xref: /rk3399_ARM-atf/drivers/arm/gic/v3/gicv3_main.c (revision 532ed6183868036e4a4f83cd7a71b93266a3bdb7)
1 /*
2  * Copyright (c) 2015-2016, ARM Limited and Contributors. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *
7  * Redistributions of source code must retain the above copyright notice, this
8  * list of conditions and the following disclaimer.
9  *
10  * Redistributions in binary form must reproduce the above copyright notice,
11  * this list of conditions and the following disclaimer in the documentation
12  * and/or other materials provided with the distribution.
13  *
14  * Neither the name of ARM nor the names of its contributors may be used
15  * to endorse or promote products derived from this software without specific
16  * prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <arch.h>
32 #include <arch_helpers.h>
33 #include <assert.h>
34 #include <debug.h>
35 #include <gic_common.h>
36 #include <gicv3.h>
37 #include "../common/gic_common_private.h"
38 #include "gicv3_private.h"
39 
40 static const gicv3_driver_data_t *driver_data;
41 static unsigned int gicv2_compat;
42 
43 /*******************************************************************************
44  * This function initialises the ARM GICv3 driver in EL3 with provided platform
45  * inputs.
46  ******************************************************************************/
47 void gicv3_driver_init(const gicv3_driver_data_t *plat_driver_data)
48 {
49 	unsigned int gic_version;
50 
51 	assert(plat_driver_data);
52 	assert(plat_driver_data->gicd_base);
53 	assert(plat_driver_data->gicr_base);
54 	assert(plat_driver_data->rdistif_num);
55 	assert(plat_driver_data->rdistif_base_addrs);
56 
57 	assert(IS_IN_EL3());
58 
59 	/*
60 	 * The platform should provide a list of at least one type of
61 	 * interrupts
62 	 */
63 	assert(plat_driver_data->g0_interrupt_array ||
64 	       plat_driver_data->g1s_interrupt_array);
65 
66 	/*
67 	 * If there are no interrupts of a particular type, then the number of
68 	 * interrupts of that type should be 0 and vice-versa.
69 	 */
70 	assert(plat_driver_data->g0_interrupt_array ?
71 	       plat_driver_data->g0_interrupt_num :
72 	       plat_driver_data->g0_interrupt_num == 0);
73 	assert(plat_driver_data->g1s_interrupt_array ?
74 	       plat_driver_data->g1s_interrupt_num :
75 	       plat_driver_data->g1s_interrupt_num == 0);
76 
77 	/* Check for system register support */
78 	assert(read_id_aa64pfr0_el1() &
79 			(ID_AA64PFR0_GIC_MASK << ID_AA64PFR0_GIC_SHIFT));
80 
81 	/* The GIC version should be 3.0 */
82 	gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
83 	gic_version >>=	PIDR2_ARCH_REV_SHIFT;
84 	gic_version &= PIDR2_ARCH_REV_MASK;
85 	assert(gic_version == ARCH_REV_GICV3);
86 
87 	/*
88 	 * Find out whether the GIC supports the GICv2 compatibility mode. The
89 	 * ARE_S bit resets to 0 if supported
90 	 */
91 	gicv2_compat = gicd_read_ctlr(plat_driver_data->gicd_base);
92 	gicv2_compat >>= CTLR_ARE_S_SHIFT;
93 	gicv2_compat = !(gicv2_compat & CTLR_ARE_S_MASK);
94 
95 	/*
96 	 * Find the base address of each implemented Redistributor interface.
97 	 * The number of interfaces should be equal to the number of CPUs in the
98 	 * system. The memory for saving these addresses has to be allocated by
99 	 * the platform port
100 	 */
101 	gicv3_rdistif_base_addrs_probe(plat_driver_data->rdistif_base_addrs,
102 					   plat_driver_data->rdistif_num,
103 					   plat_driver_data->gicr_base,
104 					   plat_driver_data->mpidr_to_core_pos);
105 
106 	driver_data = plat_driver_data;
107 
108 	INFO("GICv3 %s legacy support detected."
109 			" ARM GICV3 driver initialized in EL3\n",
110 			gicv2_compat ? "with" : "without");
111 }
112 
113 /*******************************************************************************
114  * This function initialises the GIC distributor interface based upon the data
115  * provided by the platform while initialising the driver.
116  ******************************************************************************/
117 void gicv3_distif_init(void)
118 {
119 	assert(driver_data);
120 	assert(driver_data->gicd_base);
121 	assert(driver_data->g1s_interrupt_array);
122 	assert(driver_data->g0_interrupt_array);
123 
124 	assert(IS_IN_EL3());
125 
126 	/*
127 	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
128 	 * the ARE_S bit. The Distributor might generate a system error
129 	 * otherwise.
130 	 */
131 	gicd_clr_ctlr(driver_data->gicd_base,
132 		      CTLR_ENABLE_G0_BIT |
133 		      CTLR_ENABLE_G1S_BIT |
134 		      CTLR_ENABLE_G1NS_BIT,
135 		      RWP_TRUE);
136 
137 	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
138 	gicd_set_ctlr(driver_data->gicd_base,
139 			CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
140 
141 	/* Set the default attribute of all SPIs */
142 	gicv3_spis_configure_defaults(driver_data->gicd_base);
143 
144 	/* Configure the G1S SPIs */
145 	gicv3_secure_spis_configure(driver_data->gicd_base,
146 					driver_data->g1s_interrupt_num,
147 					driver_data->g1s_interrupt_array,
148 					INTR_GROUP1S);
149 
150 	/* Configure the G0 SPIs */
151 	gicv3_secure_spis_configure(driver_data->gicd_base,
152 					driver_data->g0_interrupt_num,
153 					driver_data->g0_interrupt_array,
154 					INTR_GROUP0);
155 
156 	/* Enable the secure SPIs now that they have been configured */
157 	gicd_set_ctlr(driver_data->gicd_base,
158 		      CTLR_ENABLE_G1S_BIT | CTLR_ENABLE_G0_BIT,
159 		      RWP_TRUE);
160 }
161 
162 /*******************************************************************************
163  * This function initialises the GIC Redistributor interface of the calling CPU
164  * (identified by the 'proc_num' parameter) based upon the data provided by the
165  * platform while initialising the driver.
166  ******************************************************************************/
167 void gicv3_rdistif_init(unsigned int proc_num)
168 {
169 	uintptr_t gicr_base;
170 
171 	assert(driver_data);
172 	assert(proc_num < driver_data->rdistif_num);
173 	assert(driver_data->rdistif_base_addrs);
174 	assert(driver_data->gicd_base);
175 	assert(gicd_read_ctlr(driver_data->gicd_base) & CTLR_ARE_S_BIT);
176 	assert(driver_data->g1s_interrupt_array);
177 	assert(driver_data->g0_interrupt_array);
178 
179 	assert(IS_IN_EL3());
180 
181 	gicr_base = driver_data->rdistif_base_addrs[proc_num];
182 
183 	/* Set the default attribute of all SGIs and PPIs */
184 	gicv3_ppi_sgi_configure_defaults(gicr_base);
185 
186 	/* Configure the G1S SGIs/PPIs */
187 	gicv3_secure_ppi_sgi_configure(gicr_base,
188 					   driver_data->g1s_interrupt_num,
189 					   driver_data->g1s_interrupt_array,
190 					   INTR_GROUP1S);
191 
192 	/* Configure the G0 SGIs/PPIs */
193 	gicv3_secure_ppi_sgi_configure(gicr_base,
194 					   driver_data->g0_interrupt_num,
195 					   driver_data->g0_interrupt_array,
196 					   INTR_GROUP0);
197 }
198 
199 /*******************************************************************************
200  * This function enables the GIC CPU interface of the calling CPU using only
201  * system register accesses.
202  ******************************************************************************/
203 void gicv3_cpuif_enable(unsigned int proc_num)
204 {
205 	uintptr_t gicr_base;
206 	unsigned int scr_el3;
207 	unsigned int icc_sre_el3;
208 
209 	assert(driver_data);
210 	assert(proc_num < driver_data->rdistif_num);
211 	assert(driver_data->rdistif_base_addrs);
212 	assert(IS_IN_EL3());
213 
214 	/* Mark the connected core as awake */
215 	gicr_base = driver_data->rdistif_base_addrs[proc_num];
216 	gicv3_rdistif_mark_core_awake(gicr_base);
217 
218 	/* Disable the legacy interrupt bypass */
219 	icc_sre_el3 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT;
220 
221 	/*
222 	 * Enable system register access for EL3 and allow lower exception
223 	 * levels to configure the same for themselves. If the legacy mode is
224 	 * not supported, the SRE bit is RAO/WI
225 	 */
226 	icc_sre_el3 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT);
227 	write_icc_sre_el3(read_icc_sre_el3() | icc_sre_el3);
228 
229 	scr_el3 = read_scr_el3();
230 
231 	/*
232 	 * Switch to NS state to write Non secure ICC_SRE_EL1 and
233 	 * ICC_SRE_EL2 registers.
234 	 */
235 	write_scr_el3(scr_el3 | SCR_NS_BIT);
236 	isb();
237 
238 	write_icc_sre_el2(read_icc_sre_el2() | icc_sre_el3);
239 	write_icc_sre_el1(ICC_SRE_SRE_BIT);
240 	isb();
241 
242 	/* Switch to secure state. */
243 	write_scr_el3(scr_el3 & (~SCR_NS_BIT));
244 	isb();
245 
246 	/* Program the idle priority in the PMR */
247 	write_icc_pmr_el1(GIC_PRI_MASK);
248 
249 	/* Enable Group0 interrupts */
250 	write_icc_igrpen0_el1(IGRPEN1_EL1_ENABLE_G0_BIT);
251 
252 	/* Enable Group1 Secure interrupts */
253 	write_icc_igrpen1_el3(read_icc_igrpen1_el3() |
254 				IGRPEN1_EL3_ENABLE_G1S_BIT);
255 
256 	/* Write the secure ICC_SRE_EL1 register */
257 	write_icc_sre_el1(ICC_SRE_SRE_BIT);
258 	isb();
259 }
260 
261 /*******************************************************************************
262  * This function disables the GIC CPU interface of the calling CPU using
263  * only system register accesses.
264  ******************************************************************************/
265 void gicv3_cpuif_disable(unsigned int proc_num)
266 {
267 	uintptr_t gicr_base;
268 
269 	assert(driver_data);
270 	assert(proc_num < driver_data->rdistif_num);
271 	assert(driver_data->rdistif_base_addrs);
272 
273 	assert(IS_IN_EL3());
274 
275 	/* Disable legacy interrupt bypass */
276 	write_icc_sre_el3(read_icc_sre_el3() |
277 			  (ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT));
278 
279 	/* Disable Group0 interrupts */
280 	write_icc_igrpen0_el1(read_icc_igrpen0_el1() &
281 			      ~IGRPEN1_EL1_ENABLE_G0_BIT);
282 
283 	/* Disable Group1 Secure interrupts */
284 	write_icc_igrpen1_el3(read_icc_igrpen1_el3() &
285 			      ~IGRPEN1_EL3_ENABLE_G1S_BIT);
286 
287 	/* Synchronise accesses to group enable registers */
288 	isb();
289 
290 	/* Mark the connected core as asleep */
291 	gicr_base = driver_data->rdistif_base_addrs[proc_num];
292 	gicv3_rdistif_mark_core_asleep(gicr_base);
293 }
294 
295 /*******************************************************************************
296  * This function returns the id of the highest priority pending interrupt at
297  * the GIC cpu interface.
298  ******************************************************************************/
299 unsigned int gicv3_get_pending_interrupt_id(void)
300 {
301 	unsigned int id;
302 
303 	assert(IS_IN_EL3());
304 	id = read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
305 
306 	/*
307 	 * If the ID is special identifier corresponding to G1S or G1NS
308 	 * interrupt, then read the highest pending group 1 interrupt.
309 	 */
310 	if ((id == PENDING_G1S_INTID) || (id == PENDING_G1NS_INTID))
311 		return read_icc_hppir1_el1() & HPPIR1_EL1_INTID_MASK;
312 
313 	return id;
314 }
315 
316 /*******************************************************************************
317  * This function returns the type of the highest priority pending interrupt at
318  * the GIC cpu interface. The return values can be one of the following :
319  *   PENDING_G1S_INTID  : The interrupt type is secure Group 1.
320  *   PENDING_G1NS_INTID : The interrupt type is non secure Group 1.
321  *   0 - 1019           : The interrupt type is secure Group 0.
322  *   GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
323  *                            sufficient priority to be signaled
324  ******************************************************************************/
325 unsigned int gicv3_get_pending_interrupt_type(void)
326 {
327 	assert(IS_IN_EL3());
328 	return read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
329 }
330 
331 /*******************************************************************************
332  * This function returns the type of the interrupt id depending upon the group
333  * this interrupt has been configured under by the interrupt controller i.e.
334  * group0 or group1 Secure / Non Secure. The return value can be one of the
335  * following :
336  *    INTR_GROUP0  : The interrupt type is a Secure Group 0 interrupt
337  *    INTR_GROUP1S : The interrupt type is a Secure Group 1 secure interrupt
338  *    INTR_GROUP1NS: The interrupt type is a Secure Group 1 non secure
339  *                   interrupt.
340  ******************************************************************************/
341 unsigned int gicv3_get_interrupt_type(unsigned int id,
342 					  unsigned int proc_num)
343 {
344 	unsigned int igroup, grpmodr;
345 	uintptr_t gicr_base;
346 
347 	assert(IS_IN_EL3());
348 	assert(driver_data);
349 
350 	/* Ensure the parameters are valid */
351 	assert(id < PENDING_G1S_INTID || id >= MIN_LPI_ID);
352 	assert(proc_num < driver_data->rdistif_num);
353 
354 	/* All LPI interrupts are Group 1 non secure */
355 	if (id >= MIN_LPI_ID)
356 		return INTR_GROUP1NS;
357 
358 	if (id < MIN_SPI_ID) {
359 		assert(driver_data->rdistif_base_addrs);
360 		gicr_base = driver_data->rdistif_base_addrs[proc_num];
361 		igroup = gicr_get_igroupr0(gicr_base, id);
362 		grpmodr = gicr_get_igrpmodr0(gicr_base, id);
363 	} else {
364 		assert(driver_data->gicd_base);
365 		igroup = gicd_get_igroupr(driver_data->gicd_base, id);
366 		grpmodr = gicd_get_igrpmodr(driver_data->gicd_base, id);
367 	}
368 
369 	/*
370 	 * If the IGROUP bit is set, then it is a Group 1 Non secure
371 	 * interrupt
372 	 */
373 	if (igroup)
374 		return INTR_GROUP1NS;
375 
376 	/* If the GRPMOD bit is set, then it is a Group 1 Secure interrupt */
377 	if (grpmodr)
378 		return INTR_GROUP1S;
379 
380 	/* Else it is a Group 0 Secure interrupt */
381 	return INTR_GROUP0;
382 }
383