xref: /rk3399_ARM-atf/drivers/arm/gic/v3/gicv3_main.c (revision 73a9605197ba04aaf02d436a2a4ad56e695b426c)
1 /*
2  * Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <debug.h>
11 #include <gicv3.h>
12 #include <interrupt_props.h>
13 #include <spinlock.h>
14 #include "gicv3_private.h"
15 
16 const gicv3_driver_data_t *gicv3_driver_data;
17 static unsigned int gicv2_compat;
18 
19 /*
20  * Spinlock to guard registers needing read-modify-write. APIs protected by this
21  * spinlock are used either at boot time (when only a single CPU is active), or
22  * when the system is fully coherent.
23  */
24 static spinlock_t gic_lock;
25 
26 /*
27  * Redistributor power operations are weakly bound so that they can be
28  * overridden
29  */
30 #pragma weak gicv3_rdistif_off
31 #pragma weak gicv3_rdistif_on
32 
33 
34 /* Helper macros to save and restore GICD registers to and from the context */
35 #define RESTORE_GICD_REGS(base, ctx, intr_num, reg, REG)		\
36 	do {								\
37 		for (unsigned int int_id = MIN_SPI_ID; int_id < intr_num; \
38 				int_id += (1 << REG##_SHIFT)) {		\
39 			gicd_write_##reg(base, int_id,			\
40 				ctx->gicd_##reg[(int_id - MIN_SPI_ID) >> REG##_SHIFT]); \
41 		}							\
42 	} while (0)
43 
44 #define SAVE_GICD_REGS(base, ctx, intr_num, reg, REG)			\
45 	do {								\
46 		for (unsigned int int_id = MIN_SPI_ID; int_id < intr_num; \
47 				int_id += (1 << REG##_SHIFT)) {		\
48 			ctx->gicd_##reg[(int_id - MIN_SPI_ID) >> REG##_SHIFT] =\
49 					gicd_read_##reg(base, int_id);	\
50 		}							\
51 	} while (0)
52 
53 
54 /*******************************************************************************
55  * This function initialises the ARM GICv3 driver in EL3 with provided platform
56  * inputs.
57  ******************************************************************************/
58 void gicv3_driver_init(const gicv3_driver_data_t *plat_driver_data)
59 {
60 	unsigned int gic_version;
61 
62 	assert(plat_driver_data);
63 	assert(plat_driver_data->gicd_base);
64 	assert(plat_driver_data->gicr_base);
65 	assert(plat_driver_data->rdistif_num);
66 	assert(plat_driver_data->rdistif_base_addrs);
67 
68 	assert(IS_IN_EL3());
69 
70 #if !ERROR_DEPRECATED
71 	if (plat_driver_data->interrupt_props == NULL) {
72 		/* Interrupt properties array size must be 0 */
73 		assert(plat_driver_data->interrupt_props_num == 0);
74 
75 		/*
76 		 * The platform should provide a list of at least one type of
77 		 * interrupt.
78 		 */
79 		assert(plat_driver_data->g0_interrupt_array ||
80 				plat_driver_data->g1s_interrupt_array);
81 
82 		/*
83 		 * If there are no interrupts of a particular type, then the
84 		 * number of interrupts of that type should be 0 and vice-versa.
85 		 */
86 		assert(plat_driver_data->g0_interrupt_array ?
87 				plat_driver_data->g0_interrupt_num :
88 				plat_driver_data->g0_interrupt_num == 0);
89 		assert(plat_driver_data->g1s_interrupt_array ?
90 				plat_driver_data->g1s_interrupt_num :
91 				plat_driver_data->g1s_interrupt_num == 0);
92 	}
93 #else
94 	assert(plat_driver_data->interrupt_props != NULL);
95 	assert(plat_driver_data->interrupt_props_num > 0);
96 #endif
97 
98 	/* Check for system register support */
99 #ifdef AARCH32
100 	assert(read_id_pfr1() & (ID_PFR1_GIC_MASK << ID_PFR1_GIC_SHIFT));
101 #else
102 	assert(read_id_aa64pfr0_el1() &
103 			(ID_AA64PFR0_GIC_MASK << ID_AA64PFR0_GIC_SHIFT));
104 #endif /* AARCH32 */
105 
106 	/* The GIC version should be 3.0 */
107 	gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
108 	gic_version >>=	PIDR2_ARCH_REV_SHIFT;
109 	gic_version &= PIDR2_ARCH_REV_MASK;
110 	assert(gic_version == ARCH_REV_GICV3);
111 
112 	/*
113 	 * Find out whether the GIC supports the GICv2 compatibility mode. The
114 	 * ARE_S bit resets to 0 if supported
115 	 */
116 	gicv2_compat = gicd_read_ctlr(plat_driver_data->gicd_base);
117 	gicv2_compat >>= CTLR_ARE_S_SHIFT;
118 	gicv2_compat = !(gicv2_compat & CTLR_ARE_S_MASK);
119 
120 	/*
121 	 * Find the base address of each implemented Redistributor interface.
122 	 * The number of interfaces should be equal to the number of CPUs in the
123 	 * system. The memory for saving these addresses has to be allocated by
124 	 * the platform port
125 	 */
126 	gicv3_rdistif_base_addrs_probe(plat_driver_data->rdistif_base_addrs,
127 					   plat_driver_data->rdistif_num,
128 					   plat_driver_data->gicr_base,
129 					   plat_driver_data->mpidr_to_core_pos);
130 
131 	gicv3_driver_data = plat_driver_data;
132 
133 	/*
134 	 * The GIC driver data is initialized by the primary CPU with caches
135 	 * enabled. When the secondary CPU boots up, it initializes the
136 	 * GICC/GICR interface with the caches disabled. Hence flush the
137 	 * driver data to ensure coherency. This is not required if the
138 	 * platform has HW_ASSISTED_COHERENCY enabled.
139 	 */
140 #if !HW_ASSISTED_COHERENCY
141 	flush_dcache_range((uintptr_t) &gicv3_driver_data,
142 			sizeof(gicv3_driver_data));
143 	flush_dcache_range((uintptr_t) gicv3_driver_data,
144 			sizeof(*gicv3_driver_data));
145 #endif
146 
147 	INFO("GICv3 %s legacy support detected."
148 			" ARM GICV3 driver initialized in EL3\n",
149 			gicv2_compat ? "with" : "without");
150 }
151 
152 /*******************************************************************************
153  * This function initialises the GIC distributor interface based upon the data
154  * provided by the platform while initialising the driver.
155  ******************************************************************************/
156 void gicv3_distif_init(void)
157 {
158 	unsigned int bitmap = 0;
159 
160 	assert(gicv3_driver_data);
161 	assert(gicv3_driver_data->gicd_base);
162 
163 	assert(IS_IN_EL3());
164 
165 	/*
166 	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
167 	 * the ARE_S bit. The Distributor might generate a system error
168 	 * otherwise.
169 	 */
170 	gicd_clr_ctlr(gicv3_driver_data->gicd_base,
171 		      CTLR_ENABLE_G0_BIT |
172 		      CTLR_ENABLE_G1S_BIT |
173 		      CTLR_ENABLE_G1NS_BIT,
174 		      RWP_TRUE);
175 
176 	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
177 	gicd_set_ctlr(gicv3_driver_data->gicd_base,
178 			CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
179 
180 	/* Set the default attribute of all SPIs */
181 	gicv3_spis_configure_defaults(gicv3_driver_data->gicd_base);
182 
183 #if !ERROR_DEPRECATED
184 	if (gicv3_driver_data->interrupt_props != NULL) {
185 #endif
186 		bitmap = gicv3_secure_spis_configure_props(
187 				gicv3_driver_data->gicd_base,
188 				gicv3_driver_data->interrupt_props,
189 				gicv3_driver_data->interrupt_props_num);
190 #if !ERROR_DEPRECATED
191 	} else {
192 		assert(gicv3_driver_data->g1s_interrupt_array ||
193 				gicv3_driver_data->g0_interrupt_array);
194 
195 		/* Configure the G1S SPIs */
196 		if (gicv3_driver_data->g1s_interrupt_array) {
197 			gicv3_secure_spis_configure(gicv3_driver_data->gicd_base,
198 					gicv3_driver_data->g1s_interrupt_num,
199 					gicv3_driver_data->g1s_interrupt_array,
200 					INTR_GROUP1S);
201 			bitmap |= CTLR_ENABLE_G1S_BIT;
202 		}
203 
204 		/* Configure the G0 SPIs */
205 		if (gicv3_driver_data->g0_interrupt_array) {
206 			gicv3_secure_spis_configure(gicv3_driver_data->gicd_base,
207 					gicv3_driver_data->g0_interrupt_num,
208 					gicv3_driver_data->g0_interrupt_array,
209 					INTR_GROUP0);
210 			bitmap |= CTLR_ENABLE_G0_BIT;
211 		}
212 	}
213 #endif
214 
215 	/* Enable the secure SPIs now that they have been configured */
216 	gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE);
217 }
218 
219 /*******************************************************************************
220  * This function initialises the GIC Redistributor interface of the calling CPU
221  * (identified by the 'proc_num' parameter) based upon the data provided by the
222  * platform while initialising the driver.
223  ******************************************************************************/
224 void gicv3_rdistif_init(unsigned int proc_num)
225 {
226 	uintptr_t gicr_base;
227 	unsigned int bitmap = 0;
228 	uint32_t ctlr;
229 
230 	assert(gicv3_driver_data);
231 	assert(proc_num < gicv3_driver_data->rdistif_num);
232 	assert(gicv3_driver_data->rdistif_base_addrs);
233 	assert(gicv3_driver_data->gicd_base);
234 
235 	ctlr = gicd_read_ctlr(gicv3_driver_data->gicd_base);
236 	assert(ctlr & CTLR_ARE_S_BIT);
237 
238 	assert(IS_IN_EL3());
239 
240 	/* Power on redistributor */
241 	gicv3_rdistif_on(proc_num);
242 
243 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
244 
245 	/* Set the default attribute of all SGIs and PPIs */
246 	gicv3_ppi_sgi_configure_defaults(gicr_base);
247 
248 #if !ERROR_DEPRECATED
249 	if (gicv3_driver_data->interrupt_props != NULL) {
250 #endif
251 		bitmap = gicv3_secure_ppi_sgi_configure_props(gicr_base,
252 				gicv3_driver_data->interrupt_props,
253 				gicv3_driver_data->interrupt_props_num);
254 #if !ERROR_DEPRECATED
255 	} else {
256 		assert(gicv3_driver_data->g1s_interrupt_array ||
257 		       gicv3_driver_data->g0_interrupt_array);
258 
259 		/* Configure the G1S SGIs/PPIs */
260 		if (gicv3_driver_data->g1s_interrupt_array) {
261 			gicv3_secure_ppi_sgi_configure(gicr_base,
262 					gicv3_driver_data->g1s_interrupt_num,
263 					gicv3_driver_data->g1s_interrupt_array,
264 					INTR_GROUP1S);
265 			bitmap |= CTLR_ENABLE_G1S_BIT;
266 		}
267 
268 		/* Configure the G0 SGIs/PPIs */
269 		if (gicv3_driver_data->g0_interrupt_array) {
270 			gicv3_secure_ppi_sgi_configure(gicr_base,
271 					gicv3_driver_data->g0_interrupt_num,
272 					gicv3_driver_data->g0_interrupt_array,
273 					INTR_GROUP0);
274 			bitmap |= CTLR_ENABLE_G0_BIT;
275 		}
276 	}
277 #endif
278 
279 	/* Enable interrupt groups as required, if not already */
280 	if ((ctlr & bitmap) != bitmap)
281 		gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE);
282 }
283 
284 /*******************************************************************************
285  * Functions to perform power operations on GIC Redistributor
286  ******************************************************************************/
287 void gicv3_rdistif_off(unsigned int proc_num)
288 {
289 	return;
290 }
291 
292 void gicv3_rdistif_on(unsigned int proc_num)
293 {
294 	return;
295 }
296 
297 /*******************************************************************************
298  * This function enables the GIC CPU interface of the calling CPU using only
299  * system register accesses.
300  ******************************************************************************/
301 void gicv3_cpuif_enable(unsigned int proc_num)
302 {
303 	uintptr_t gicr_base;
304 	unsigned int scr_el3;
305 	unsigned int icc_sre_el3;
306 
307 	assert(gicv3_driver_data);
308 	assert(proc_num < gicv3_driver_data->rdistif_num);
309 	assert(gicv3_driver_data->rdistif_base_addrs);
310 	assert(IS_IN_EL3());
311 
312 	/* Mark the connected core as awake */
313 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
314 	gicv3_rdistif_mark_core_awake(gicr_base);
315 
316 	/* Disable the legacy interrupt bypass */
317 	icc_sre_el3 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT;
318 
319 	/*
320 	 * Enable system register access for EL3 and allow lower exception
321 	 * levels to configure the same for themselves. If the legacy mode is
322 	 * not supported, the SRE bit is RAO/WI
323 	 */
324 	icc_sre_el3 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT);
325 	write_icc_sre_el3(read_icc_sre_el3() | icc_sre_el3);
326 
327 	scr_el3 = read_scr_el3();
328 
329 	/*
330 	 * Switch to NS state to write Non secure ICC_SRE_EL1 and
331 	 * ICC_SRE_EL2 registers.
332 	 */
333 	write_scr_el3(scr_el3 | SCR_NS_BIT);
334 	isb();
335 
336 	write_icc_sre_el2(read_icc_sre_el2() | icc_sre_el3);
337 	write_icc_sre_el1(ICC_SRE_SRE_BIT);
338 	isb();
339 
340 	/* Switch to secure state. */
341 	write_scr_el3(scr_el3 & (~SCR_NS_BIT));
342 	isb();
343 
344 	/* Program the idle priority in the PMR */
345 	write_icc_pmr_el1(GIC_PRI_MASK);
346 
347 	/* Enable Group0 interrupts */
348 	write_icc_igrpen0_el1(IGRPEN1_EL1_ENABLE_G0_BIT);
349 
350 	/* Enable Group1 Secure interrupts */
351 	write_icc_igrpen1_el3(read_icc_igrpen1_el3() |
352 				IGRPEN1_EL3_ENABLE_G1S_BIT);
353 
354 	/* Write the secure ICC_SRE_EL1 register */
355 	write_icc_sre_el1(ICC_SRE_SRE_BIT);
356 	isb();
357 }
358 
359 /*******************************************************************************
360  * This function disables the GIC CPU interface of the calling CPU using
361  * only system register accesses.
362  ******************************************************************************/
363 void gicv3_cpuif_disable(unsigned int proc_num)
364 {
365 	uintptr_t gicr_base;
366 
367 	assert(gicv3_driver_data);
368 	assert(proc_num < gicv3_driver_data->rdistif_num);
369 	assert(gicv3_driver_data->rdistif_base_addrs);
370 
371 	assert(IS_IN_EL3());
372 
373 	/* Disable legacy interrupt bypass */
374 	write_icc_sre_el3(read_icc_sre_el3() |
375 			  (ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT));
376 
377 	/* Disable Group0 interrupts */
378 	write_icc_igrpen0_el1(read_icc_igrpen0_el1() &
379 			      ~IGRPEN1_EL1_ENABLE_G0_BIT);
380 
381 	/* Disable Group1 Secure and Non-Secure interrupts */
382 	write_icc_igrpen1_el3(read_icc_igrpen1_el3() &
383 			      ~(IGRPEN1_EL3_ENABLE_G1NS_BIT |
384 			      IGRPEN1_EL3_ENABLE_G1S_BIT));
385 
386 	/* Synchronise accesses to group enable registers */
387 	isb();
388 
389 	/* Mark the connected core as asleep */
390 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
391 	gicv3_rdistif_mark_core_asleep(gicr_base);
392 }
393 
394 /*******************************************************************************
395  * This function returns the id of the highest priority pending interrupt at
396  * the GIC cpu interface.
397  ******************************************************************************/
398 unsigned int gicv3_get_pending_interrupt_id(void)
399 {
400 	unsigned int id;
401 
402 	assert(IS_IN_EL3());
403 	id = read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
404 
405 	/*
406 	 * If the ID is special identifier corresponding to G1S or G1NS
407 	 * interrupt, then read the highest pending group 1 interrupt.
408 	 */
409 	if ((id == PENDING_G1S_INTID) || (id == PENDING_G1NS_INTID))
410 		return read_icc_hppir1_el1() & HPPIR1_EL1_INTID_MASK;
411 
412 	return id;
413 }
414 
415 /*******************************************************************************
416  * This function returns the type of the highest priority pending interrupt at
417  * the GIC cpu interface. The return values can be one of the following :
418  *   PENDING_G1S_INTID  : The interrupt type is secure Group 1.
419  *   PENDING_G1NS_INTID : The interrupt type is non secure Group 1.
420  *   0 - 1019           : The interrupt type is secure Group 0.
421  *   GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
422  *                            sufficient priority to be signaled
423  ******************************************************************************/
424 unsigned int gicv3_get_pending_interrupt_type(void)
425 {
426 	assert(IS_IN_EL3());
427 	return read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
428 }
429 
430 /*******************************************************************************
431  * This function returns the type of the interrupt id depending upon the group
432  * this interrupt has been configured under by the interrupt controller i.e.
433  * group0 or group1 Secure / Non Secure. The return value can be one of the
434  * following :
435  *    INTR_GROUP0  : The interrupt type is a Secure Group 0 interrupt
436  *    INTR_GROUP1S : The interrupt type is a Secure Group 1 secure interrupt
437  *    INTR_GROUP1NS: The interrupt type is a Secure Group 1 non secure
438  *                   interrupt.
439  ******************************************************************************/
440 unsigned int gicv3_get_interrupt_type(unsigned int id,
441 					  unsigned int proc_num)
442 {
443 	unsigned int igroup, grpmodr;
444 	uintptr_t gicr_base;
445 
446 	assert(IS_IN_EL3());
447 	assert(gicv3_driver_data);
448 
449 	/* Ensure the parameters are valid */
450 	assert(id < PENDING_G1S_INTID || id >= MIN_LPI_ID);
451 	assert(proc_num < gicv3_driver_data->rdistif_num);
452 
453 	/* All LPI interrupts are Group 1 non secure */
454 	if (id >= MIN_LPI_ID)
455 		return INTR_GROUP1NS;
456 
457 	if (id < MIN_SPI_ID) {
458 		assert(gicv3_driver_data->rdistif_base_addrs);
459 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
460 		igroup = gicr_get_igroupr0(gicr_base, id);
461 		grpmodr = gicr_get_igrpmodr0(gicr_base, id);
462 	} else {
463 		assert(gicv3_driver_data->gicd_base);
464 		igroup = gicd_get_igroupr(gicv3_driver_data->gicd_base, id);
465 		grpmodr = gicd_get_igrpmodr(gicv3_driver_data->gicd_base, id);
466 	}
467 
468 	/*
469 	 * If the IGROUP bit is set, then it is a Group 1 Non secure
470 	 * interrupt
471 	 */
472 	if (igroup)
473 		return INTR_GROUP1NS;
474 
475 	/* If the GRPMOD bit is set, then it is a Group 1 Secure interrupt */
476 	if (grpmodr)
477 		return INTR_GROUP1S;
478 
479 	/* Else it is a Group 0 Secure interrupt */
480 	return INTR_GROUP0;
481 }
482 
483 /*****************************************************************************
484  * Function to save and disable the GIC ITS register context. The power
485  * management of GIC ITS is implementation-defined and this function doesn't
486  * save any memory structures required to support ITS. As the sequence to save
487  * this state is implementation defined, it should be executed in platform
488  * specific code. Calling this function alone and then powering down the GIC and
489  * ITS without implementing the aforementioned platform specific code will
490  * corrupt the ITS state.
491  *
492  * This function must be invoked after the GIC CPU interface is disabled.
493  *****************************************************************************/
494 void gicv3_its_save_disable(uintptr_t gits_base, gicv3_its_ctx_t * const its_ctx)
495 {
496 	int i;
497 
498 	assert(gicv3_driver_data);
499 	assert(IS_IN_EL3());
500 	assert(its_ctx);
501 	assert(gits_base);
502 
503 	its_ctx->gits_ctlr = gits_read_ctlr(gits_base);
504 
505 	/* Disable the ITS */
506 	gits_write_ctlr(gits_base, its_ctx->gits_ctlr &
507 					(~GITS_CTLR_ENABLED_BIT));
508 
509 	/* Wait for quiescent state */
510 	gits_wait_for_quiescent_bit(gits_base);
511 
512 	its_ctx->gits_cbaser = gits_read_cbaser(gits_base);
513 	its_ctx->gits_cwriter = gits_read_cwriter(gits_base);
514 
515 	for (i = 0; i < ARRAY_SIZE(its_ctx->gits_baser); i++)
516 		its_ctx->gits_baser[i] = gits_read_baser(gits_base, i);
517 }
518 
519 /*****************************************************************************
520  * Function to restore the GIC ITS register context. The power
521  * management of GIC ITS is implementation defined and this function doesn't
522  * restore any memory structures required to support ITS. The assumption is
523  * that these structures are in memory and are retained during system suspend.
524  *
525  * This must be invoked before the GIC CPU interface is enabled.
526  *****************************************************************************/
527 void gicv3_its_restore(uintptr_t gits_base, const gicv3_its_ctx_t * const its_ctx)
528 {
529 	int i;
530 
531 	assert(gicv3_driver_data);
532 	assert(IS_IN_EL3());
533 	assert(its_ctx);
534 	assert(gits_base);
535 
536 	/* Assert that the GITS is disabled and quiescent */
537 	assert((gits_read_ctlr(gits_base) & GITS_CTLR_ENABLED_BIT) == 0);
538 	assert((gits_read_ctlr(gits_base) & GITS_CTLR_QUIESCENT_BIT) != 0);
539 
540 	gits_write_cbaser(gits_base, its_ctx->gits_cbaser);
541 	gits_write_cwriter(gits_base, its_ctx->gits_cwriter);
542 
543 	for (i = 0; i < ARRAY_SIZE(its_ctx->gits_baser); i++)
544 		gits_write_baser(gits_base, i, its_ctx->gits_baser[i]);
545 
546 	/* Restore the ITS CTLR but leave the ITS disabled */
547 	gits_write_ctlr(gits_base, its_ctx->gits_ctlr &
548 			(~GITS_CTLR_ENABLED_BIT));
549 }
550 
551 /*****************************************************************************
552  * Function to save the GIC Redistributor register context. This function
553  * must be invoked after CPU interface disable and prior to Distributor save.
554  *****************************************************************************/
555 void gicv3_rdistif_save(unsigned int proc_num, gicv3_redist_ctx_t * const rdist_ctx)
556 {
557 	uintptr_t gicr_base;
558 	unsigned int int_id;
559 
560 	assert(gicv3_driver_data);
561 	assert(proc_num < gicv3_driver_data->rdistif_num);
562 	assert(gicv3_driver_data->rdistif_base_addrs);
563 	assert(IS_IN_EL3());
564 	assert(rdist_ctx);
565 
566 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
567 
568 	/*
569 	 * Wait for any write to GICR_CTLR to complete before trying to save any
570 	 * state.
571 	 */
572 	gicr_wait_for_pending_write(gicr_base);
573 
574 	rdist_ctx->gicr_ctlr = gicr_read_ctlr(gicr_base);
575 
576 	rdist_ctx->gicr_propbaser = gicr_read_propbaser(gicr_base);
577 	rdist_ctx->gicr_pendbaser = gicr_read_pendbaser(gicr_base);
578 
579 	rdist_ctx->gicr_igroupr0 = gicr_read_igroupr0(gicr_base);
580 	rdist_ctx->gicr_isenabler0 = gicr_read_isenabler0(gicr_base);
581 	rdist_ctx->gicr_ispendr0 = gicr_read_ispendr0(gicr_base);
582 	rdist_ctx->gicr_isactiver0 = gicr_read_isactiver0(gicr_base);
583 	rdist_ctx->gicr_icfgr0 = gicr_read_icfgr0(gicr_base);
584 	rdist_ctx->gicr_icfgr1 = gicr_read_icfgr1(gicr_base);
585 	rdist_ctx->gicr_igrpmodr0 = gicr_read_igrpmodr0(gicr_base);
586 	rdist_ctx->gicr_nsacr = gicr_read_nsacr(gicr_base);
587 	for (int_id = MIN_SGI_ID; int_id < TOTAL_PCPU_INTR_NUM;
588 			int_id += (1 << IPRIORITYR_SHIFT)) {
589 		rdist_ctx->gicr_ipriorityr[(int_id - MIN_SGI_ID) >> IPRIORITYR_SHIFT] =
590 				gicr_read_ipriorityr(gicr_base, int_id);
591 	}
592 
593 
594 	/*
595 	 * Call the pre-save hook that implements the IMP DEF sequence that may
596 	 * be required on some GIC implementations. As this may need to access
597 	 * the Redistributor registers, we pass it proc_num.
598 	 */
599 	gicv3_distif_pre_save(proc_num);
600 }
601 
602 /*****************************************************************************
603  * Function to restore the GIC Redistributor register context. We disable
604  * LPI and per-cpu interrupts before we start restore of the Redistributor.
605  * This function must be invoked after Distributor restore but prior to
606  * CPU interface enable. The pending and active interrupts are restored
607  * after the interrupts are fully configured and enabled.
608  *****************************************************************************/
609 void gicv3_rdistif_init_restore(unsigned int proc_num,
610 				const gicv3_redist_ctx_t * const rdist_ctx)
611 {
612 	uintptr_t gicr_base;
613 	unsigned int int_id;
614 
615 	assert(gicv3_driver_data);
616 	assert(proc_num < gicv3_driver_data->rdistif_num);
617 	assert(gicv3_driver_data->rdistif_base_addrs);
618 	assert(IS_IN_EL3());
619 	assert(rdist_ctx);
620 
621 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
622 
623 	/* Power on redistributor */
624 	gicv3_rdistif_on(proc_num);
625 
626 	/*
627 	 * Call the post-restore hook that implements the IMP DEF sequence that
628 	 * may be required on some GIC implementations. As this may need to
629 	 * access the Redistributor registers, we pass it proc_num.
630 	 */
631 	gicv3_distif_post_restore(proc_num);
632 
633 	/*
634 	 * Disable all SGIs (imp. def.)/PPIs before configuring them. This is a
635 	 * more scalable approach as it avoids clearing the enable bits in the
636 	 * GICD_CTLR
637 	 */
638 	gicr_write_icenabler0(gicr_base, ~0);
639 	/* Wait for pending writes to GICR_ICENABLER */
640 	gicr_wait_for_pending_write(gicr_base);
641 
642 	/*
643 	 * Disable the LPIs to avoid unpredictable behavior when writing to
644 	 * GICR_PROPBASER and GICR_PENDBASER.
645 	 */
646 	gicr_write_ctlr(gicr_base,
647 			rdist_ctx->gicr_ctlr & ~(GICR_CTLR_EN_LPIS_BIT));
648 
649 	/* Restore registers' content */
650 	gicr_write_propbaser(gicr_base, rdist_ctx->gicr_propbaser);
651 	gicr_write_pendbaser(gicr_base, rdist_ctx->gicr_pendbaser);
652 
653 	gicr_write_igroupr0(gicr_base, rdist_ctx->gicr_igroupr0);
654 
655 	for (int_id = MIN_SGI_ID; int_id < TOTAL_PCPU_INTR_NUM;
656 			int_id += (1 << IPRIORITYR_SHIFT)) {
657 		gicr_write_ipriorityr(gicr_base, int_id,
658 		rdist_ctx->gicr_ipriorityr[
659 				(int_id - MIN_SGI_ID) >> IPRIORITYR_SHIFT]);
660 	}
661 
662 	gicr_write_icfgr0(gicr_base, rdist_ctx->gicr_icfgr0);
663 	gicr_write_icfgr1(gicr_base, rdist_ctx->gicr_icfgr1);
664 	gicr_write_igrpmodr0(gicr_base, rdist_ctx->gicr_igrpmodr0);
665 	gicr_write_nsacr(gicr_base, rdist_ctx->gicr_nsacr);
666 
667 	/* Restore after group and priorities are set */
668 	gicr_write_ispendr0(gicr_base, rdist_ctx->gicr_ispendr0);
669 	gicr_write_isactiver0(gicr_base, rdist_ctx->gicr_isactiver0);
670 
671 	/*
672 	 * Wait for all writes to the Distributor to complete before enabling
673 	 * the SGI and PPIs.
674 	 */
675 	gicr_wait_for_upstream_pending_write(gicr_base);
676 	gicr_write_isenabler0(gicr_base, rdist_ctx->gicr_isenabler0);
677 
678 	/*
679 	 * Restore GICR_CTLR.Enable_LPIs bit and wait for pending writes in case
680 	 * the first write to GICR_CTLR was still in flight (this write only
681 	 * restores GICR_CTLR.Enable_LPIs and no waiting is required for this
682 	 * bit).
683 	 */
684 	gicr_write_ctlr(gicr_base, rdist_ctx->gicr_ctlr);
685 	gicr_wait_for_pending_write(gicr_base);
686 }
687 
688 /*****************************************************************************
689  * Function to save the GIC Distributor register context. This function
690  * must be invoked after CPU interface disable and Redistributor save.
691  *****************************************************************************/
692 void gicv3_distif_save(gicv3_dist_ctx_t * const dist_ctx)
693 {
694 	unsigned int num_ints;
695 
696 	assert(gicv3_driver_data);
697 	assert(gicv3_driver_data->gicd_base);
698 	assert(IS_IN_EL3());
699 	assert(dist_ctx);
700 
701 	uintptr_t gicd_base = gicv3_driver_data->gicd_base;
702 
703 	num_ints = gicd_read_typer(gicd_base);
704 	num_ints &= TYPER_IT_LINES_NO_MASK;
705 	num_ints = (num_ints + 1) << 5;
706 
707 	assert(num_ints <= MAX_SPI_ID + 1);
708 
709 	/* Wait for pending write to complete */
710 	gicd_wait_for_pending_write(gicd_base);
711 
712 	/* Save the GICD_CTLR */
713 	dist_ctx->gicd_ctlr = gicd_read_ctlr(gicd_base);
714 
715 	/* Save GICD_IGROUPR for INTIDs 32 - 1020 */
716 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUPR);
717 
718 	/* Save GICD_ISENABLER for INT_IDs 32 - 1020 */
719 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLER);
720 
721 	/* Save GICD_ISPENDR for INTIDs 32 - 1020 */
722 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPENDR);
723 
724 	/* Save GICD_ISACTIVER for INTIDs 32 - 1020 */
725 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVER);
726 
727 	/* Save GICD_IPRIORITYR for INTIDs 32 - 1020 */
728 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITYR);
729 
730 	/* Save GICD_ICFGR for INTIDs 32 - 1020 */
731 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFGR);
732 
733 	/* Save GICD_IGRPMODR for INTIDs 32 - 1020 */
734 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMODR);
735 
736 	/* Save GICD_NSACR for INTIDs 32 - 1020 */
737 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSACR);
738 
739 	/* Save GICD_IROUTER for INTIDs 32 - 1024 */
740 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTER);
741 
742 	/*
743 	 * GICD_ITARGETSR<n> and GICD_SPENDSGIR<n> are RAZ/WI when
744 	 * GICD_CTLR.ARE_(S|NS) bits are set which is the case for our GICv3
745 	 * driver.
746 	 */
747 }
748 
749 /*****************************************************************************
750  * Function to restore the GIC Distributor register context. We disable G0, G1S
751  * and G1NS interrupt groups before we start restore of the Distributor. This
752  * function must be invoked prior to Redistributor restore and CPU interface
753  * enable. The pending and active interrupts are restored after the interrupts
754  * are fully configured and enabled.
755  *****************************************************************************/
756 void gicv3_distif_init_restore(const gicv3_dist_ctx_t * const dist_ctx)
757 {
758 	unsigned int num_ints = 0;
759 
760 	assert(gicv3_driver_data);
761 	assert(gicv3_driver_data->gicd_base);
762 	assert(IS_IN_EL3());
763 	assert(dist_ctx);
764 
765 	uintptr_t gicd_base = gicv3_driver_data->gicd_base;
766 
767 	/*
768 	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
769 	 * the ARE_S bit. The Distributor might generate a system error
770 	 * otherwise.
771 	 */
772 	gicd_clr_ctlr(gicd_base,
773 		      CTLR_ENABLE_G0_BIT |
774 		      CTLR_ENABLE_G1S_BIT |
775 		      CTLR_ENABLE_G1NS_BIT,
776 		      RWP_TRUE);
777 
778 	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
779 	gicd_set_ctlr(gicd_base, CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
780 
781 	num_ints = gicd_read_typer(gicd_base);
782 	num_ints &= TYPER_IT_LINES_NO_MASK;
783 	num_ints = (num_ints + 1) << 5;
784 
785 	assert(num_ints <= MAX_SPI_ID + 1);
786 
787 	/* Restore GICD_IGROUPR for INTIDs 32 - 1020 */
788 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUPR);
789 
790 	/* Restore GICD_IPRIORITYR for INTIDs 32 - 1020 */
791 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITYR);
792 
793 	/* Restore GICD_ICFGR for INTIDs 32 - 1020 */
794 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFGR);
795 
796 	/* Restore GICD_IGRPMODR for INTIDs 32 - 1020 */
797 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMODR);
798 
799 	/* Restore GICD_NSACR for INTIDs 32 - 1020 */
800 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSACR);
801 
802 	/* Restore GICD_IROUTER for INTIDs 32 - 1020 */
803 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTER);
804 
805 	/*
806 	 * Restore ISENABLER, ISPENDR and ISACTIVER after the interrupts are
807 	 * configured.
808 	 */
809 
810 	/* Restore GICD_ISENABLER for INT_IDs 32 - 1020 */
811 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLER);
812 
813 	/* Restore GICD_ISPENDR for INTIDs 32 - 1020 */
814 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPENDR);
815 
816 	/* Restore GICD_ISACTIVER for INTIDs 32 - 1020 */
817 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVER);
818 
819 	/* Restore the GICD_CTLR */
820 	gicd_write_ctlr(gicd_base, dist_ctx->gicd_ctlr);
821 	gicd_wait_for_pending_write(gicd_base);
822 
823 }
824 
825 /*******************************************************************************
826  * This function gets the priority of the interrupt the processor is currently
827  * servicing.
828  ******************************************************************************/
829 unsigned int gicv3_get_running_priority(void)
830 {
831 	return read_icc_rpr_el1();
832 }
833 
834 /*******************************************************************************
835  * This function checks if the interrupt identified by id is active (whether the
836  * state is either active, or active and pending). The proc_num is used if the
837  * interrupt is SGI or PPI and programs the corresponding Redistributor
838  * interface.
839  ******************************************************************************/
840 unsigned int gicv3_get_interrupt_active(unsigned int id, unsigned int proc_num)
841 {
842 	unsigned int value;
843 
844 	assert(gicv3_driver_data);
845 	assert(gicv3_driver_data->gicd_base);
846 	assert(proc_num < gicv3_driver_data->rdistif_num);
847 	assert(gicv3_driver_data->rdistif_base_addrs);
848 	assert(id <= MAX_SPI_ID);
849 
850 	if (id < MIN_SPI_ID) {
851 		/* For SGIs and PPIs */
852 		value = gicr_get_isactiver0(
853 				gicv3_driver_data->rdistif_base_addrs[proc_num], id);
854 	} else {
855 		value = gicd_get_isactiver(gicv3_driver_data->gicd_base, id);
856 	}
857 
858 	return value;
859 }
860 
861 /*******************************************************************************
862  * This function enables the interrupt identified by id. The proc_num
863  * is used if the interrupt is SGI or PPI, and programs the corresponding
864  * Redistributor interface.
865  ******************************************************************************/
866 void gicv3_enable_interrupt(unsigned int id, unsigned int proc_num)
867 {
868 	assert(gicv3_driver_data);
869 	assert(gicv3_driver_data->gicd_base);
870 	assert(proc_num < gicv3_driver_data->rdistif_num);
871 	assert(gicv3_driver_data->rdistif_base_addrs);
872 	assert(id <= MAX_SPI_ID);
873 
874 	/*
875 	 * Ensure that any shared variable updates depending on out of band
876 	 * interrupt trigger are observed before enabling interrupt.
877 	 */
878 	dsbishst();
879 	if (id < MIN_SPI_ID) {
880 		/* For SGIs and PPIs */
881 		gicr_set_isenabler0(
882 				gicv3_driver_data->rdistif_base_addrs[proc_num],
883 				id);
884 	} else {
885 		gicd_set_isenabler(gicv3_driver_data->gicd_base, id);
886 	}
887 }
888 
889 /*******************************************************************************
890  * This function disables the interrupt identified by id. The proc_num
891  * is used if the interrupt is SGI or PPI, and programs the corresponding
892  * Redistributor interface.
893  ******************************************************************************/
894 void gicv3_disable_interrupt(unsigned int id, unsigned int proc_num)
895 {
896 	assert(gicv3_driver_data);
897 	assert(gicv3_driver_data->gicd_base);
898 	assert(proc_num < gicv3_driver_data->rdistif_num);
899 	assert(gicv3_driver_data->rdistif_base_addrs);
900 	assert(id <= MAX_SPI_ID);
901 
902 	/*
903 	 * Disable interrupt, and ensure that any shared variable updates
904 	 * depending on out of band interrupt trigger are observed afterwards.
905 	 */
906 	if (id < MIN_SPI_ID) {
907 		/* For SGIs and PPIs */
908 		gicr_set_icenabler0(
909 				gicv3_driver_data->rdistif_base_addrs[proc_num],
910 				id);
911 
912 		/* Write to clear enable requires waiting for pending writes */
913 		gicr_wait_for_pending_write(
914 				gicv3_driver_data->rdistif_base_addrs[proc_num]);
915 	} else {
916 		gicd_set_icenabler(gicv3_driver_data->gicd_base, id);
917 
918 		/* Write to clear enable requires waiting for pending writes */
919 		gicd_wait_for_pending_write(gicv3_driver_data->gicd_base);
920 	}
921 
922 	dsbishst();
923 }
924 
925 /*******************************************************************************
926  * This function sets the interrupt priority as supplied for the given interrupt
927  * id.
928  ******************************************************************************/
929 void gicv3_set_interrupt_priority(unsigned int id, unsigned int proc_num,
930 		unsigned int priority)
931 {
932 	uintptr_t gicr_base;
933 
934 	assert(gicv3_driver_data);
935 	assert(gicv3_driver_data->gicd_base);
936 	assert(proc_num < gicv3_driver_data->rdistif_num);
937 	assert(gicv3_driver_data->rdistif_base_addrs);
938 	assert(id <= MAX_SPI_ID);
939 
940 	if (id < MIN_SPI_ID) {
941 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
942 		gicr_set_ipriorityr(gicr_base, id, priority);
943 	} else {
944 		gicd_set_ipriorityr(gicv3_driver_data->gicd_base, id, priority);
945 	}
946 }
947 
948 /*******************************************************************************
949  * This function assigns group for the interrupt identified by id. The proc_num
950  * is used if the interrupt is SGI or PPI, and programs the corresponding
951  * Redistributor interface. The group can be any of GICV3_INTR_GROUP*
952  ******************************************************************************/
953 void gicv3_set_interrupt_type(unsigned int id, unsigned int proc_num,
954 		unsigned int type)
955 {
956 	unsigned int igroup = 0, grpmod = 0;
957 	uintptr_t gicr_base;
958 
959 	assert(gicv3_driver_data);
960 	assert(gicv3_driver_data->gicd_base);
961 	assert(proc_num < gicv3_driver_data->rdistif_num);
962 	assert(gicv3_driver_data->rdistif_base_addrs);
963 
964 	switch (type) {
965 	case INTR_GROUP1S:
966 		igroup = 0;
967 		grpmod = 1;
968 		break;
969 	case INTR_GROUP0:
970 		igroup = 0;
971 		grpmod = 0;
972 		break;
973 	case INTR_GROUP1NS:
974 		igroup = 1;
975 		grpmod = 0;
976 		break;
977 	default:
978 		assert(0);
979 	}
980 
981 	if (id < MIN_SPI_ID) {
982 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
983 		if (igroup)
984 			gicr_set_igroupr0(gicr_base, id);
985 		else
986 			gicr_clr_igroupr0(gicr_base, id);
987 
988 		if (grpmod)
989 			gicr_set_igrpmodr0(gicr_base, id);
990 		else
991 			gicr_clr_igrpmodr0(gicr_base, id);
992 	} else {
993 		/* Serialize read-modify-write to Distributor registers */
994 		spin_lock(&gic_lock);
995 		if (igroup)
996 			gicd_set_igroupr(gicv3_driver_data->gicd_base, id);
997 		else
998 			gicd_clr_igroupr(gicv3_driver_data->gicd_base, id);
999 
1000 		if (grpmod)
1001 			gicd_set_igrpmodr(gicv3_driver_data->gicd_base, id);
1002 		else
1003 			gicd_clr_igrpmodr(gicv3_driver_data->gicd_base, id);
1004 		spin_unlock(&gic_lock);
1005 	}
1006 }
1007 
1008 /*******************************************************************************
1009  * This function raises the specified Secure Group 0 SGI.
1010  *
1011  * The target parameter must be a valid MPIDR in the system.
1012  ******************************************************************************/
1013 void gicv3_raise_secure_g0_sgi(int sgi_num, u_register_t target)
1014 {
1015 	unsigned int tgt, aff3, aff2, aff1, aff0;
1016 	uint64_t sgi_val;
1017 
1018 	/* Verify interrupt number is in the SGI range */
1019 	assert((sgi_num >= MIN_SGI_ID) && (sgi_num < MIN_PPI_ID));
1020 
1021 	/* Extract affinity fields from target */
1022 	aff0 = MPIDR_AFFLVL0_VAL(target);
1023 	aff1 = MPIDR_AFFLVL1_VAL(target);
1024 	aff2 = MPIDR_AFFLVL2_VAL(target);
1025 	aff3 = MPIDR_AFFLVL3_VAL(target);
1026 
1027 	/*
1028 	 * Make target list from affinity 0, and ensure GICv3 SGI can target
1029 	 * this PE.
1030 	 */
1031 	assert(aff0 < GICV3_MAX_SGI_TARGETS);
1032 	tgt = BIT(aff0);
1033 
1034 	/* Raise SGI to PE specified by its affinity */
1035 	sgi_val = GICV3_SGIR_VALUE(aff3, aff2, aff1, sgi_num, SGIR_IRM_TO_AFF,
1036 			tgt);
1037 
1038 	/*
1039 	 * Ensure that any shared variable updates depending on out of band
1040 	 * interrupt trigger are observed before raising SGI.
1041 	 */
1042 	dsbishst();
1043 	write_icc_sgi0r_el1(sgi_val);
1044 	isb();
1045 }
1046 
1047 /*******************************************************************************
1048  * This function sets the interrupt routing for the given SPI interrupt id.
1049  * The interrupt routing is specified in routing mode and mpidr.
1050  *
1051  * The routing mode can be either of:
1052  *  - GICV3_IRM_ANY
1053  *  - GICV3_IRM_PE
1054  *
1055  * The mpidr is the affinity of the PE to which the interrupt will be routed,
1056  * and is ignored for routing mode GICV3_IRM_ANY.
1057  ******************************************************************************/
1058 void gicv3_set_spi_routing(unsigned int id, unsigned int irm, u_register_t mpidr)
1059 {
1060 	unsigned long long aff;
1061 	uint64_t router;
1062 
1063 	assert(gicv3_driver_data);
1064 	assert(gicv3_driver_data->gicd_base);
1065 
1066 	assert((irm == GICV3_IRM_ANY) || (irm == GICV3_IRM_PE));
1067 	assert(id >= MIN_SPI_ID && id <= MAX_SPI_ID);
1068 
1069 	aff = gicd_irouter_val_from_mpidr(mpidr, irm);
1070 	gicd_write_irouter(gicv3_driver_data->gicd_base, id, aff);
1071 
1072 	/*
1073 	 * In implementations that do not require 1 of N distribution of SPIs,
1074 	 * IRM might be RAZ/WI. Read back and verify IRM bit.
1075 	 */
1076 	if (irm == GICV3_IRM_ANY) {
1077 		router = gicd_read_irouter(gicv3_driver_data->gicd_base, id);
1078 		if (!((router >> IROUTER_IRM_SHIFT) & IROUTER_IRM_MASK)) {
1079 			ERROR("GICv3 implementation doesn't support routing ANY\n");
1080 			panic();
1081 		}
1082 	}
1083 }
1084 
1085 /*******************************************************************************
1086  * This function clears the pending status of an interrupt identified by id.
1087  * The proc_num is used if the interrupt is SGI or PPI, and programs the
1088  * corresponding Redistributor interface.
1089  ******************************************************************************/
1090 void gicv3_clear_interrupt_pending(unsigned int id, unsigned int proc_num)
1091 {
1092 	assert(gicv3_driver_data);
1093 	assert(gicv3_driver_data->gicd_base);
1094 	assert(proc_num < gicv3_driver_data->rdistif_num);
1095 	assert(gicv3_driver_data->rdistif_base_addrs);
1096 
1097 	/*
1098 	 * Clear pending interrupt, and ensure that any shared variable updates
1099 	 * depending on out of band interrupt trigger are observed afterwards.
1100 	 */
1101 	if (id < MIN_SPI_ID) {
1102 		/* For SGIs and PPIs */
1103 		gicr_set_icpendr0(gicv3_driver_data->rdistif_base_addrs[proc_num],
1104 				id);
1105 	} else {
1106 		gicd_set_icpendr(gicv3_driver_data->gicd_base, id);
1107 	}
1108 	dsbishst();
1109 }
1110 
1111 /*******************************************************************************
1112  * This function sets the pending status of an interrupt identified by id.
1113  * The proc_num is used if the interrupt is SGI or PPI and programs the
1114  * corresponding Redistributor interface.
1115  ******************************************************************************/
1116 void gicv3_set_interrupt_pending(unsigned int id, unsigned int proc_num)
1117 {
1118 	assert(gicv3_driver_data);
1119 	assert(gicv3_driver_data->gicd_base);
1120 	assert(proc_num < gicv3_driver_data->rdistif_num);
1121 	assert(gicv3_driver_data->rdistif_base_addrs);
1122 
1123 	/*
1124 	 * Ensure that any shared variable updates depending on out of band
1125 	 * interrupt trigger are observed before setting interrupt pending.
1126 	 */
1127 	dsbishst();
1128 	if (id < MIN_SPI_ID) {
1129 		/* For SGIs and PPIs */
1130 		gicr_set_ispendr0(gicv3_driver_data->rdistif_base_addrs[proc_num],
1131 				id);
1132 	} else {
1133 		gicd_set_ispendr(gicv3_driver_data->gicd_base, id);
1134 	}
1135 }
1136 
1137 /*******************************************************************************
1138  * This function sets the PMR register with the supplied value. Returns the
1139  * original PMR.
1140  ******************************************************************************/
1141 unsigned int gicv3_set_pmr(unsigned int mask)
1142 {
1143 	unsigned int old_mask;
1144 
1145 	old_mask = read_icc_pmr_el1();
1146 
1147 	/*
1148 	 * Order memory updates w.r.t. PMR write, and ensure they're visible
1149 	 * before potential out of band interrupt trigger because of PMR update.
1150 	 * PMR system register writes are self-synchronizing, so no ISB required
1151 	 * thereafter.
1152 	 */
1153 	dsbishst();
1154 	write_icc_pmr_el1(mask);
1155 
1156 	return old_mask;
1157 }
1158