != NULL);
101 	assert(plat_driver_data->gicd_base != 0U);
102 	assert(plat_driver_data->rdistif_num != 0U);
103 	assert(plat_driver_data->rdistif_base_addrs != NULL);
104 
105 	assert(IS_IN_EL3());
106 
107 	assert((plat_driver_data->interrupt_props_num != 0U) ?
108 	       (plat_driver_data->interrupt_props != NULL) : 1);
109 
110 	/* Check for system register support */
111 #ifndef __aarch64__
112 	assert((read_id_pfr1() &
113 			(ID_PFR1_GIC_MASK << ID_PFR1_GIC_SHIFT)) != 0U);
114 #else
115 	assert((read_id_aa64pfr0_el1() &
116 			(ID_AA64PFR0_GIC_MASK << ID_AA64PFR0_GIC_SHIFT)) != 0U);
117 #endif /* !__aarch64__ */
118 
119 	/* The GIC version should be 3 */
120 	gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
121 	gic_version >>= PIDR2_ARCH_REV_SHIFT;
122 	gic_version &= PIDR2_ARCH_REV_MASK;
123 	assert(gic_version == ARCH_REV_GICV3);
124 
125 	/*
126 	 * Find out whether the GIC supports the GICv2 compatibility mode.
127 	 * The ARE_S bit resets to 0 if supported
128 	 */
129 	gicv2_compat = gicd_read_ctlr(plat_driver_data->gicd_base);
130 	gicv2_compat >>= CTLR_ARE_S_SHIFT;
131 	gicv2_compat = gicv2_compat & CTLR_ARE_S_MASK;
132 
133 	if (plat_driver_data->gicr_base != 0U) {
134 		/*
135 		 * Find the base address of each implemented Redistributor interface.
136 		 * The number of interfaces should be equal to the number of CPUs in the
137 		 * system. The memory for saving these addresses has to be allocated by
138 		 * the platform port
139 		 */
140 		gicv3_rdistif_base_addrs_probe(plat_driver_data->rdistif_base_addrs,
141 						   plat_driver_data->rdistif_num,
142 						   plat_driver_data->gicr_base,
143 						   plat_driver_data->mpidr_to_core_pos);
144 #if !HW_ASSISTED_COHERENCY
145 		/*
146 		 * Flush the rdistif_base_addrs[] contents linked to the GICv3 driver.
147 		 */
148 		flush_dcache_range((uintptr_t)(plat_driver_data->rdistif_base_addrs),
149 			plat_driver_data->rdistif_num *
150 			sizeof(*(plat_driver_data->rdistif_base_addrs)));
151 #endif
152 	}
153 	gicv3_driver_data = plat_driver_data;
154 
155 	/*
156 	 * The GIC driver data is initialized by the primary CPU with caches
157 	 * enabled. When the secondary CPU boots up, it initializes the
158 	 * GICC/GICR interface with the caches disabled. Hence flush the
159 	 * driver data to ensure coherency. This is not required if the
160 	 * platform has HW_ASSISTED_COHERENCY enabled.
161 	 */
162 #if !HW_ASSISTED_COHERENCY
163 	flush_dcache_range((uintptr_t)&gicv3_driver_data,
164 		sizeof(gicv3_driver_data));
165 	flush_dcache_range((uintptr_t)gicv3_driver_data,
166 		sizeof(*gicv3_driver_data));
167 #endif
168 
169 	INFO("GICv3 with%s legacy support detected."
170 			" ARM GICv3 driver initialized in EL3\n",
171 			(gicv2_compat == 0U) ? "" : "out");
172 }
173 
174 /*******************************************************************************
175  * This function initialises the GIC distributor interface based upon the data
176  * provided by the platform while initialising the driver.
177  ******************************************************************************/
178 void __init gicv3_distif_init(void)
179 {
180 	unsigned int bitmap;
181 
182 	assert(gicv3_driver_data != NULL);
183 	assert(gicv3_driver_data->gicd_base != 0U);
184 
185 	assert(IS_IN_EL3());
186 
187 	/*
188 	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
189 	 * the ARE_S bit. The Distributor might generate a system error
190 	 * otherwise.
191 	 */
192 	gicd_clr_ctlr(gicv3_driver_data->gicd_base,
193 		      CTLR_ENABLE_G0_BIT |
194 		      CTLR_ENABLE_G1S_BIT |
195 		      CTLR_ENABLE_G1NS_BIT,
196 		      RWP_TRUE);
197 
198 	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
199 	gicd_set_ctlr(gicv3_driver_data->gicd_base,
200 			CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
201 
202 	/* Set the default attribute of all (E)SPIs */
203 	gicv3_spis_config_defaults(gicv3_driver_data->gicd_base);
204 
205 	bitmap = gicv3_secure_spis_config_props(
206 			gicv3_driver_data->gicd_base,
207 			gicv3_driver_data->interrupt_props,
208 			gicv3_driver_data->interrupt_props_num);
209 
210 	/* Enable the secure (E)SPIs now that they have been configured */
211 	gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE);
212 }
213 
214 /*******************************************************************************
215  * This function initialises the GIC Redistributor interface of the calling CPU
216  * (identified by the 'proc_num' parameter) based upon the data provided by the
217  * platform while initialising the driver.
218  ******************************************************************************/
219 void gicv3_rdistif_init(unsigned int proc_num)
220 {
221 	uintptr_t gicr_base;
222 	unsigned int bitmap;
223 	uint32_t ctlr;
224 
225 	assert(gicv3_driver_data != NULL);
226 	assert(proc_num < gicv3_driver_data->rdistif_num);
227 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
228 	assert(gicv3_driver_data->gicd_base != 0U);
229 
230 	ctlr = gicd_read_ctlr(gicv3_driver_data->gicd_base);
231 	assert((ctlr & CTLR_ARE_S_BIT) != 0U);
232 
233 	assert(IS_IN_EL3());
234 
235 	/* Power on redistributor */
236 	gicv3_rdistif_on(proc_num);
237 
238 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
239 	assert(gicr_base != 0U);
240 
241 	/* Set the default attribute of all SGIs and (E)PPIs */
242 	gicv3_ppi_sgi_config_defaults(gicr_base);
243 
244 	bitmap = gicv3_secure_ppi_sgi_config_props(gicr_base,
245 			gicv3_driver_data->interrupt_props,
246 			gicv3_driver_data->interrupt_props_num);
247 
248 	/* Enable interrupt groups as required, if not already */
249 	if ((ctlr & bitmap) != bitmap) {
250 		gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE);
251 	}
252 }
253 
254 /*******************************************************************************
255  * Functions to perform power operations on GIC Redistributor
256  ******************************************************************************/
257 void gicv3_rdistif_off(unsigned int proc_num)
258 {
259 }
260 
261 void gicv3_rdistif_on(unsigned int proc_num)
262 {
263 }
264 
265 /*******************************************************************************
266  * This function enables the GIC CPU interface of the calling CPU using only
267  * system register accesses.
268  ******************************************************************************/
269 void gicv3_cpuif_enable(unsigned int proc_num)
270 {
271 	uintptr_t gicr_base;
272 	u_register_t scr_el3;
273 	unsigned int icc_sre_el3;
274 
275 	assert(gicv3_driver_data != NULL);
276 	assert(proc_num < gicv3_driver_data->rdistif_num);
277 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
278 	assert(IS_IN_EL3());
279 
280 	/* Mark the connected core as awake */
281 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
282 	gicv3_rdistif_mark_core_awake(gicr_base);
283 
284 	/* Disable the legacy interrupt bypass */
285 	icc_sre_el3 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT;
286 
287 	/*
288 	 * Enable system register access for EL3 and allow lower exception
289 	 * levels to configure the same for themselves. If the legacy mode is
290 	 * not supported, the SRE bit is RAO/WI
291 	 */
292 	icc_sre_el3 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT);
293 	write_icc_sre_el3(read_icc_sre_el3() | icc_sre_el3);
294 
295 	scr_el3 = read_scr_el3();
296 
297 	/*
298 	 * Switch to NS state to write Non secure ICC_SRE_EL1 and
299 	 * ICC_SRE_EL2 registers.
300 	 */
301 	write_scr_el3(scr_el3 | SCR_NS_BIT);
302 	isb();
303 
304 	write_icc_sre_el2(read_icc_sre_el2() | icc_sre_el3);
305 	write_icc_sre_el1(ICC_SRE_SRE_BIT);
306 	isb();
307 
308 	/* Switch to secure state. */
309 	write_scr_el3(scr_el3 & (~SCR_NS_BIT));
310 	isb();
311 
312 	/* Write the secure ICC_SRE_EL1 register */
313 	write_icc_sre_el1(ICC_SRE_SRE_BIT);
314 	isb();
315 
316 	/* Program the idle priority in the PMR */
317 	write_icc_pmr_el1(GIC_PRI_MASK);
318 
319 	/* Enable Group0 interrupts */
320 	write_icc_igrpen0_el1(IGRPEN1_EL1_ENABLE_G0_BIT);
321 
322 	/* Enable Group1 Secure interrupts */
323 	write_icc_igrpen1_el3(read_icc_igrpen1_el3() |
324 				IGRPEN1_EL3_ENABLE_G1S_BIT);
325 	isb();
326 }
327 
328 /*******************************************************************************
329  * This function disables the GIC CPU interface of the calling CPU using
330  * only system register accesses.
331  ******************************************************************************/
332 void gicv3_cpuif_disable(unsigned int proc_num)
333 {
334 	uintptr_t gicr_base;
335 
336 	assert(gicv3_driver_data != NULL);
337 	assert(proc_num < gicv3_driver_data->rdistif_num);
338 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
339 
340 	assert(IS_IN_EL3());
341 
342 	/* Disable legacy interrupt bypass */
343 	write_icc_sre_el3(read_icc_sre_el3() |
344 			  (ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT));
345 
346 	/* Disable Group0 interrupts */
347 	write_icc_igrpen0_el1(read_icc_igrpen0_el1() &
348 			      ~IGRPEN1_EL1_ENABLE_G0_BIT);
349 
350 	/* Disable Group1 Secure and Non-Secure interrupts */
351 	write_icc_igrpen1_el3(read_icc_igrpen1_el3() &
352 			      ~(IGRPEN1_EL3_ENABLE_G1NS_BIT |
353 			      IGRPEN1_EL3_ENABLE_G1S_BIT));
354 
355 	/* Synchronise accesses to group enable registers */
356 	isb();
357 
358 	/* Mark the connected core as asleep */
359 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
360 	assert(gicr_base != 0U);
361 	gicv3_rdistif_mark_core_asleep(gicr_base);
362 }
363 
364 /*******************************************************************************
365  * This function returns the id of the highest priority pending interrupt at
366  * the GIC cpu interface.
367  ******************************************************************************/
368 unsigned int gicv3_get_pending_interrupt_id(void)
369 {
370 	unsigned int id;
371 
372 	assert(IS_IN_EL3());
373 	id = (uint32_t)read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
374 
375 	/*
376 	 * If the ID is special identifier corresponding to G1S or G1NS
377 	 * interrupt, then read the highest pending group 1 interrupt.
378 	 */
379 	if ((id == PENDING_G1S_INTID) || (id == PENDING_G1NS_INTID)) {
380 		return (uint32_t)read_icc_hppir1_el1() & HPPIR1_EL1_INTID_MASK;
381 	}
382 
383 	return id;
384 }
385 
386 /*******************************************************************************
387  * This function returns the type of the highest priority pending interrupt at
388  * the GIC cpu interface. The return values can be one of the following :
389  *   PENDING_G1S_INTID  : The interrupt type is secure Group 1.
390  *   PENDING_G1NS_INTID : The interrupt type is non secure Group 1.
391  *   0 - 1019           : The interrupt type is secure Group 0.
392  *   GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
393  *                            sufficient priority to be signaled
394  ******************************************************************************/
395 unsigned int gicv3_get_pending_interrupt_type(void)
396 {
397 	assert(IS_IN_EL3());
398 	return (uint32_t)read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
399 }
400 
401 /*******************************************************************************
402  * This function returns the type of the interrupt id depending upon the group
403  * this interrupt has been configured under by the interrupt controller i.e.
404  * group0 or group1 Secure / Non Secure. The return value can be one of the
405  * following :
406  *    INTR_GROUP0  : The interrupt type is a Secure Group 0 interrupt
407  *    INTR_GROUP1S : The interrupt type is a Secure Group 1 secure interrupt
408  *    INTR_GROUP1NS: The interrupt type is a Secure Group 1 non secure
409  *                   interrupt.
410  ******************************************************************************/
411 unsigned int gicv3_get_interrupt_type(unsigned int id, unsigned int proc_num)
412 {
413 	unsigned int igroup, grpmodr;
414 	uintptr_t gicr_base;
415 
416 	assert(IS_IN_EL3());
417 	assert(gicv3_driver_data != NULL);
418 
419 	/* Ensure the parameters are valid */
420 	assert((id < PENDING_G1S_INTID) || (id >= MIN_LPI_ID));
421 	assert(proc_num < gicv3_driver_data->rdistif_num);
422 
423 	/* All LPI interrupts are Group 1 non secure */
424 	if (id >= MIN_LPI_ID) {
425 		return INTR_GROUP1NS;
426 	}
427 
428 	/* Check interrupt ID */
429 	if (is_sgi_ppi(id)) {
430 		/* SGIs: 0-15, PPIs: 16-31, EPPIs: 1056-1119 */
431 		assert(gicv3_driver_data->rdistif_base_addrs != NULL);
432 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
433 		igroup = gicr_get_igroupr(gicr_base, id);
434 		grpmodr = gicr_get_igrpmodr(gicr_base, id);
435 	} else {
436 		/* SPIs: 32-1019, ESPIs: 4096-5119 */
437 		assert(gicv3_driver_data->gicd_base != 0U);
438 		igroup = gicd_get_igroupr(gicv3_driver_data->gicd_base, id);
439 		grpmodr = gicd_get_igrpmodr(gicv3_driver_data->gicd_base, id);
440 	}
441 
442 	/*
443 	 * If the IGROUP bit is set, then it is a Group 1 Non secure
444 	 * interrupt
445 	 */
446 	if (igroup != 0U) {
447 		return INTR_GROUP1NS;
448 	}
449 
450 	/* If the GRPMOD bit is set, then it is a Group 1 Secure interrupt */
451 	if (grpmodr != 0U) {
452 		return INTR_GROUP1S;
453 	}
454 
455 	/* Else it is a Group 0 Secure interrupt */
456 	return INTR_GROUP0;
457 }
458 
459 /*****************************************************************************
460  * Function to save and disable the GIC ITS register context. The power
461  * management of GIC ITS is implementation-defined and this function doesn't
462  * save any memory structures required to support ITS. As the sequence to save
463  * this state is implementation defined, it should be executed in platform
464  * specific code. Calling this function alone and then powering down the GIC and
465  * ITS without implementing the aforementioned platform specific code will
466  * corrupt the ITS state.
467  *
468  * This function must be invoked after the GIC CPU interface is disabled.
469  *****************************************************************************/
470 void gicv3_its_save_disable(uintptr_t gits_base,
471 				gicv3_its_ctx_t * const its_ctx)
472 {
473 	unsigned int i;
474 
475 	assert(gicv3_driver_data != NULL);
476 	assert(IS_IN_EL3());
477 	assert(its_ctx != NULL);
478 	assert(gits_base != 0U);
479 
480 	its_ctx->gits_ctlr = gits_read_ctlr(gits_base);
481 
482 	/* Disable the ITS */
483 	gits_write_ctlr(gits_base, its_ctx->gits_ctlr & ~GITS_CTLR_ENABLED_BIT);
484 
485 	/* Wait for quiescent state */
486 	gits_wait_for_quiescent_bit(gits_base);
487 
488 	its_ctx->gits_cbaser = gits_read_cbaser(gits_base);
489 	its_ctx->gits_cwriter = gits_read_cwriter(gits_base);
490 
491 	for (i = 0U; i < ARRAY_SIZE(its_ctx->gits_baser); i++) {
492 		its_ctx->gits_baser[i] = gits_read_baser(gits_base, i);
493 	}
494 }
495 
496 /*****************************************************************************
497  * Function to restore the GIC ITS register context. The power
498  * management of GIC ITS is implementation defined and this function doesn't
499  * restore any memory structures required to support ITS. The assumption is
500  * that these structures are in memory and are retained during system suspend.
501  *
502  * This must be invoked before the GIC CPU interface is enabled.
503  *****************************************************************************/
504 void gicv3_its_restore(uintptr_t gits_base,
505 			const gicv3_its_ctx_t * const its_ctx)
506 {
507 	unsigned int i;
508 
509 	assert(gicv3_driver_data != NULL);
510 	assert(IS_IN_EL3());
511 	assert(its_ctx != NULL);
512 	assert(gits_base != 0U);
513 
514 	/* Assert that the GITS is disabled and quiescent */
515 	assert((gits_read_ctlr(gits_base) & GITS_CTLR_ENABLED_BIT) == 0U);
516 	assert((gits_read_ctlr(gits_base) & GITS_CTLR_QUIESCENT_BIT) != 0U);
517 
518 	gits_write_cbaser(gits_base, its_ctx->gits_cbaser);
519 	gits_write_cwriter(gits_base, its_ctx->gits_cwriter);
520 
521 	for (i = 0U; i < ARRAY_SIZE(its_ctx->gits_baser); i++) {
522 		gits_write_baser(gits_base, i, its_ctx->gits_baser[i]);
523 	}
524 
525 	/* Restore the ITS CTLR but leave the ITS disabled */
526 	gits_write_ctlr(gits_base, its_ctx->gits_ctlr & ~GITS_CTLR_ENABLED_BIT);
527 }
528 
529 /*****************************************************************************
530  * Function to save the GIC Redistributor register context. This function
531  * must be invoked after CPU interface disable and prior to Distributor save.
532  *****************************************************************************/
533 void gicv3_rdistif_save(unsigned int proc_num,
534 			gicv3_redist_ctx_t * const rdist_ctx)
535 {
536 	uintptr_t gicr_base;
537 	unsigned int i, ppi_regs_num, regs_num;
538 
539 	assert(gicv3_driver_data != NULL);
540 	assert(proc_num < gicv3_driver_data->rdistif_num);
541 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
542 	assert(IS_IN_EL3());
543 	assert(rdist_ctx != NULL);
544 
545 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
546 
547 #if GIC_EXT_INTID
548 	/* Calculate number of PPI registers */
549 	ppi_regs_num = (unsigned int)((gicr_read_typer(gicr_base) >>
550 			TYPER_PPI_NUM_SHIFT) & TYPER_PPI_NUM_MASK) + 1;
551 	/* All other values except PPInum [0-2] are reserved */
552 	if (ppi_regs_num > 3U) {
553 		ppi_regs_num = 1U;
554 	}
555 #else
556 	ppi_regs_num = 1U;
557 #endif
558 	/*
559 	 * Wait for any write to GICR_CTLR to complete before trying to save any
560 	 * state.
561 	 */
562 	gicr_wait_for_pending_write(gicr_base);
563 
564 	rdist_ctx->gicr_ctlr = gicr_read_ctlr(gicr_base);
565 
566 	rdist_ctx->gicr_propbaser = gicr_read_propbaser(gicr_base);
567 	rdist_ctx->gicr_pendbaser = gicr_read_pendbaser(gicr_base);
568 
569 	/* 32 interrupt IDs per register */
570 	for (i = 0U; i < ppi_regs_num; ++i) {
571 		SAVE_GICR_REG(gicr_base, rdist_ctx, igroupr, i);
572 		SAVE_GICR_REG(gicr_base, rdist_ctx, isenabler, i);
573 		SAVE_GICR_REG(gicr_base, rdist_ctx, ispendr, i);
574 		SAVE_GICR_REG(gicr_base, rdist_ctx, isactiver, i);
575 		SAVE_GICR_REG(gicr_base, rdist_ctx, igrpmodr, i);
576 	}
577 
578 	/* 16 interrupt IDs per GICR_ICFGR register */
579 	regs_num = ppi_regs_num << 1;
580 	for (i = 0U; i < regs_num; ++i) {
581 		SAVE_GICR_REG(gicr_base, rdist_ctx, icfgr, i);
582 	}
583 
584 	rdist_ctx->gicr_nsacr = gicr_read_nsacr(gicr_base);
585 
586 	/* 4 interrupt IDs per GICR_IPRIORITYR register */
587 	regs_num = ppi_regs_num << 3;
588 	for (i = 0U; i < regs_num; ++i) {
589 		SAVE_GICR_REG(gicr_base, rdist_ctx, ipriorityr, i);
590 	}
591 
592 	/*
593 	 * Call the pre-save hook that implements the IMP DEF sequence that may
594 	 * be required on some GIC implementations. As this may need to access
595 	 * the Redistributor registers, we pass it proc_num.
596 	 */
597 	gicv3_distif_pre_save(proc_num);
598 }
599 
600 /*****************************************************************************
601  * Function to restore the GIC Redistributor register context. We disable
602  * LPI and per-cpu interrupts before we start restore of the Redistributor.
603  * This function must be invoked after Distributor restore but prior to
604  * CPU interface enable. The pending and active interrupts are restored
605  * after the interrupts are fully configured and enabled.
606  *****************************************************************************/
607 void gicv3_rdistif_init_restore(unsigned int proc_num,
608 				const gicv3_redist_ctx_t * const rdist_ctx)
609 {
610 	uintptr_t gicr_base;
611 	unsigned int i, ppi_regs_num, regs_num;
612 
613 	assert(gicv3_driver_data != NULL);
614 	assert(proc_num < gicv3_driver_data->rdistif_num);
615 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
616 	assert(IS_IN_EL3());
617 	assert(rdist_ctx != NULL);
618 
619 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
620 
621 #if GIC_EXT_INTID
622 	/* Calculate number of PPI registers */
623 	ppi_regs_num = (unsigned int)((gicr_read_typer(gicr_base) >>
624 			TYPER_PPI_NUM_SHIFT) & TYPER_PPI_NUM_MASK) + 1;
625 	/* All other values except PPInum [0-2] are reserved */
626 	if (ppi_regs_num > 3U) {
627 		ppi_regs_num = 1U;
628 	}
629 #else
630 	ppi_regs_num = 1U;
631 #endif
632 	/* Power on redistributor */
633 	gicv3_rdistif_on(proc_num);
634 
635 	/*
636 	 * Call the post-restore hook that implements the IMP DEF sequence that
637 	 * may be required on some GIC implementations. As this may need to
638 	 * access the Redistributor registers, we pass it proc_num.
639 	 */
640 	gicv3_distif_post_restore(proc_num);
641 
642 	/*
643 	 * Disable all SGIs (imp. def.)/(E)PPIs before configuring them.
644 	 * This is a more scalable approach as it avoids clearing the enable
645 	 * bits in the GICD_CTLR.
646 	 */
647 	for (i = 0U; i < ppi_regs_num; ++i) {
648 		gicr_write_icenabler(gicr_base, i, ~0U);
649 	}
650 
651 	/* Wait for pending writes to GICR_ICENABLER */
652 	gicr_wait_for_pending_write(gicr_base);
653 
654 	/*
655 	 * Disable the LPIs to avoid unpredictable behavior when writing to
656 	 * GICR_PROPBASER and GICR_PENDBASER.
657 	 */
658 	gicr_write_ctlr(gicr_base,
659 			rdist_ctx->gicr_ctlr & ~(GICR_CTLR_EN_LPIS_BIT));
660 
661 	/* Restore registers' content */
662 	gicr_write_propbaser(gicr_base, rdist_ctx->gicr_propbaser);
663 	gicr_write_pendbaser(gicr_base, rdist_ctx->gicr_pendbaser);
664 
665 	/* 32 interrupt IDs per register */
666 	for (i = 0U; i < ppi_regs_num; ++i) {
667 		RESTORE_GICR_REG(gicr_base, rdist_ctx, igroupr, i);
668 		RESTORE_GICR_REG(gicr_base, rdist_ctx, igrpmodr, i);
669 	}
670 
671 	/* 4 interrupt IDs per GICR_IPRIORITYR register */
672 	regs_num = ppi_regs_num << 3;
673 	for (i = 0U; i < regs_num; ++i) {
674 		RESTORE_GICR_REG(gicr_base, rdist_ctx, ipriorityr, i);
675 	}
676 
677 	/* 16 interrupt IDs per GICR_ICFGR register */
678 	regs_num = ppi_regs_num << 1;
679 	for (i = 0U; i < regs_num; ++i) {
680 		RESTORE_GICR_REG(gicr_base, rdist_ctx, icfgr, i);
681 	}
682 
683 	gicr_write_nsacr(gicr_base, rdist_ctx->gicr_nsacr);
684 
685 	/* Restore after group and priorities are set.
686 	 * 32 interrupt IDs per register
687 	 */
688 	for (i = 0U; i < ppi_regs_num; ++i) {
689 		RESTORE_GICR_REG(gicr_base, rdist_ctx, ispendr, i);
690 		RESTORE_GICR_REG(gicr_base, rdist_ctx, isactiver, i);
691 	}
692 
693 	/*
694 	 * Wait for all writes to the Distributor to complete before enabling
695 	 * the SGI and (E)PPIs.
696 	 */
697 	gicr_wait_for_upstream_pending_write(gicr_base);
698 
699 	/* 32 interrupt IDs per GICR_ISENABLER register */
700 	for (i = 0U; i < ppi_regs_num; ++i) {
701 		RESTORE_GICR_REG(gicr_base, rdist_ctx, isenabler, i);
702 	}
703 
704 	/*
705 	 * Restore GICR_CTLR.Enable_LPIs bit and wait for pending writes in case
706 	 * the first write to GICR_CTLR was still in flight (this write only
707 	 * restores GICR_CTLR.Enable_LPIs and no waiting is required for this
708 	 * bit).
709 	 */
710 	gicr_write_ctlr(gicr_base, rdist_ctx->gicr_ctlr);
711 	gicr_wait_for_pending_write(gicr_base);
712 }
713 
714 /*****************************************************************************
715  * Function to save the GIC Distributor register context. This function
716  * must be invoked after CPU interface disable and Redistributor save.
717  *****************************************************************************/
718 void gicv3_distif_save(gicv3_dist_ctx_t * const dist_ctx)
719 {
720 	unsigned int typer_reg, num_ints;
721 #if GIC_EXT_INTID
722 	unsigned int num_eints;
723 #endif
724 
725 	assert(gicv3_driver_data != NULL);
726 	assert(gicv3_driver_data->gicd_base != 0U);
727 	assert(IS_IN_EL3());
728 	assert(dist_ctx != NULL);
729 
730 	uintptr_t gicd_base = gicv3_driver_data->gicd_base;
731 
732 	typer_reg = gicd_read_typer(gicd_base);
733 
734 	/* Maximum SPI INTID is 32 * (GICD_TYPER.ITLinesNumber + 1) - 1 */
735 	num_ints = ((typer_reg & TYPER_IT_LINES_NO_MASK) + 1U) << 5;
736 
737 	/* Filter out special INTIDs 1020-1023 */
738 	if (num_ints > (MAX_SPI_ID + 1U)) {
739 		num_ints = MAX_SPI_ID + 1U;
740 	}
741 
742 #if GIC_EXT_INTID
743 	/* Check if extended SPI range is implemented */
744 	if ((typer_reg & TYPER_ESPI) != 0U) {
745 		/*
746 		 * Maximum ESPI INTID is 32 * (GICD_TYPER.ESPI_range + 1) + 4095
747 		 */
748 		num_eints = ((((typer_reg >> TYPER_ESPI_RANGE_SHIFT) &
749 			TYPER_ESPI_RANGE_MASK) + 1U) << 5) + MIN_ESPI_ID - 1;
750 	} else {
751 		num_eints = 0U;
752 	}
753 #endif
754 	/* Wait for pending write to complete */
755 	gicd_wait_for_pending_write(gicd_base);
756 
757 	/* Save the GICD_CTLR */
758 	dist_ctx->gicd_ctlr = gicd_read_ctlr(gicd_base);
759 
760 	/* Save GICD_IGROUPR for INTIDs 32 - 1019 */
761 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUP);
762 
763 	/* Save GICD_IGROUPRE for INTIDs 4096 - 5119 */
764 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igroupr, IGROUP);
765 
766 	/* Save GICD_ISENABLER for INT_IDs 32 - 1019 */
767 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLE);
768 
769 	/* Save GICD_ISENABLERE for INT_IDs 4096 - 5119 */
770 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isenabler, ISENABLE);
771 
772 	/* Save GICD_ISPENDR for INTIDs 32 - 1019 */
773 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPEND);
774 
775 	/* Save GICD_ISPENDRE for INTIDs 4096 - 5119 */
776 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints,	ispendr, ISPEND);
777 
778 	/* Save GICD_ISACTIVER for INTIDs 32 - 1019 */
779 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVE);
780 
781 	/* Save GICD_ISACTIVERE for INTIDs 4096 - 5119 */
782 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isactiver, ISACTIVE);
783 
784 	/* Save GICD_IPRIORITYR for INTIDs 32 - 1019 */
785 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITY);
786 
787 	/* Save GICD_IPRIORITYRE for INTIDs 4096 - 5119 */
788 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ipriorityr, IPRIORITY);
789 
790 	/* Save GICD_ICFGR for INTIDs 32 - 1019 */
791 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFG);
792 
793 	/* Save GICD_ICFGRE for INTIDs 4096 - 5119 */
794 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, icfgr, ICFG);
795 
796 	/* Save GICD_IGRPMODR for INTIDs 32 - 1019 */
797 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMOD);
798 
799 	/* Save GICD_IGRPMODRE for INTIDs 4096 - 5119 */
800 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igrpmodr, IGRPMOD);
801 
802 	/* Save GICD_NSACR for INTIDs 32 - 1019 */
803 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSAC);
804 
805 	/* Save GICD_NSACRE for INTIDs 4096 - 5119 */
806 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, nsacr, NSAC);
807 
808 	/* Save GICD_IROUTER for INTIDs 32 - 1019 */
809 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTE);
810 
811 	/* Save GICD_IROUTERE for INTIDs 4096 - 5119 */
812 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, irouter, IROUTE);
813 
814 	/*
815 	 * GICD_ITARGETSR<n> and GICD_SPENDSGIR<n> are RAZ/WI when
816 	 * GICD_CTLR.ARE_(S|NS) bits are set which is the case for our GICv3
817 	 * driver.
818 	 */
819 }
820 
821 /*****************************************************************************
822  * Function to restore the GIC Distributor register context. We disable G0, G1S
823  * and G1NS interrupt groups before we start restore of the Distributor. This
824  * function must be invoked prior to Redistributor restore and CPU interface
825  * enable. The pending and active interrupts are restored after the interrupts
826  * are fully configured and enabled.
827  *****************************************************************************/
828 void gicv3_distif_init_restore(const gicv3_dist_ctx_t * const dist_ctx)
829 {
830 	unsigned int typer_reg, num_ints;
831 #if GIC_EXT_INTID
832 	unsigned int num_eints;
833 #endif
834 
835 	assert(gicv3_driver_data != NULL);
836 	assert(gicv3_driver_data->gicd_base != 0U);
837 	assert(IS_IN_EL3());
838 	assert(dist_ctx != NULL);
839 
840 	uintptr_t gicd_base = gicv3_driver_data->gicd_base;
841 
842 	/*
843 	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
844 	 * the ARE_S bit. The Distributor might generate a system error
845 	 * otherwise.
846 	 */
847 	gicd_clr_ctlr(gicd_base,
848 		      CTLR_ENABLE_G0_BIT |
849 		      CTLR_ENABLE_G1S_BIT |
850 		      CTLR_ENABLE_G1NS_BIT,
851 		      RWP_TRUE);
852 
853 	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
854 	gicd_set_ctlr(gicd_base, CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
855 
856 	typer_reg = gicd_read_typer(gicd_base);
857 
858 	/* Maximum SPI INTID is 32 * (GICD_TYPER.ITLinesNumber + 1) - 1 */
859 	num_ints = ((typer_reg & TYPER_IT_LINES_NO_MASK) + 1U) << 5;
860 
861 	/* Filter out special INTIDs 1020-1023 */
862 	if (num_ints > (MAX_SPI_ID + 1U)) {
863 		num_ints = MAX_SPI_ID + 1U;
864 	}
865 
866 #if GIC_EXT_INTID
867 	/* Check if extended SPI range is implemented */
868 	if ((typer_reg & TYPER_ESPI) != 0U) {
869 		/*
870 		 * Maximum ESPI INTID is 32 * (GICD_TYPER.ESPI_range + 1) + 4095
871 		 */
872 		num_eints = ((((typer_reg >> TYPER_ESPI_RANGE_SHIFT) &
873 			TYPER_ESPI_RANGE_MASK) + 1U) << 5) + MIN_ESPI_ID - 1;
874 	} else {
875 		num_eints = 0U;
876 	}
877 #endif
878 	/* Restore GICD_IGROUPR for INTIDs 32 - 1019 */
879 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUP);
880 
881 	/* Restore GICD_IGROUPRE for INTIDs 4096 - 5119 */
882 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igroupr, IGROUP);
883 
884 	/* Restore GICD_IPRIORITYR for INTIDs 32 - 1019 */
885 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITY);
886 
887 	/* Restore GICD_IPRIORITYRE for INTIDs 4096 - 5119 */
888 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ipriorityr, IPRIORITY);
889 
890 	/* Restore GICD_ICFGR for INTIDs 32 - 1019 */
891 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFG);
892 
893 	/* Restore GICD_ICFGRE for INTIDs 4096 - 5119 */
894 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, icfgr, ICFG);
895 
896 	/* Restore GICD_IGRPMODR for INTIDs 32 - 1019 */
897 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMOD);
898 
899 	/* Restore GICD_IGRPMODRE for INTIDs 4096 - 5119 */
900 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igrpmodr, IGRPMOD);
901 
902 	/* Restore GICD_NSACR for INTIDs 32 - 1019 */
903 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSAC);
904 
905 	/* Restore GICD_NSACRE for INTIDs 4096 - 5119 */
906 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, nsacr, NSAC);
907 
908 	/* Restore GICD_IROUTER for INTIDs 32 - 1019 */
909 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTE);
910 
911 	/* Restore GICD_IROUTERE for INTIDs 4096 - 5119 */
912 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, irouter, IROUTE);
913 
914 	/*
915 	 * Restore ISENABLER(E), ISPENDR(E) and ISACTIVER(E) after
916 	 * the interrupts are configured.
917 	 */
918 
919 	/* Restore GICD_ISENABLER for INT_IDs 32 - 1019 */
920 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLE);
921 
922 	/* Restore GICD_ISENABLERE for INT_IDs 4096 - 5119 */
923 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isenabler, ISENABLE);
924 
925 	/* Restore GICD_ISPENDR for INTIDs 32 - 1019 */
926 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPEND);
927 
928 	/* Restore GICD_ISPENDRE for INTIDs 4096 - 5119 */
929 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ispendr, ISPEND);
930 
931 	/* Restore GICD_ISACTIVER for INTIDs 32 - 1019 */
932 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVE);
933 
934 	/* Restore GICD_ISACTIVERE for INTIDs 4096 - 5119 */
935 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isactiver, ISACTIVE);
936 
937 	/* Restore the GICD_CTLR */
938 	gicd_write_ctlr(gicd_base, dist_ctx->gicd_ctlr);
939 	gicd_wait_for_pending_write(gicd_base);
940 }
941 
942 /*******************************************************************************
943  * This function gets the priority of the interrupt the processor is currently
944  * servicing.
945  ******************************************************************************/
946 unsigned int gicv3_get_running_priority(void)
947 {
948 	return (unsigned int)read_icc_rpr_el1();
949 }
950 
951 /*******************************************************************************
952  * This function checks if the interrupt identified by id is active (whether the
953  * state is either active, or active and pending). The proc_num is used if the
954  * interrupt is SGI or (E)PPI and programs the corresponding Redistributor
955  * interface.
956  ******************************************************************************/
957 unsigned int gicv3_get_interrupt_active(unsigned int id, unsigned int proc_num)
958 {
959 	assert(gicv3_driver_data != NULL);
960 	assert(gicv3_driver_data->gicd_base != 0U);
961 	assert(proc_num < gicv3_driver_data->rdistif_num);
962 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
963 
964 	/* Check interrupt ID */
965 	if (is_sgi_ppi(id)) {
966 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
967 		return gicr_get_isactiver(
968 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
969 	}
970 
971 	/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
972 	return gicd_get_isactiver(gicv3_driver_data->gicd_base, id);
973 }
974 
975 /*******************************************************************************
976  * This function enables the interrupt identified by id. The proc_num
977  * is used if the interrupt is SGI or PPI, and programs the corresponding
978  * Redistributor interface.
979  ******************************************************************************/
980 void gicv3_enable_interrupt(unsigned int id, unsigned int proc_num)
981 {
982 	assert(gicv3_driver_data != NULL);
983 	assert(gicv3_driver_data->gicd_base != 0U);
984 	assert(proc_num < gicv3_driver_data->rdistif_num);
985 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
986 
987 	/*
988 	 * Ensure that any shared variable updates depending on out of band
989 	 * interrupt trigger are observed before enabling interrupt.
990 	 */
991 	dsbishst();
992 
993 	/* Check interrupt ID */
994 	if (is_sgi_ppi(id)) {
995 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
996 		gicr_set_isenabler(
997 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
998 	} else {
999 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1000 		gicd_set_isenabler(gicv3_driver_data->gicd_base, id);
1001 	}
1002 }
1003 
1004 /*******************************************************************************
1005  * This function disables the interrupt identified by id. The proc_num
1006  * is used if the interrupt is SGI or PPI, and programs the corresponding
1007  * Redistributor interface.
1008  ******************************************************************************/
1009 void gicv3_disable_interrupt(unsigned int id, unsigned int proc_num)
1010 {
1011 	assert(gicv3_driver_data != NULL);
1012 	assert(gicv3_driver_data->gicd_base != 0U);
1013 	assert(proc_num < gicv3_driver_data->rdistif_num);
1014 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1015 
1016 	/*
1017 	 * Disable interrupt, and ensure that any shared variable updates
1018 	 * depending on out of band interrupt trigger are observed afterwards.
1019 	 */
1020 
1021 	/* Check interrupt ID */
1022 	if (is_sgi_ppi(id)) {
1023 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1024 		gicr_set_icenabler(
1025 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
1026 
1027 		/* Write to clear enable requires waiting for pending writes */
1028 		gicr_wait_for_pending_write(
1029 			gicv3_driver_data->rdistif_base_addrs[proc_num]);
1030 	} else {
1031 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1032 		gicd_set_icenabler(gicv3_driver_data->gicd_base, id);
1033 
1034 		/* Write to clear enable requires waiting for pending writes */
1035 		gicd_wait_for_pending_write(gicv3_driver_data->gicd_base);
1036 	}
1037 
1038 	dsbishst();
1039 }
1040 
1041 /*******************************************************************************
1042  * This function sets the interrupt priority as supplied for the given interrupt
1043  * id.
1044  ******************************************************************************/
1045 void gicv3_set_interrupt_priority(unsigned int id, unsigned int proc_num,
1046 		unsigned int priority)
1047 {
1048 	uintptr_t gicr_base;
1049 
1050 	assert(gicv3_driver_data != NULL);
1051 	assert(gicv3_driver_data->gicd_base != 0U);
1052 	assert(proc_num < gicv3_driver_data->rdistif_num);
1053 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1054 
1055 	/* Check interrupt ID */
1056 	if (is_sgi_ppi(id)) {
1057 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1058 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
1059 		gicr_set_ipriorityr(gicr_base, id, priority);
1060 	} else {
1061 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1062 		gicd_set_ipriorityr(gicv3_driver_data->gicd_base, id, priority);
1063 	}
1064 }
1065 
1066 /*******************************************************************************
1067  * This function assigns group for the interrupt identified by id. The proc_num
1068  * is used if the interrupt is SGI or (E)PPI, and programs the corresponding
1069  * Redistributor interface. The group can be any of GICV3_INTR_GROUP*
1070  ******************************************************************************/
1071 void gicv3_set_interrupt_type(unsigned int id, unsigned int proc_num,
1072 		unsigned int type)
1073 {
1074 	bool igroup = false, grpmod = false;
1075 	uintptr_t gicr_base;
1076 
1077 	assert(gicv3_driver_data != NULL);
1078 	assert(gicv3_driver_data->gicd_base != 0U);
1079 	assert(proc_num < gicv3_driver_data->rdistif_num);
1080 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1081 
1082 	switch (type) {
1083 	case INTR_GROUP1S:
1084 		igroup = false;
1085 		grpmod = true;
1086 		break;
1087 	case INTR_GROUP0:
1088 		igroup = false;
1089 		grpmod = false;
1090 		break;
1091 	case INTR_GROUP1NS:
1092 		igroup = true;
1093 		grpmod = false;
1094 		break;
1095 	default:
1096 		assert(false);
1097 		break;
1098 	}
1099 
1100 	/* Check interrupt ID */
1101 	if (is_sgi_ppi(id)) {
1102 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1103 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
1104 
1105 		igroup ? gicr_set_igroupr(gicr_base, id) :
1106 			 gicr_clr_igroupr(gicr_base, id);
1107 		grpmod ? gicr_set_igrpmodr(gicr_base, id) :
1108 			 gicr_clr_igrpmodr(gicr_base, id);
1109 	} else {
1110 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1111 
1112 		/* Serialize read-modify-write to Distributor registers */
1113 		spin_lock(&gic_lock);
1114 
1115 		igroup ? gicd_set_igroupr(gicv3_driver_data->gicd_base, id) :
1116 			 gicd_clr_igroupr(gicv3_driver_data->gicd_base, id);
1117 		grpmod ? gicd_set_igrpmodr(gicv3_driver_data->gicd_base, id) :
1118 			 gicd_clr_igrpmodr(gicv3_driver_data->gicd_base, id);
1119 
1120 		spin_unlock(&gic_lock);
1121 	}
1122 }
1123 
1124 /*******************************************************************************
1125  * This function raises the specified Secure Group 0 SGI.
1126  *
1127  * The target parameter must be a valid MPIDR in the system.
1128  ******************************************************************************/
1129 void gicv3_raise_secure_g0_sgi(unsigned int sgi_num, u_register_t target)
1130 {
1131 	unsigned int tgt, aff3, aff2, aff1, aff0;
1132 	uint64_t sgi_val;
1133 
1134 	/* Verify interrupt number is in the SGI range */
1135 	assert((sgi_num >= MIN_SGI_ID) && (sgi_num < MIN_PPI_ID));
1136 
1137 	/* Extract affinity fields from target */
1138 	aff0 = MPIDR_AFFLVL0_VAL(target);
1139 	aff1 = MPIDR_AFFLVL1_VAL(target);
1140 	aff2 = MPIDR_AFFLVL2_VAL(target);
1141 	aff3 = MPIDR_AFFLVL3_VAL(target);
1142 
1143 	/*
1144 	 * Make target list from affinity 0, and ensure GICv3 SGI can target
1145 	 * this PE.
1146 	 */
1147 	assert(aff0 < GICV3_MAX_SGI_TARGETS);
1148 	tgt = BIT_32(aff0);
1149 
1150 	/* Raise SGI to PE specified by its affinity */
1151 	sgi_val = GICV3_SGIR_VALUE(aff3, aff2, aff1, sgi_num, SGIR_IRM_TO_AFF,
1152 			tgt);
1153 
1154 	/*
1155 	 * Ensure that any shared variable updates depending on out of band
1156 	 * interrupt trigger are observed before raising SGI.
1157 	 */
1158 	dsbishst();
1159 	write_icc_sgi0r_el1(sgi_val);
1160 	isb();
1161 }
1162 
1163 /*******************************************************************************
1164  * This function sets the interrupt routing for the given (E)SPI interrupt id.
1165  * The interrupt routing is specified in routing mode and mpidr.
1166  *
1167  * The routing mode can be either of:
1168  *  - GICV3_IRM_ANY
1169  *  - GICV3_IRM_PE
1170  *
1171  * The mpidr is the affinity of the PE to which the interrupt will be routed,
1172  * and is ignored for routing mode GICV3_IRM_ANY.
1173  ******************************************************************************/
1174 void gicv3_set_spi_routing(unsigned int id, unsigned int irm, u_register_t mpidr)
1175 {
1176 	unsigned long long aff;
1177 	uint64_t router;
1178 
1179 	assert(gicv3_driver_data != NULL);
1180 	assert(gicv3_driver_data->gicd_base != 0U);
1181 
1182 	assert((irm == GICV3_IRM_ANY) || (irm == GICV3_IRM_PE));
1183 
1184 	assert(IS_SPI(id));
1185 
1186 	aff = gicd_irouter_val_from_mpidr(mpidr, irm);
1187 	gicd_write_irouter(gicv3_driver_data->gicd_base, id, aff);
1188 
1189 	/*
1190 	 * In implementations that do not require 1 of N distribution of SPIs,
1191 	 * IRM might be RAZ/WI. Read back and verify IRM bit.
1192 	 */
1193 	if (irm == GICV3_IRM_ANY) {
1194 		router = gicd_read_irouter(gicv3_driver_data->gicd_base, id);
1195 		if (((router >> IROUTER_IRM_SHIFT) & IROUTER_IRM_MASK) == 0U) {
1196 			ERROR("GICv3 implementation doesn't support routing ANY\n");
1197 			panic();
1198 		}
1199 	}
1200 }
1201 
1202 /*******************************************************************************
1203  * This function clears the pending status of an interrupt identified by id.
1204  * The proc_num is used if the interrupt is SGI or (E)PPI, and programs the
1205  * corresponding Redistributor interface.
1206  ******************************************************************************/
1207 void gicv3_clear_interrupt_pending(unsigned int id, unsigned int proc_num)
1208 {
1209 	assert(gicv3_driver_data != NULL);
1210 	assert(gicv3_driver_data->gicd_base != 0U);
1211 	assert(proc_num < gicv3_driver_data->rdistif_num);
1212 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1213 
1214 	/*
1215 	 * Clear pending interrupt, and ensure that any shared variable updates
1216 	 * depending on out of band interrupt trigger are observed afterwards.
1217 	 */
1218 
1219 	/* Check interrupt ID */
1220 	if (is_sgi_ppi(id)) {
1221 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1222 		gicr_set_icpendr(
1223 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
1224 	} else {
1225 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1226 		gicd_set_icpendr(gicv3_driver_data->gicd_base, id);
1227 	}
1228 
1229 	dsbishst();
1230 }
1231 
1232 /*******************************************************************************
1233  * This function sets the pending status of an interrupt identified by id.
1234  * The proc_num is used if the interrupt is SGI or PPI and programs the
1235  * corresponding Redistributor interface.
1236  ******************************************************************************/
1237 void gicv3_set_interrupt_pending(unsigned int id, unsigned int proc_num)
1238 {
1239 	assert(gicv3_driver_data != NULL);
1240 	assert(gicv3_driver_data->gicd_base != 0U);
1241 	assert(proc_num < gicv3_driver_data->rdistif_num);
1242 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1243 
1244 	/*
1245 	 * Ensure that any shared variable updates depending on out of band
1246 	 * interrupt trigger are observed before setting interrupt pending.
1247 	 */
1248 	dsbishst();
1249 
1250 	/* Check interrupt ID */
1251 	if (is_sgi_ppi(id)) {
1252 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1253 		gicr_set_ispendr(
1254 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
1255 	} else {
1256 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1257 		gicd_set_ispendr(gicv3_driver_data->gicd_base, id);
1258 	}
1259 }
1260 
1261 /*******************************************************************************
1262  * This function sets the PMR register with the supplied value. Returns the
1263  * original PMR.
1264  ******************************************************************************/
1265 unsigned int gicv3_set_pmr(unsigned int mask)
1266 {
1267 	unsigned int old_mask;
1268 
1269 	old_mask = (unsigned int)read_icc_pmr_el1();
1270 
1271 	/*
1272 	 * Order memory updates w.r.t. PMR write, and ensure they're visible
1273 	 * before potential out of band interrupt trigger because of PMR update.
1274 	 * PMR system register writes are self-synchronizing, so no ISB required
1275 	 * thereafter.
1276 	 */
1277 	dsbishst();
1278 	write_icc_pmr_el1(mask);
1279 
1280 	return old_mask;
1281 }
1282 
1283 /*******************************************************************************
1284  * This function delegates the responsibility of discovering the corresponding
1285  * Redistributor frames to each CPU itself. It is a modified version of
1286  * gicv3_rdistif_base_addrs_probe() and is executed by each CPU in the platform
1287  * unlike the previous way in which only the Primary CPU did the discovery of
1288  * all the Redistributor frames for every CPU. It also handles the scenario in
1289  * which the frames of various CPUs are not contiguous in physical memory.
1290  ******************************************************************************/
1291 int gicv3_rdistif_probe(const uintptr_t gicr_frame)
1292 {
1293 	u_register_t mpidr;
1294 	unsigned int proc_num, proc_self;
1295 	uint64_t typer_val;
1296 	uintptr_t rdistif_base;
1297 	bool gicr_frame_found = false;
1298 
1299 	assert(gicv3_driver_data->gicr_base == 0U);
1300 
1301 	/* Ensure this function is called with Data Cache enabled */
1302 #ifndef __aarch64__
1303 	assert((read_sctlr() & SCTLR_C_BIT) != 0U);
1304 #else
1305 	assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
1306 #endif /* !__aarch64__ */
1307 
1308 	proc_self = gicv3_driver_data->mpidr_to_core_pos(read_mpidr_el1());
1309 	rdistif_base = gicr_frame;
1310 	do {
1311 		typer_val = gicr_read_typer(rdistif_base);
1312 		if (gicv3_driver_data->mpidr_to_core_pos != NULL) {
1313 			mpidr = mpidr_from_gicr_typer(typer_val);
1314 			proc_num = gicv3_driver_data->mpidr_to_core_pos(mpidr);
1315 		} else {
1316 			proc_num = (unsigned int)(typer_val >>
1317 				TYPER_PROC_NUM_SHIFT) & TYPER_PROC_NUM_MASK;
1318 		}
1319 		if (proc_num == proc_self) {
1320 			/* The base address doesn't need to be initialized on
1321 			 * every warm boot.
1322 			 */
1323 			if (gicv3_driver_data->rdistif_base_addrs[proc_num]
1324 								!= 0U) {
1325 				return 0;
1326 			}
1327 			gicv3_driver_data->rdistif_base_addrs[proc_num] =
1328 			rdistif_base;
1329 			gicr_frame_found = true;
1330 			break;
1331 		}
1332 		rdistif_base += (uintptr_t)(ULL(1) << GICR_PCPUBASE_SHIFT);
1333 	} while ((typer_val & TYPER_LAST_BIT) == 0U);
1334 
1335 	if (!gicr_frame_found) {
1336 		return -1;
1337 	}
1338 
1339 	/*
1340 	 * Flush the driver data to ensure coherency. This is
1341 	 * not required if platform has HW_ASSISTED_COHERENCY
1342 	 * enabled.
1343 	 */
1344 #if !HW_ASSISTED_COHERENCY
1345 	/*
1346 	 * Flush the rdistif_base_addrs[] contents linked to the GICv3 driver.
1347 	 */
1348 	flush_dcache_range((uintptr_t)&(gicv3_driver_data->rdistif_base_addrs[proc_num]),
1349 		sizeof(*(gicv3_driver_data->rdistif_base_addrs)));
1350 #endif
1351 	return 0; /* Found matching GICR frame */
1352 }
1353 
1354 /******************************************************************************
1355  * This function checks the interrupt ID and returns true for SGIs and (E)PPIs
1356  * and false for (E)SPIs IDs.
1357  *****************************************************************************/
1358 static bool is_sgi_ppi(unsigned int id)
1359 {
1360 	/* SGIs: 0-15, PPIs: 16-31, EPPIs: 1056-1119 */
1361 	if (IS_SGI_PPI(id)) {
1362 		return true;
1363 	}
1364 
1365 	/* SPIs: 32-1019, ESPIs: 4096-5119 */
1366 	if (IS_SPI(id)) {
1367 		return false;
1368 	}
1369 
1370 	assert(false);
1371 	panic();
1372 }
1373