xref: /rk3399_ARM-atf/drivers/arm/gic/v3/gicv3_main.c (revision 82cb2c1ad9897473743f08437d0a3995bed561b9)
1 /*
2  * Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <debug.h>
11 #include <gic_common.h>
12 #include <gicv3.h>
13 #include "../common/gic_common_private.h"
14 #include "gicv3_private.h"
15 
16 static const gicv3_driver_data_t *driver_data;
17 static unsigned int gicv2_compat;
18 
19 /*
20  * Redistributor power operations are weakly bound so that they can be
21  * overridden
22  */
23 #pragma weak gicv3_rdistif_off
24 #pragma weak gicv3_rdistif_on
25 
26 /*******************************************************************************
27  * This function initialises the ARM GICv3 driver in EL3 with provided platform
28  * inputs.
29  ******************************************************************************/
30 void gicv3_driver_init(const gicv3_driver_data_t *plat_driver_data)
31 {
32 	unsigned int gic_version;
33 
34 	assert(plat_driver_data);
35 	assert(plat_driver_data->gicd_base);
36 	assert(plat_driver_data->gicr_base);
37 	assert(plat_driver_data->rdistif_num);
38 	assert(plat_driver_data->rdistif_base_addrs);
39 
40 	assert(IS_IN_EL3());
41 
42 	/*
43 	 * The platform should provide a list of at least one type of
44 	 * interrupts
45 	 */
46 	assert(plat_driver_data->g0_interrupt_array ||
47 	       plat_driver_data->g1s_interrupt_array);
48 
49 	/*
50 	 * If there are no interrupts of a particular type, then the number of
51 	 * interrupts of that type should be 0 and vice-versa.
52 	 */
53 	assert(plat_driver_data->g0_interrupt_array ?
54 	       plat_driver_data->g0_interrupt_num :
55 	       plat_driver_data->g0_interrupt_num == 0);
56 	assert(plat_driver_data->g1s_interrupt_array ?
57 	       plat_driver_data->g1s_interrupt_num :
58 	       plat_driver_data->g1s_interrupt_num == 0);
59 
60 	/* Check for system register support */
61 #ifdef AARCH32
62 	assert(read_id_pfr1() & (ID_PFR1_GIC_MASK << ID_PFR1_GIC_SHIFT));
63 #else
64 	assert(read_id_aa64pfr0_el1() &
65 			(ID_AA64PFR0_GIC_MASK << ID_AA64PFR0_GIC_SHIFT));
66 #endif /* AARCH32 */
67 
68 	/* The GIC version should be 3.0 */
69 	gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
70 	gic_version >>=	PIDR2_ARCH_REV_SHIFT;
71 	gic_version &= PIDR2_ARCH_REV_MASK;
72 	assert(gic_version == ARCH_REV_GICV3);
73 
74 	/*
75 	 * Find out whether the GIC supports the GICv2 compatibility mode. The
76 	 * ARE_S bit resets to 0 if supported
77 	 */
78 	gicv2_compat = gicd_read_ctlr(plat_driver_data->gicd_base);
79 	gicv2_compat >>= CTLR_ARE_S_SHIFT;
80 	gicv2_compat = !(gicv2_compat & CTLR_ARE_S_MASK);
81 
82 	/*
83 	 * Find the base address of each implemented Redistributor interface.
84 	 * The number of interfaces should be equal to the number of CPUs in the
85 	 * system. The memory for saving these addresses has to be allocated by
86 	 * the platform port
87 	 */
88 	gicv3_rdistif_base_addrs_probe(plat_driver_data->rdistif_base_addrs,
89 					   plat_driver_data->rdistif_num,
90 					   plat_driver_data->gicr_base,
91 					   plat_driver_data->mpidr_to_core_pos);
92 
93 	driver_data = plat_driver_data;
94 
95 	/*
96 	 * The GIC driver data is initialized by the primary CPU with caches
97 	 * enabled. When the secondary CPU boots up, it initializes the
98 	 * GICC/GICR interface with the caches disabled. Hence flush the
99 	 * driver_data to ensure coherency. This is not required if the
100 	 * platform has HW_ASSISTED_COHERENCY enabled.
101 	 */
102 #if !HW_ASSISTED_COHERENCY
103 	flush_dcache_range((uintptr_t) &driver_data, sizeof(driver_data));
104 	flush_dcache_range((uintptr_t) driver_data, sizeof(*driver_data));
105 #endif
106 
107 	INFO("GICv3 %s legacy support detected."
108 			" ARM GICV3 driver initialized in EL3\n",
109 			gicv2_compat ? "with" : "without");
110 }
111 
112 /*******************************************************************************
113  * This function initialises the GIC distributor interface based upon the data
114  * provided by the platform while initialising the driver.
115  ******************************************************************************/
116 void gicv3_distif_init(void)
117 {
118 	unsigned int bitmap = 0;
119 
120 	assert(driver_data);
121 	assert(driver_data->gicd_base);
122 	assert(driver_data->g1s_interrupt_array ||
123 	       driver_data->g0_interrupt_array);
124 
125 	assert(IS_IN_EL3());
126 
127 	/*
128 	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
129 	 * the ARE_S bit. The Distributor might generate a system error
130 	 * otherwise.
131 	 */
132 	gicd_clr_ctlr(driver_data->gicd_base,
133 		      CTLR_ENABLE_G0_BIT |
134 		      CTLR_ENABLE_G1S_BIT |
135 		      CTLR_ENABLE_G1NS_BIT,
136 		      RWP_TRUE);
137 
138 	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
139 	gicd_set_ctlr(driver_data->gicd_base,
140 			CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
141 
142 	/* Set the default attribute of all SPIs */
143 	gicv3_spis_configure_defaults(driver_data->gicd_base);
144 
145 	/* Configure the G1S SPIs */
146 	if (driver_data->g1s_interrupt_array) {
147 		gicv3_secure_spis_configure(driver_data->gicd_base,
148 					driver_data->g1s_interrupt_num,
149 					driver_data->g1s_interrupt_array,
150 					INTR_GROUP1S);
151 		bitmap |= CTLR_ENABLE_G1S_BIT;
152 	}
153 
154 	/* Configure the G0 SPIs */
155 	if (driver_data->g0_interrupt_array) {
156 		gicv3_secure_spis_configure(driver_data->gicd_base,
157 					driver_data->g0_interrupt_num,
158 					driver_data->g0_interrupt_array,
159 					INTR_GROUP0);
160 		bitmap |= CTLR_ENABLE_G0_BIT;
161 	}
162 
163 	/* Enable the secure SPIs now that they have been configured */
164 	gicd_set_ctlr(driver_data->gicd_base, bitmap, RWP_TRUE);
165 }
166 
167 /*******************************************************************************
168  * This function initialises the GIC Redistributor interface of the calling CPU
169  * (identified by the 'proc_num' parameter) based upon the data provided by the
170  * platform while initialising the driver.
171  ******************************************************************************/
172 void gicv3_rdistif_init(unsigned int proc_num)
173 {
174 	uintptr_t gicr_base;
175 
176 	assert(driver_data);
177 	assert(proc_num < driver_data->rdistif_num);
178 	assert(driver_data->rdistif_base_addrs);
179 	assert(driver_data->gicd_base);
180 	assert(gicd_read_ctlr(driver_data->gicd_base) & CTLR_ARE_S_BIT);
181 	assert(driver_data->g1s_interrupt_array ||
182 	       driver_data->g0_interrupt_array);
183 
184 	assert(IS_IN_EL3());
185 
186 	/* Power on redistributor */
187 	gicv3_rdistif_on(proc_num);
188 
189 	gicr_base = driver_data->rdistif_base_addrs[proc_num];
190 
191 	/* Set the default attribute of all SGIs and PPIs */
192 	gicv3_ppi_sgi_configure_defaults(gicr_base);
193 
194 	/* Configure the G1S SGIs/PPIs */
195 	if (driver_data->g1s_interrupt_array) {
196 		gicv3_secure_ppi_sgi_configure(gicr_base,
197 					driver_data->g1s_interrupt_num,
198 					driver_data->g1s_interrupt_array,
199 					INTR_GROUP1S);
200 	}
201 
202 	/* Configure the G0 SGIs/PPIs */
203 	if (driver_data->g0_interrupt_array) {
204 		gicv3_secure_ppi_sgi_configure(gicr_base,
205 					driver_data->g0_interrupt_num,
206 					driver_data->g0_interrupt_array,
207 					INTR_GROUP0);
208 	}
209 }
210 
211 /*******************************************************************************
212  * Functions to perform power operations on GIC Redistributor
213  ******************************************************************************/
214 void gicv3_rdistif_off(unsigned int proc_num)
215 {
216 	return;
217 }
218 
219 void gicv3_rdistif_on(unsigned int proc_num)
220 {
221 	return;
222 }
223 
224 /*******************************************************************************
225  * This function enables the GIC CPU interface of the calling CPU using only
226  * system register accesses.
227  ******************************************************************************/
228 void gicv3_cpuif_enable(unsigned int proc_num)
229 {
230 	uintptr_t gicr_base;
231 	unsigned int scr_el3;
232 	unsigned int icc_sre_el3;
233 
234 	assert(driver_data);
235 	assert(proc_num < driver_data->rdistif_num);
236 	assert(driver_data->rdistif_base_addrs);
237 	assert(IS_IN_EL3());
238 
239 	/* Mark the connected core as awake */
240 	gicr_base = driver_data->rdistif_base_addrs[proc_num];
241 	gicv3_rdistif_mark_core_awake(gicr_base);
242 
243 	/* Disable the legacy interrupt bypass */
244 	icc_sre_el3 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT;
245 
246 	/*
247 	 * Enable system register access for EL3 and allow lower exception
248 	 * levels to configure the same for themselves. If the legacy mode is
249 	 * not supported, the SRE bit is RAO/WI
250 	 */
251 	icc_sre_el3 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT);
252 	write_icc_sre_el3(read_icc_sre_el3() | icc_sre_el3);
253 
254 	scr_el3 = read_scr_el3();
255 
256 	/*
257 	 * Switch to NS state to write Non secure ICC_SRE_EL1 and
258 	 * ICC_SRE_EL2 registers.
259 	 */
260 	write_scr_el3(scr_el3 | SCR_NS_BIT);
261 	isb();
262 
263 	write_icc_sre_el2(read_icc_sre_el2() | icc_sre_el3);
264 	write_icc_sre_el1(ICC_SRE_SRE_BIT);
265 	isb();
266 
267 	/* Switch to secure state. */
268 	write_scr_el3(scr_el3 & (~SCR_NS_BIT));
269 	isb();
270 
271 	/* Program the idle priority in the PMR */
272 	write_icc_pmr_el1(GIC_PRI_MASK);
273 
274 	/* Enable Group0 interrupts */
275 	write_icc_igrpen0_el1(IGRPEN1_EL1_ENABLE_G0_BIT);
276 
277 	/* Enable Group1 Secure interrupts */
278 	write_icc_igrpen1_el3(read_icc_igrpen1_el3() |
279 				IGRPEN1_EL3_ENABLE_G1S_BIT);
280 
281 	/* Write the secure ICC_SRE_EL1 register */
282 	write_icc_sre_el1(ICC_SRE_SRE_BIT);
283 	isb();
284 }
285 
286 /*******************************************************************************
287  * This function disables the GIC CPU interface of the calling CPU using
288  * only system register accesses.
289  ******************************************************************************/
290 void gicv3_cpuif_disable(unsigned int proc_num)
291 {
292 	uintptr_t gicr_base;
293 
294 	assert(driver_data);
295 	assert(proc_num < driver_data->rdistif_num);
296 	assert(driver_data->rdistif_base_addrs);
297 
298 	assert(IS_IN_EL3());
299 
300 	/* Disable legacy interrupt bypass */
301 	write_icc_sre_el3(read_icc_sre_el3() |
302 			  (ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT));
303 
304 	/* Disable Group0 interrupts */
305 	write_icc_igrpen0_el1(read_icc_igrpen0_el1() &
306 			      ~IGRPEN1_EL1_ENABLE_G0_BIT);
307 
308 	/* Disable Group1 Secure and Non-Secure interrupts */
309 	write_icc_igrpen1_el3(read_icc_igrpen1_el3() &
310 			      ~(IGRPEN1_EL3_ENABLE_G1NS_BIT |
311 			      IGRPEN1_EL3_ENABLE_G1S_BIT));
312 
313 	/* Synchronise accesses to group enable registers */
314 	isb();
315 
316 	/* Mark the connected core as asleep */
317 	gicr_base = driver_data->rdistif_base_addrs[proc_num];
318 	gicv3_rdistif_mark_core_asleep(gicr_base);
319 }
320 
321 /*******************************************************************************
322  * This function returns the id of the highest priority pending interrupt at
323  * the GIC cpu interface.
324  ******************************************************************************/
325 unsigned int gicv3_get_pending_interrupt_id(void)
326 {
327 	unsigned int id;
328 
329 	assert(IS_IN_EL3());
330 	id = read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
331 
332 	/*
333 	 * If the ID is special identifier corresponding to G1S or G1NS
334 	 * interrupt, then read the highest pending group 1 interrupt.
335 	 */
336 	if ((id == PENDING_G1S_INTID) || (id == PENDING_G1NS_INTID))
337 		return read_icc_hppir1_el1() & HPPIR1_EL1_INTID_MASK;
338 
339 	return id;
340 }
341 
342 /*******************************************************************************
343  * This function returns the type of the highest priority pending interrupt at
344  * the GIC cpu interface. The return values can be one of the following :
345  *   PENDING_G1S_INTID  : The interrupt type is secure Group 1.
346  *   PENDING_G1NS_INTID : The interrupt type is non secure Group 1.
347  *   0 - 1019           : The interrupt type is secure Group 0.
348  *   GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
349  *                            sufficient priority to be signaled
350  ******************************************************************************/
351 unsigned int gicv3_get_pending_interrupt_type(void)
352 {
353 	assert(IS_IN_EL3());
354 	return read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
355 }
356 
357 /*******************************************************************************
358  * This function returns the type of the interrupt id depending upon the group
359  * this interrupt has been configured under by the interrupt controller i.e.
360  * group0 or group1 Secure / Non Secure. The return value can be one of the
361  * following :
362  *    INTR_GROUP0  : The interrupt type is a Secure Group 0 interrupt
363  *    INTR_GROUP1S : The interrupt type is a Secure Group 1 secure interrupt
364  *    INTR_GROUP1NS: The interrupt type is a Secure Group 1 non secure
365  *                   interrupt.
366  ******************************************************************************/
367 unsigned int gicv3_get_interrupt_type(unsigned int id,
368 					  unsigned int proc_num)
369 {
370 	unsigned int igroup, grpmodr;
371 	uintptr_t gicr_base;
372 
373 	assert(IS_IN_EL3());
374 	assert(driver_data);
375 
376 	/* Ensure the parameters are valid */
377 	assert(id < PENDING_G1S_INTID || id >= MIN_LPI_ID);
378 	assert(proc_num < driver_data->rdistif_num);
379 
380 	/* All LPI interrupts are Group 1 non secure */
381 	if (id >= MIN_LPI_ID)
382 		return INTR_GROUP1NS;
383 
384 	if (id < MIN_SPI_ID) {
385 		assert(driver_data->rdistif_base_addrs);
386 		gicr_base = driver_data->rdistif_base_addrs[proc_num];
387 		igroup = gicr_get_igroupr0(gicr_base, id);
388 		grpmodr = gicr_get_igrpmodr0(gicr_base, id);
389 	} else {
390 		assert(driver_data->gicd_base);
391 		igroup = gicd_get_igroupr(driver_data->gicd_base, id);
392 		grpmodr = gicd_get_igrpmodr(driver_data->gicd_base, id);
393 	}
394 
395 	/*
396 	 * If the IGROUP bit is set, then it is a Group 1 Non secure
397 	 * interrupt
398 	 */
399 	if (igroup)
400 		return INTR_GROUP1NS;
401 
402 	/* If the GRPMOD bit is set, then it is a Group 1 Secure interrupt */
403 	if (grpmodr)
404 		return INTR_GROUP1S;
405 
406 	/* Else it is a Group 0 Secure interrupt */
407 	return INTR_GROUP0;
408 }
409