xref: /rk3399_ARM-atf/drivers/arm/gic/v3/gicv3_main.c (revision 3dbbbca29e3c42a6f9976878f27e1f1fd75b5c8e)
1 /*
2  * Copyright (c) 2015-2021, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 
9 #include <arch.h>
10 #include <arch_helpers.h>
11 #include <common/debug.h>
12 #include <common/interrupt_props.h>
13 #include <drivers/arm/gicv3.h>
14 #include <lib/spinlock.h>
15 
16 #include "gicv3_private.h"
17 
18 const gicv3_driver_data_t *gicv3_driver_data;
19 
20 /*
21  * Spinlock to guard registers needing read-modify-write. APIs protected by this
22  * spinlock are used either at boot time (when only a single CPU is active), or
23  * when the system is fully coherent.
24  */
25 static spinlock_t gic_lock;
26 
27 /*
28  * Redistributor power operations are weakly bound so that they can be
29  * overridden
30  */
31 #pragma weak gicv3_rdistif_off
32 #pragma weak gicv3_rdistif_on
33 
34 /* Check interrupt ID for SGI/(E)PPI and (E)SPIs */
35 static bool is_sgi_ppi(unsigned int id);
36 
37 /*
38  * Helper macros to save and restore GICR and GICD registers
39  * corresponding to their numbers to and from the context
40  */
41 #define RESTORE_GICR_REG(base, ctx, name, i)	\
42 	gicr_write_##name((base), (i), (ctx)->gicr_##name[(i)])
43 
44 #define SAVE_GICR_REG(base, ctx, name, i)	\
45 	(ctx)->gicr_##name[(i)] = gicr_read_##name((base), (i))
46 
47 /* Helper macros to save and restore GICD registers to and from the context */
48 #define RESTORE_GICD_REGS(base, ctx, intr_num, reg, REG)		\
49 	do {								\
50 		for (unsigned int int_id = MIN_SPI_ID; int_id < (intr_num);\
51 				int_id += (1U << REG##R_SHIFT)) {	\
52 			gicd_write_##reg((base), int_id,		\
53 				(ctx)->gicd_##reg[(int_id - MIN_SPI_ID) >> \
54 							REG##R_SHIFT]);	\
55 		}							\
56 	} while (false)
57 
58 #define SAVE_GICD_REGS(base, ctx, intr_num, reg, REG)			\
59 	do {								\
60 		for (unsigned int int_id = MIN_SPI_ID; int_id < (intr_num);\
61 				int_id += (1U << REG##R_SHIFT)) {	\
62 			(ctx)->gicd_##reg[(int_id - MIN_SPI_ID) >>	\
63 			REG##R_SHIFT] = gicd_read_##reg((base), int_id); \
64 		}							\
65 	} while (false)
66 
67 #if GIC_EXT_INTID
68 #define RESTORE_GICD_EREGS(base, ctx, intr_num, reg, REG)		\
69 	do {								\
70 		for (unsigned int int_id = MIN_ESPI_ID; int_id < (intr_num);\
71 				int_id += (1U << REG##R_SHIFT)) {	\
72 			gicd_write_##reg((base), int_id,		\
73 			(ctx)->gicd_##reg[(int_id - (MIN_ESPI_ID -	\
74 			round_up(TOTAL_SPI_INTR_NUM, 1U << REG##R_SHIFT)))\
75 						>> REG##R_SHIFT]);	\
76 		}							\
77 	} while (false)
78 
79 #define SAVE_GICD_EREGS(base, ctx, intr_num, reg, REG)			\
80 	do {								\
81 		for (unsigned int int_id = MIN_ESPI_ID; int_id < (intr_num);\
82 				int_id += (1U << REG##R_SHIFT)) {	\
83 			(ctx)->gicd_##reg[(int_id - (MIN_ESPI_ID -	\
84 			round_up(TOTAL_SPI_INTR_NUM, 1U << REG##R_SHIFT)))\
85 			>> REG##R_SHIFT] = gicd_read_##reg((base), int_id);\
86 		}							\
87 	} while (false)
88 #else
89 #define SAVE_GICD_EREGS(base, ctx, intr_num, reg, REG)
90 #define RESTORE_GICD_EREGS(base, ctx, intr_num, reg, REG)
91 #endif /* GIC_EXT_INTID */
92 
93 /*******************************************************************************
94  * This function initialises the ARM GICv3 driver in EL3 with provided platform
95  * inputs.
96  ******************************************************************************/
97 void __init gicv3_driver_init(const gicv3_driver_data_t *plat_driver_data)
98 {
99 	unsigned int gic_version;
100 	unsigned int gicv2_compat;
101 
102 	assert(plat_driver_data != NULL);
103 	assert(plat_driver_data->gicd_base != 0U);
104 	assert(plat_driver_data->rdistif_num != 0U);
105 	assert(plat_driver_data->rdistif_base_addrs != NULL);
106 
107 	assert(IS_IN_EL3());
108 
109 	assert((plat_driver_data->interrupt_props_num != 0U) ?
110 	       (plat_driver_data->interrupt_props != NULL) : 1);
111 
112 	/* Check for system register support */
113 #ifndef __aarch64__
114 	assert((read_id_pfr1() &
115 			(ID_PFR1_GIC_MASK << ID_PFR1_GIC_SHIFT)) != 0U);
116 #else
117 	assert((read_id_aa64pfr0_el1() &
118 			(ID_AA64PFR0_GIC_MASK << ID_AA64PFR0_GIC_SHIFT)) != 0U);
119 #endif /* !__aarch64__ */
120 
121 	gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
122 	gic_version >>= PIDR2_ARCH_REV_SHIFT;
123 	gic_version &= PIDR2_ARCH_REV_MASK;
124 
125 	/* Check GIC version */
126 #if GIC_ENABLE_V4_EXTN
127 	assert(gic_version == ARCH_REV_GICV4);
128 
129 	/* GICv4 supports Direct Virtual LPI injection */
130 	assert((gicd_read_typer(plat_driver_data->gicd_base)
131 					& TYPER_DVIS) != 0);
132 #else
133 	assert(gic_version == ARCH_REV_GICV3);
134 #endif
135 	/*
136 	 * Find out whether the GIC supports the GICv2 compatibility mode.
137 	 * The ARE_S bit resets to 0 if supported
138 	 */
139 	gicv2_compat = gicd_read_ctlr(plat_driver_data->gicd_base);
140 	gicv2_compat >>= CTLR_ARE_S_SHIFT;
141 	gicv2_compat = gicv2_compat & CTLR_ARE_S_MASK;
142 
143 	if (plat_driver_data->gicr_base != 0U) {
144 		/*
145 		 * Find the base address of each implemented Redistributor interface.
146 		 * The number of interfaces should be equal to the number of CPUs in the
147 		 * system. The memory for saving these addresses has to be allocated by
148 		 * the platform port
149 		 */
150 		gicv3_rdistif_base_addrs_probe(plat_driver_data->rdistif_base_addrs,
151 						   plat_driver_data->rdistif_num,
152 						   plat_driver_data->gicr_base,
153 						   plat_driver_data->mpidr_to_core_pos);
154 #if !HW_ASSISTED_COHERENCY
155 		/*
156 		 * Flush the rdistif_base_addrs[] contents linked to the GICv3 driver.
157 		 */
158 		flush_dcache_range((uintptr_t)(plat_driver_data->rdistif_base_addrs),
159 			plat_driver_data->rdistif_num *
160 			sizeof(*(plat_driver_data->rdistif_base_addrs)));
161 #endif
162 	}
163 	gicv3_driver_data = plat_driver_data;
164 
165 	/*
166 	 * The GIC driver data is initialized by the primary CPU with caches
167 	 * enabled. When the secondary CPU boots up, it initializes the
168 	 * GICC/GICR interface with the caches disabled. Hence flush the
169 	 * driver data to ensure coherency. This is not required if the
170 	 * platform has HW_ASSISTED_COHERENCY enabled.
171 	 */
172 #if !HW_ASSISTED_COHERENCY
173 	flush_dcache_range((uintptr_t)&gicv3_driver_data,
174 		sizeof(gicv3_driver_data));
175 	flush_dcache_range((uintptr_t)gicv3_driver_data,
176 		sizeof(*gicv3_driver_data));
177 #endif
178 	INFO("GICv%u with%s legacy support detected.\n", gic_version,
179 				(gicv2_compat == 0U) ? "" : "out");
180 	INFO("ARM GICv%u driver initialized in EL3\n", gic_version);
181 }
182 
183 /*******************************************************************************
184  * This function initialises the GIC distributor interface based upon the data
185  * provided by the platform while initialising the driver.
186  ******************************************************************************/
187 void __init gicv3_distif_init(void)
188 {
189 	unsigned int bitmap;
190 
191 	assert(gicv3_driver_data != NULL);
192 	assert(gicv3_driver_data->gicd_base != 0U);
193 
194 	assert(IS_IN_EL3());
195 
196 	/*
197 	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
198 	 * the ARE_S bit. The Distributor might generate a system error
199 	 * otherwise.
200 	 */
201 	gicd_clr_ctlr(gicv3_driver_data->gicd_base,
202 		      CTLR_ENABLE_G0_BIT |
203 		      CTLR_ENABLE_G1S_BIT |
204 		      CTLR_ENABLE_G1NS_BIT,
205 		      RWP_TRUE);
206 
207 	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
208 	gicd_set_ctlr(gicv3_driver_data->gicd_base,
209 			CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
210 
211 	/* Set the default attribute of all (E)SPIs */
212 	gicv3_spis_config_defaults(gicv3_driver_data->gicd_base);
213 
214 	bitmap = gicv3_secure_spis_config_props(
215 			gicv3_driver_data->gicd_base,
216 			gicv3_driver_data->interrupt_props,
217 			gicv3_driver_data->interrupt_props_num);
218 
219 	/* Enable the secure (E)SPIs now that they have been configured */
220 	gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE);
221 }
222 
223 /*******************************************************************************
224  * This function initialises the GIC Redistributor interface of the calling CPU
225  * (identified by the 'proc_num' parameter) based upon the data provided by the
226  * platform while initialising the driver.
227  ******************************************************************************/
228 void gicv3_rdistif_init(unsigned int proc_num)
229 {
230 	uintptr_t gicr_base;
231 	unsigned int bitmap;
232 	uint32_t ctlr;
233 
234 	assert(gicv3_driver_data != NULL);
235 	assert(proc_num < gicv3_driver_data->rdistif_num);
236 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
237 	assert(gicv3_driver_data->gicd_base != 0U);
238 
239 	ctlr = gicd_read_ctlr(gicv3_driver_data->gicd_base);
240 	assert((ctlr & CTLR_ARE_S_BIT) != 0U);
241 
242 	assert(IS_IN_EL3());
243 
244 	/* Power on redistributor */
245 	gicv3_rdistif_on(proc_num);
246 
247 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
248 	assert(gicr_base != 0U);
249 
250 	/* Set the default attribute of all SGIs and (E)PPIs */
251 	gicv3_ppi_sgi_config_defaults(gicr_base);
252 
253 	bitmap = gicv3_secure_ppi_sgi_config_props(gicr_base,
254 			gicv3_driver_data->interrupt_props,
255 			gicv3_driver_data->interrupt_props_num);
256 
257 	/* Enable interrupt groups as required, if not already */
258 	if ((ctlr & bitmap) != bitmap) {
259 		gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE);
260 	}
261 }
262 
263 /*******************************************************************************
264  * Functions to perform power operations on GIC Redistributor
265  ******************************************************************************/
266 void gicv3_rdistif_off(unsigned int proc_num)
267 {
268 }
269 
270 void gicv3_rdistif_on(unsigned int proc_num)
271 {
272 }
273 
274 /*******************************************************************************
275  * This function enables the GIC CPU interface of the calling CPU using only
276  * system register accesses.
277  ******************************************************************************/
278 void gicv3_cpuif_enable(unsigned int proc_num)
279 {
280 	uintptr_t gicr_base;
281 	u_register_t scr_el3;
282 	unsigned int icc_sre_el3;
283 
284 	assert(gicv3_driver_data != NULL);
285 	assert(proc_num < gicv3_driver_data->rdistif_num);
286 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
287 	assert(IS_IN_EL3());
288 
289 	/* Mark the connected core as awake */
290 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
291 	gicv3_rdistif_mark_core_awake(gicr_base);
292 
293 	/* Disable the legacy interrupt bypass */
294 	icc_sre_el3 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT;
295 
296 	/*
297 	 * Enable system register access for EL3 and allow lower exception
298 	 * levels to configure the same for themselves. If the legacy mode is
299 	 * not supported, the SRE bit is RAO/WI
300 	 */
301 	icc_sre_el3 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT);
302 	write_icc_sre_el3(read_icc_sre_el3() | icc_sre_el3);
303 
304 	scr_el3 = read_scr_el3();
305 
306 	/*
307 	 * Switch to NS state to write Non secure ICC_SRE_EL1 and
308 	 * ICC_SRE_EL2 registers.
309 	 */
310 	write_scr_el3(scr_el3 | SCR_NS_BIT);
311 	isb();
312 
313 	write_icc_sre_el2(read_icc_sre_el2() | icc_sre_el3);
314 	write_icc_sre_el1(ICC_SRE_SRE_BIT);
315 	isb();
316 
317 	/* Switch to secure state. */
318 	write_scr_el3(scr_el3 & (~SCR_NS_BIT));
319 	isb();
320 
321 	/* Write the secure ICC_SRE_EL1 register */
322 	write_icc_sre_el1(ICC_SRE_SRE_BIT);
323 	isb();
324 
325 	/* Program the idle priority in the PMR */
326 	write_icc_pmr_el1(GIC_PRI_MASK);
327 
328 	/* Enable Group0 interrupts */
329 	write_icc_igrpen0_el1(IGRPEN1_EL1_ENABLE_G0_BIT);
330 
331 	/* Enable Group1 Secure interrupts */
332 	write_icc_igrpen1_el3(read_icc_igrpen1_el3() |
333 				IGRPEN1_EL3_ENABLE_G1S_BIT);
334 	isb();
335 }
336 
337 /*******************************************************************************
338  * This function disables the GIC CPU interface of the calling CPU using
339  * only system register accesses.
340  ******************************************************************************/
341 void gicv3_cpuif_disable(unsigned int proc_num)
342 {
343 	uintptr_t gicr_base;
344 
345 	assert(gicv3_driver_data != NULL);
346 	assert(proc_num < gicv3_driver_data->rdistif_num);
347 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
348 
349 	assert(IS_IN_EL3());
350 
351 	/* Disable legacy interrupt bypass */
352 	write_icc_sre_el3(read_icc_sre_el3() |
353 			  (ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT));
354 
355 	/* Disable Group0 interrupts */
356 	write_icc_igrpen0_el1(read_icc_igrpen0_el1() &
357 			      ~IGRPEN1_EL1_ENABLE_G0_BIT);
358 
359 	/* Disable Group1 Secure and Non-Secure interrupts */
360 	write_icc_igrpen1_el3(read_icc_igrpen1_el3() &
361 			      ~(IGRPEN1_EL3_ENABLE_G1NS_BIT |
362 			      IGRPEN1_EL3_ENABLE_G1S_BIT));
363 
364 	/* Synchronise accesses to group enable registers */
365 	isb();
366 
367 	/* Mark the connected core as asleep */
368 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
369 	assert(gicr_base != 0U);
370 	gicv3_rdistif_mark_core_asleep(gicr_base);
371 }
372 
373 /*******************************************************************************
374  * This function returns the id of the highest priority pending interrupt at
375  * the GIC cpu interface.
376  ******************************************************************************/
377 unsigned int gicv3_get_pending_interrupt_id(void)
378 {
379 	unsigned int id;
380 
381 	assert(IS_IN_EL3());
382 	id = (uint32_t)read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
383 
384 	/*
385 	 * If the ID is special identifier corresponding to G1S or G1NS
386 	 * interrupt, then read the highest pending group 1 interrupt.
387 	 */
388 	if ((id == PENDING_G1S_INTID) || (id == PENDING_G1NS_INTID)) {
389 		return (uint32_t)read_icc_hppir1_el1() & HPPIR1_EL1_INTID_MASK;
390 	}
391 
392 	return id;
393 }
394 
395 /*******************************************************************************
396  * This function returns the type of the highest priority pending interrupt at
397  * the GIC cpu interface. The return values can be one of the following :
398  *   PENDING_G1S_INTID  : The interrupt type is secure Group 1.
399  *   PENDING_G1NS_INTID : The interrupt type is non secure Group 1.
400  *   0 - 1019           : The interrupt type is secure Group 0.
401  *   GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
402  *                            sufficient priority to be signaled
403  ******************************************************************************/
404 unsigned int gicv3_get_pending_interrupt_type(void)
405 {
406 	assert(IS_IN_EL3());
407 	return (uint32_t)read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
408 }
409 
410 /*******************************************************************************
411  * This function returns the type of the interrupt id depending upon the group
412  * this interrupt has been configured under by the interrupt controller i.e.
413  * group0 or group1 Secure / Non Secure. The return value can be one of the
414  * following :
415  *    INTR_GROUP0  : The interrupt type is a Secure Group 0 interrupt
416  *    INTR_GROUP1S : The interrupt type is a Secure Group 1 secure interrupt
417  *    INTR_GROUP1NS: The interrupt type is a Secure Group 1 non secure
418  *                   interrupt.
419  ******************************************************************************/
420 unsigned int gicv3_get_interrupt_type(unsigned int id, unsigned int proc_num)
421 {
422 	unsigned int igroup, grpmodr;
423 	uintptr_t gicr_base;
424 
425 	assert(IS_IN_EL3());
426 	assert(gicv3_driver_data != NULL);
427 
428 	/* Ensure the parameters are valid */
429 	assert((id < PENDING_G1S_INTID) || (id >= MIN_LPI_ID));
430 	assert(proc_num < gicv3_driver_data->rdistif_num);
431 
432 	/* All LPI interrupts are Group 1 non secure */
433 	if (id >= MIN_LPI_ID) {
434 		return INTR_GROUP1NS;
435 	}
436 
437 	/* Check interrupt ID */
438 	if (is_sgi_ppi(id)) {
439 		/* SGIs: 0-15, PPIs: 16-31, EPPIs: 1056-1119 */
440 		assert(gicv3_driver_data->rdistif_base_addrs != NULL);
441 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
442 		igroup = gicr_get_igroupr(gicr_base, id);
443 		grpmodr = gicr_get_igrpmodr(gicr_base, id);
444 	} else {
445 		/* SPIs: 32-1019, ESPIs: 4096-5119 */
446 		assert(gicv3_driver_data->gicd_base != 0U);
447 		igroup = gicd_get_igroupr(gicv3_driver_data->gicd_base, id);
448 		grpmodr = gicd_get_igrpmodr(gicv3_driver_data->gicd_base, id);
449 	}
450 
451 	/*
452 	 * If the IGROUP bit is set, then it is a Group 1 Non secure
453 	 * interrupt
454 	 */
455 	if (igroup != 0U) {
456 		return INTR_GROUP1NS;
457 	}
458 
459 	/* If the GRPMOD bit is set, then it is a Group 1 Secure interrupt */
460 	if (grpmodr != 0U) {
461 		return INTR_GROUP1S;
462 	}
463 
464 	/* Else it is a Group 0 Secure interrupt */
465 	return INTR_GROUP0;
466 }
467 
468 /*****************************************************************************
469  * Function to save and disable the GIC ITS register context. The power
470  * management of GIC ITS is implementation-defined and this function doesn't
471  * save any memory structures required to support ITS. As the sequence to save
472  * this state is implementation defined, it should be executed in platform
473  * specific code. Calling this function alone and then powering down the GIC and
474  * ITS without implementing the aforementioned platform specific code will
475  * corrupt the ITS state.
476  *
477  * This function must be invoked after the GIC CPU interface is disabled.
478  *****************************************************************************/
479 void gicv3_its_save_disable(uintptr_t gits_base,
480 				gicv3_its_ctx_t * const its_ctx)
481 {
482 	unsigned int i;
483 
484 	assert(gicv3_driver_data != NULL);
485 	assert(IS_IN_EL3());
486 	assert(its_ctx != NULL);
487 	assert(gits_base != 0U);
488 
489 	its_ctx->gits_ctlr = gits_read_ctlr(gits_base);
490 
491 	/* Disable the ITS */
492 	gits_write_ctlr(gits_base, its_ctx->gits_ctlr & ~GITS_CTLR_ENABLED_BIT);
493 
494 	/* Wait for quiescent state */
495 	gits_wait_for_quiescent_bit(gits_base);
496 
497 	its_ctx->gits_cbaser = gits_read_cbaser(gits_base);
498 	its_ctx->gits_cwriter = gits_read_cwriter(gits_base);
499 
500 	for (i = 0U; i < ARRAY_SIZE(its_ctx->gits_baser); i++) {
501 		its_ctx->gits_baser[i] = gits_read_baser(gits_base, i);
502 	}
503 }
504 
505 /*****************************************************************************
506  * Function to restore the GIC ITS register context. The power
507  * management of GIC ITS is implementation defined and this function doesn't
508  * restore any memory structures required to support ITS. The assumption is
509  * that these structures are in memory and are retained during system suspend.
510  *
511  * This must be invoked before the GIC CPU interface is enabled.
512  *****************************************************************************/
513 void gicv3_its_restore(uintptr_t gits_base,
514 			const gicv3_its_ctx_t * const its_ctx)
515 {
516 	unsigned int i;
517 
518 	assert(gicv3_driver_data != NULL);
519 	assert(IS_IN_EL3());
520 	assert(its_ctx != NULL);
521 	assert(gits_base != 0U);
522 
523 	/* Assert that the GITS is disabled and quiescent */
524 	assert((gits_read_ctlr(gits_base) & GITS_CTLR_ENABLED_BIT) == 0U);
525 	assert((gits_read_ctlr(gits_base) & GITS_CTLR_QUIESCENT_BIT) != 0U);
526 
527 	gits_write_cbaser(gits_base, its_ctx->gits_cbaser);
528 	gits_write_cwriter(gits_base, its_ctx->gits_cwriter);
529 
530 	for (i = 0U; i < ARRAY_SIZE(its_ctx->gits_baser); i++) {
531 		gits_write_baser(gits_base, i, its_ctx->gits_baser[i]);
532 	}
533 
534 	/* Restore the ITS CTLR but leave the ITS disabled */
535 	gits_write_ctlr(gits_base, its_ctx->gits_ctlr & ~GITS_CTLR_ENABLED_BIT);
536 }
537 
538 /*****************************************************************************
539  * Function to save the GIC Redistributor register context. This function
540  * must be invoked after CPU interface disable and prior to Distributor save.
541  *****************************************************************************/
542 void gicv3_rdistif_save(unsigned int proc_num,
543 			gicv3_redist_ctx_t * const rdist_ctx)
544 {
545 	uintptr_t gicr_base;
546 	unsigned int i, ppi_regs_num, regs_num;
547 
548 	assert(gicv3_driver_data != NULL);
549 	assert(proc_num < gicv3_driver_data->rdistif_num);
550 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
551 	assert(IS_IN_EL3());
552 	assert(rdist_ctx != NULL);
553 
554 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
555 
556 #if GIC_EXT_INTID
557 	/* Calculate number of PPI registers */
558 	ppi_regs_num = (unsigned int)((gicr_read_typer(gicr_base) >>
559 			TYPER_PPI_NUM_SHIFT) & TYPER_PPI_NUM_MASK) + 1;
560 	/* All other values except PPInum [0-2] are reserved */
561 	if (ppi_regs_num > 3U) {
562 		ppi_regs_num = 1U;
563 	}
564 #else
565 	ppi_regs_num = 1U;
566 #endif
567 	/*
568 	 * Wait for any write to GICR_CTLR to complete before trying to save any
569 	 * state.
570 	 */
571 	gicr_wait_for_pending_write(gicr_base);
572 
573 	rdist_ctx->gicr_ctlr = gicr_read_ctlr(gicr_base);
574 
575 	rdist_ctx->gicr_propbaser = gicr_read_propbaser(gicr_base);
576 	rdist_ctx->gicr_pendbaser = gicr_read_pendbaser(gicr_base);
577 
578 	/* 32 interrupt IDs per register */
579 	for (i = 0U; i < ppi_regs_num; ++i) {
580 		SAVE_GICR_REG(gicr_base, rdist_ctx, igroupr, i);
581 		SAVE_GICR_REG(gicr_base, rdist_ctx, isenabler, i);
582 		SAVE_GICR_REG(gicr_base, rdist_ctx, ispendr, i);
583 		SAVE_GICR_REG(gicr_base, rdist_ctx, isactiver, i);
584 		SAVE_GICR_REG(gicr_base, rdist_ctx, igrpmodr, i);
585 	}
586 
587 	/* 16 interrupt IDs per GICR_ICFGR register */
588 	regs_num = ppi_regs_num << 1;
589 	for (i = 0U; i < regs_num; ++i) {
590 		SAVE_GICR_REG(gicr_base, rdist_ctx, icfgr, i);
591 	}
592 
593 	rdist_ctx->gicr_nsacr = gicr_read_nsacr(gicr_base);
594 
595 	/* 4 interrupt IDs per GICR_IPRIORITYR register */
596 	regs_num = ppi_regs_num << 3;
597 	for (i = 0U; i < regs_num; ++i) {
598 		rdist_ctx->gicr_ipriorityr[i] =
599 		gicr_ipriorityr_read(gicr_base, i);
600 	}
601 
602 	/*
603 	 * Call the pre-save hook that implements the IMP DEF sequence that may
604 	 * be required on some GIC implementations. As this may need to access
605 	 * the Redistributor registers, we pass it proc_num.
606 	 */
607 	gicv3_distif_pre_save(proc_num);
608 }
609 
610 /*****************************************************************************
611  * Function to restore the GIC Redistributor register context. We disable
612  * LPI and per-cpu interrupts before we start restore of the Redistributor.
613  * This function must be invoked after Distributor restore but prior to
614  * CPU interface enable. The pending and active interrupts are restored
615  * after the interrupts are fully configured and enabled.
616  *****************************************************************************/
617 void gicv3_rdistif_init_restore(unsigned int proc_num,
618 				const gicv3_redist_ctx_t * const rdist_ctx)
619 {
620 	uintptr_t gicr_base;
621 	unsigned int i, ppi_regs_num, regs_num;
622 
623 	assert(gicv3_driver_data != NULL);
624 	assert(proc_num < gicv3_driver_data->rdistif_num);
625 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
626 	assert(IS_IN_EL3());
627 	assert(rdist_ctx != NULL);
628 
629 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
630 
631 #if GIC_EXT_INTID
632 	/* Calculate number of PPI registers */
633 	ppi_regs_num = (unsigned int)((gicr_read_typer(gicr_base) >>
634 			TYPER_PPI_NUM_SHIFT) & TYPER_PPI_NUM_MASK) + 1;
635 	/* All other values except PPInum [0-2] are reserved */
636 	if (ppi_regs_num > 3U) {
637 		ppi_regs_num = 1U;
638 	}
639 #else
640 	ppi_regs_num = 1U;
641 #endif
642 	/* Power on redistributor */
643 	gicv3_rdistif_on(proc_num);
644 
645 	/*
646 	 * Call the post-restore hook that implements the IMP DEF sequence that
647 	 * may be required on some GIC implementations. As this may need to
648 	 * access the Redistributor registers, we pass it proc_num.
649 	 */
650 	gicv3_distif_post_restore(proc_num);
651 
652 	/*
653 	 * Disable all SGIs (imp. def.)/(E)PPIs before configuring them.
654 	 * This is a more scalable approach as it avoids clearing the enable
655 	 * bits in the GICD_CTLR.
656 	 */
657 	for (i = 0U; i < ppi_regs_num; ++i) {
658 		gicr_write_icenabler(gicr_base, i, ~0U);
659 	}
660 
661 	/* Wait for pending writes to GICR_ICENABLER */
662 	gicr_wait_for_pending_write(gicr_base);
663 
664 	/*
665 	 * Disable the LPIs to avoid unpredictable behavior when writing to
666 	 * GICR_PROPBASER and GICR_PENDBASER.
667 	 */
668 	gicr_write_ctlr(gicr_base,
669 			rdist_ctx->gicr_ctlr & ~(GICR_CTLR_EN_LPIS_BIT));
670 
671 	/* Restore registers' content */
672 	gicr_write_propbaser(gicr_base, rdist_ctx->gicr_propbaser);
673 	gicr_write_pendbaser(gicr_base, rdist_ctx->gicr_pendbaser);
674 
675 	/* 32 interrupt IDs per register */
676 	for (i = 0U; i < ppi_regs_num; ++i) {
677 		RESTORE_GICR_REG(gicr_base, rdist_ctx, igroupr, i);
678 		RESTORE_GICR_REG(gicr_base, rdist_ctx, igrpmodr, i);
679 	}
680 
681 	/* 4 interrupt IDs per GICR_IPRIORITYR register */
682 	regs_num = ppi_regs_num << 3;
683 	for (i = 0U; i < regs_num; ++i) {
684 		gicr_ipriorityr_write(gicr_base, i,
685 					rdist_ctx->gicr_ipriorityr[i]);
686 	}
687 
688 	/* 16 interrupt IDs per GICR_ICFGR register */
689 	regs_num = ppi_regs_num << 1;
690 	for (i = 0U; i < regs_num; ++i) {
691 		RESTORE_GICR_REG(gicr_base, rdist_ctx, icfgr, i);
692 	}
693 
694 	gicr_write_nsacr(gicr_base, rdist_ctx->gicr_nsacr);
695 
696 	/* Restore after group and priorities are set.
697 	 * 32 interrupt IDs per register
698 	 */
699 	for (i = 0U; i < ppi_regs_num; ++i) {
700 		RESTORE_GICR_REG(gicr_base, rdist_ctx, ispendr, i);
701 		RESTORE_GICR_REG(gicr_base, rdist_ctx, isactiver, i);
702 	}
703 
704 	/*
705 	 * Wait for all writes to the Distributor to complete before enabling
706 	 * the SGI and (E)PPIs.
707 	 */
708 	gicr_wait_for_upstream_pending_write(gicr_base);
709 
710 	/* 32 interrupt IDs per GICR_ISENABLER register */
711 	for (i = 0U; i < ppi_regs_num; ++i) {
712 		RESTORE_GICR_REG(gicr_base, rdist_ctx, isenabler, i);
713 	}
714 
715 	/*
716 	 * Restore GICR_CTLR.Enable_LPIs bit and wait for pending writes in case
717 	 * the first write to GICR_CTLR was still in flight (this write only
718 	 * restores GICR_CTLR.Enable_LPIs and no waiting is required for this
719 	 * bit).
720 	 */
721 	gicr_write_ctlr(gicr_base, rdist_ctx->gicr_ctlr);
722 	gicr_wait_for_pending_write(gicr_base);
723 }
724 
725 /*****************************************************************************
726  * Function to save the GIC Distributor register context. This function
727  * must be invoked after CPU interface disable and Redistributor save.
728  *****************************************************************************/
729 void gicv3_distif_save(gicv3_dist_ctx_t * const dist_ctx)
730 {
731 	unsigned int typer_reg, num_ints;
732 #if GIC_EXT_INTID
733 	unsigned int num_eints;
734 #endif
735 
736 	assert(gicv3_driver_data != NULL);
737 	assert(gicv3_driver_data->gicd_base != 0U);
738 	assert(IS_IN_EL3());
739 	assert(dist_ctx != NULL);
740 
741 	uintptr_t gicd_base = gicv3_driver_data->gicd_base;
742 
743 	typer_reg = gicd_read_typer(gicd_base);
744 
745 	/* Maximum SPI INTID is 32 * (GICD_TYPER.ITLinesNumber + 1) - 1 */
746 	num_ints = ((typer_reg & TYPER_IT_LINES_NO_MASK) + 1U) << 5;
747 
748 	/* Filter out special INTIDs 1020-1023 */
749 	if (num_ints > (MAX_SPI_ID + 1U)) {
750 		num_ints = MAX_SPI_ID + 1U;
751 	}
752 
753 #if GIC_EXT_INTID
754 	/* Check if extended SPI range is implemented */
755 	if ((typer_reg & TYPER_ESPI) != 0U) {
756 		/*
757 		 * Maximum ESPI INTID is 32 * (GICD_TYPER.ESPI_range + 1) + 4095
758 		 */
759 		num_eints = ((((typer_reg >> TYPER_ESPI_RANGE_SHIFT) &
760 			TYPER_ESPI_RANGE_MASK) + 1U) << 5) + MIN_ESPI_ID;
761 	} else {
762 		num_eints = 0U;
763 	}
764 #endif
765 	/* Wait for pending write to complete */
766 	gicd_wait_for_pending_write(gicd_base);
767 
768 	/* Save the GICD_CTLR */
769 	dist_ctx->gicd_ctlr = gicd_read_ctlr(gicd_base);
770 
771 	/* Save GICD_IGROUPR for INTIDs 32 - 1019 */
772 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUP);
773 
774 	/* Save GICD_IGROUPRE for INTIDs 4096 - 5119 */
775 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igroupr, IGROUP);
776 
777 	/* Save GICD_ISENABLER for INT_IDs 32 - 1019 */
778 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLE);
779 
780 	/* Save GICD_ISENABLERE for INT_IDs 4096 - 5119 */
781 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isenabler, ISENABLE);
782 
783 	/* Save GICD_ISPENDR for INTIDs 32 - 1019 */
784 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPEND);
785 
786 	/* Save GICD_ISPENDRE for INTIDs 4096 - 5119 */
787 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints,	ispendr, ISPEND);
788 
789 	/* Save GICD_ISACTIVER for INTIDs 32 - 1019 */
790 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVE);
791 
792 	/* Save GICD_ISACTIVERE for INTIDs 4096 - 5119 */
793 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isactiver, ISACTIVE);
794 
795 	/* Save GICD_IPRIORITYR for INTIDs 32 - 1019 */
796 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITY);
797 
798 	/* Save GICD_IPRIORITYRE for INTIDs 4096 - 5119 */
799 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ipriorityr, IPRIORITY);
800 
801 	/* Save GICD_ICFGR for INTIDs 32 - 1019 */
802 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFG);
803 
804 	/* Save GICD_ICFGRE for INTIDs 4096 - 5119 */
805 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, icfgr, ICFG);
806 
807 	/* Save GICD_IGRPMODR for INTIDs 32 - 1019 */
808 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMOD);
809 
810 	/* Save GICD_IGRPMODRE for INTIDs 4096 - 5119 */
811 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igrpmodr, IGRPMOD);
812 
813 	/* Save GICD_NSACR for INTIDs 32 - 1019 */
814 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSAC);
815 
816 	/* Save GICD_NSACRE for INTIDs 4096 - 5119 */
817 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, nsacr, NSAC);
818 
819 	/* Save GICD_IROUTER for INTIDs 32 - 1019 */
820 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTE);
821 
822 	/* Save GICD_IROUTERE for INTIDs 4096 - 5119 */
823 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, irouter, IROUTE);
824 
825 	/*
826 	 * GICD_ITARGETSR<n> and GICD_SPENDSGIR<n> are RAZ/WI when
827 	 * GICD_CTLR.ARE_(S|NS) bits are set which is the case for our GICv3
828 	 * driver.
829 	 */
830 }
831 
832 /*****************************************************************************
833  * Function to restore the GIC Distributor register context. We disable G0, G1S
834  * and G1NS interrupt groups before we start restore of the Distributor. This
835  * function must be invoked prior to Redistributor restore and CPU interface
836  * enable. The pending and active interrupts are restored after the interrupts
837  * are fully configured and enabled.
838  *****************************************************************************/
839 void gicv3_distif_init_restore(const gicv3_dist_ctx_t * const dist_ctx)
840 {
841 	unsigned int typer_reg, num_ints;
842 #if GIC_EXT_INTID
843 	unsigned int num_eints;
844 #endif
845 
846 	assert(gicv3_driver_data != NULL);
847 	assert(gicv3_driver_data->gicd_base != 0U);
848 	assert(IS_IN_EL3());
849 	assert(dist_ctx != NULL);
850 
851 	uintptr_t gicd_base = gicv3_driver_data->gicd_base;
852 
853 	/*
854 	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
855 	 * the ARE_S bit. The Distributor might generate a system error
856 	 * otherwise.
857 	 */
858 	gicd_clr_ctlr(gicd_base,
859 		      CTLR_ENABLE_G0_BIT |
860 		      CTLR_ENABLE_G1S_BIT |
861 		      CTLR_ENABLE_G1NS_BIT,
862 		      RWP_TRUE);
863 
864 	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
865 	gicd_set_ctlr(gicd_base, CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
866 
867 	typer_reg = gicd_read_typer(gicd_base);
868 
869 	/* Maximum SPI INTID is 32 * (GICD_TYPER.ITLinesNumber + 1) - 1 */
870 	num_ints = ((typer_reg & TYPER_IT_LINES_NO_MASK) + 1U) << 5;
871 
872 	/* Filter out special INTIDs 1020-1023 */
873 	if (num_ints > (MAX_SPI_ID + 1U)) {
874 		num_ints = MAX_SPI_ID + 1U;
875 	}
876 
877 #if GIC_EXT_INTID
878 	/* Check if extended SPI range is implemented */
879 	if ((typer_reg & TYPER_ESPI) != 0U) {
880 		/*
881 		 * Maximum ESPI INTID is 32 * (GICD_TYPER.ESPI_range + 1) + 4095
882 		 */
883 		num_eints = ((((typer_reg >> TYPER_ESPI_RANGE_SHIFT) &
884 			TYPER_ESPI_RANGE_MASK) + 1U) << 5) + MIN_ESPI_ID;
885 	} else {
886 		num_eints = 0U;
887 	}
888 #endif
889 	/* Restore GICD_IGROUPR for INTIDs 32 - 1019 */
890 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUP);
891 
892 	/* Restore GICD_IGROUPRE for INTIDs 4096 - 5119 */
893 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igroupr, IGROUP);
894 
895 	/* Restore GICD_IPRIORITYR for INTIDs 32 - 1019 */
896 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITY);
897 
898 	/* Restore GICD_IPRIORITYRE for INTIDs 4096 - 5119 */
899 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ipriorityr, IPRIORITY);
900 
901 	/* Restore GICD_ICFGR for INTIDs 32 - 1019 */
902 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFG);
903 
904 	/* Restore GICD_ICFGRE for INTIDs 4096 - 5119 */
905 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, icfgr, ICFG);
906 
907 	/* Restore GICD_IGRPMODR for INTIDs 32 - 1019 */
908 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMOD);
909 
910 	/* Restore GICD_IGRPMODRE for INTIDs 4096 - 5119 */
911 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igrpmodr, IGRPMOD);
912 
913 	/* Restore GICD_NSACR for INTIDs 32 - 1019 */
914 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSAC);
915 
916 	/* Restore GICD_NSACRE for INTIDs 4096 - 5119 */
917 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, nsacr, NSAC);
918 
919 	/* Restore GICD_IROUTER for INTIDs 32 - 1019 */
920 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTE);
921 
922 	/* Restore GICD_IROUTERE for INTIDs 4096 - 5119 */
923 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, irouter, IROUTE);
924 
925 	/*
926 	 * Restore ISENABLER(E), ISPENDR(E) and ISACTIVER(E) after
927 	 * the interrupts are configured.
928 	 */
929 
930 	/* Restore GICD_ISENABLER for INT_IDs 32 - 1019 */
931 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLE);
932 
933 	/* Restore GICD_ISENABLERE for INT_IDs 4096 - 5119 */
934 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isenabler, ISENABLE);
935 
936 	/* Restore GICD_ISPENDR for INTIDs 32 - 1019 */
937 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPEND);
938 
939 	/* Restore GICD_ISPENDRE for INTIDs 4096 - 5119 */
940 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ispendr, ISPEND);
941 
942 	/* Restore GICD_ISACTIVER for INTIDs 32 - 1019 */
943 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVE);
944 
945 	/* Restore GICD_ISACTIVERE for INTIDs 4096 - 5119 */
946 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isactiver, ISACTIVE);
947 
948 	/* Restore the GICD_CTLR */
949 	gicd_write_ctlr(gicd_base, dist_ctx->gicd_ctlr);
950 	gicd_wait_for_pending_write(gicd_base);
951 }
952 
953 /*******************************************************************************
954  * This function gets the priority of the interrupt the processor is currently
955  * servicing.
956  ******************************************************************************/
957 unsigned int gicv3_get_running_priority(void)
958 {
959 	return (unsigned int)read_icc_rpr_el1();
960 }
961 
962 /*******************************************************************************
963  * This function checks if the interrupt identified by id is active (whether the
964  * state is either active, or active and pending). The proc_num is used if the
965  * interrupt is SGI or (E)PPI and programs the corresponding Redistributor
966  * interface.
967  ******************************************************************************/
968 unsigned int gicv3_get_interrupt_active(unsigned int id, unsigned int proc_num)
969 {
970 	assert(gicv3_driver_data != NULL);
971 	assert(gicv3_driver_data->gicd_base != 0U);
972 	assert(proc_num < gicv3_driver_data->rdistif_num);
973 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
974 
975 	/* Check interrupt ID */
976 	if (is_sgi_ppi(id)) {
977 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
978 		return gicr_get_isactiver(
979 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
980 	}
981 
982 	/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
983 	return gicd_get_isactiver(gicv3_driver_data->gicd_base, id);
984 }
985 
986 /*******************************************************************************
987  * This function enables the interrupt identified by id. The proc_num
988  * is used if the interrupt is SGI or PPI, and programs the corresponding
989  * Redistributor interface.
990  ******************************************************************************/
991 void gicv3_enable_interrupt(unsigned int id, unsigned int proc_num)
992 {
993 	assert(gicv3_driver_data != NULL);
994 	assert(gicv3_driver_data->gicd_base != 0U);
995 	assert(proc_num < gicv3_driver_data->rdistif_num);
996 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
997 
998 	/*
999 	 * Ensure that any shared variable updates depending on out of band
1000 	 * interrupt trigger are observed before enabling interrupt.
1001 	 */
1002 	dsbishst();
1003 
1004 	/* Check interrupt ID */
1005 	if (is_sgi_ppi(id)) {
1006 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1007 		gicr_set_isenabler(
1008 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
1009 	} else {
1010 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1011 		gicd_set_isenabler(gicv3_driver_data->gicd_base, id);
1012 	}
1013 }
1014 
1015 /*******************************************************************************
1016  * This function disables the interrupt identified by id. The proc_num
1017  * is used if the interrupt is SGI or PPI, and programs the corresponding
1018  * Redistributor interface.
1019  ******************************************************************************/
1020 void gicv3_disable_interrupt(unsigned int id, unsigned int proc_num)
1021 {
1022 	assert(gicv3_driver_data != NULL);
1023 	assert(gicv3_driver_data->gicd_base != 0U);
1024 	assert(proc_num < gicv3_driver_data->rdistif_num);
1025 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1026 
1027 	/*
1028 	 * Disable interrupt, and ensure that any shared variable updates
1029 	 * depending on out of band interrupt trigger are observed afterwards.
1030 	 */
1031 
1032 	/* Check interrupt ID */
1033 	if (is_sgi_ppi(id)) {
1034 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1035 		gicr_set_icenabler(
1036 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
1037 
1038 		/* Write to clear enable requires waiting for pending writes */
1039 		gicr_wait_for_pending_write(
1040 			gicv3_driver_data->rdistif_base_addrs[proc_num]);
1041 	} else {
1042 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1043 		gicd_set_icenabler(gicv3_driver_data->gicd_base, id);
1044 
1045 		/* Write to clear enable requires waiting for pending writes */
1046 		gicd_wait_for_pending_write(gicv3_driver_data->gicd_base);
1047 	}
1048 
1049 	dsbishst();
1050 }
1051 
1052 /*******************************************************************************
1053  * This function sets the interrupt priority as supplied for the given interrupt
1054  * id.
1055  ******************************************************************************/
1056 void gicv3_set_interrupt_priority(unsigned int id, unsigned int proc_num,
1057 		unsigned int priority)
1058 {
1059 	uintptr_t gicr_base;
1060 
1061 	assert(gicv3_driver_data != NULL);
1062 	assert(gicv3_driver_data->gicd_base != 0U);
1063 	assert(proc_num < gicv3_driver_data->rdistif_num);
1064 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1065 
1066 	/* Check interrupt ID */
1067 	if (is_sgi_ppi(id)) {
1068 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1069 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
1070 		gicr_set_ipriorityr(gicr_base, id, priority);
1071 	} else {
1072 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1073 		gicd_set_ipriorityr(gicv3_driver_data->gicd_base, id, priority);
1074 	}
1075 }
1076 
1077 /*******************************************************************************
1078  * This function assigns group for the interrupt identified by id. The proc_num
1079  * is used if the interrupt is SGI or (E)PPI, and programs the corresponding
1080  * Redistributor interface. The group can be any of GICV3_INTR_GROUP*
1081  ******************************************************************************/
1082 void gicv3_set_interrupt_type(unsigned int id, unsigned int proc_num,
1083 		unsigned int type)
1084 {
1085 	bool igroup = false, grpmod = false;
1086 	uintptr_t gicr_base;
1087 
1088 	assert(gicv3_driver_data != NULL);
1089 	assert(gicv3_driver_data->gicd_base != 0U);
1090 	assert(proc_num < gicv3_driver_data->rdistif_num);
1091 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1092 
1093 	switch (type) {
1094 	case INTR_GROUP1S:
1095 		igroup = false;
1096 		grpmod = true;
1097 		break;
1098 	case INTR_GROUP0:
1099 		igroup = false;
1100 		grpmod = false;
1101 		break;
1102 	case INTR_GROUP1NS:
1103 		igroup = true;
1104 		grpmod = false;
1105 		break;
1106 	default:
1107 		assert(false);
1108 		break;
1109 	}
1110 
1111 	/* Check interrupt ID */
1112 	if (is_sgi_ppi(id)) {
1113 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1114 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
1115 
1116 		igroup ? gicr_set_igroupr(gicr_base, id) :
1117 			 gicr_clr_igroupr(gicr_base, id);
1118 		grpmod ? gicr_set_igrpmodr(gicr_base, id) :
1119 			 gicr_clr_igrpmodr(gicr_base, id);
1120 	} else {
1121 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1122 
1123 		/* Serialize read-modify-write to Distributor registers */
1124 		spin_lock(&gic_lock);
1125 
1126 		igroup ? gicd_set_igroupr(gicv3_driver_data->gicd_base, id) :
1127 			 gicd_clr_igroupr(gicv3_driver_data->gicd_base, id);
1128 		grpmod ? gicd_set_igrpmodr(gicv3_driver_data->gicd_base, id) :
1129 			 gicd_clr_igrpmodr(gicv3_driver_data->gicd_base, id);
1130 
1131 		spin_unlock(&gic_lock);
1132 	}
1133 }
1134 
1135 /*******************************************************************************
1136  * This function raises the specified Secure Group 0 SGI.
1137  *
1138  * The target parameter must be a valid MPIDR in the system.
1139  ******************************************************************************/
1140 void gicv3_raise_secure_g0_sgi(unsigned int sgi_num, u_register_t target)
1141 {
1142 	unsigned int tgt, aff3, aff2, aff1, aff0;
1143 	uint64_t sgi_val;
1144 
1145 	/* Verify interrupt number is in the SGI range */
1146 	assert((sgi_num >= MIN_SGI_ID) && (sgi_num < MIN_PPI_ID));
1147 
1148 	/* Extract affinity fields from target */
1149 	aff0 = MPIDR_AFFLVL0_VAL(target);
1150 	aff1 = MPIDR_AFFLVL1_VAL(target);
1151 	aff2 = MPIDR_AFFLVL2_VAL(target);
1152 	aff3 = MPIDR_AFFLVL3_VAL(target);
1153 
1154 	/*
1155 	 * Make target list from affinity 0, and ensure GICv3 SGI can target
1156 	 * this PE.
1157 	 */
1158 	assert(aff0 < GICV3_MAX_SGI_TARGETS);
1159 	tgt = BIT_32(aff0);
1160 
1161 	/* Raise SGI to PE specified by its affinity */
1162 	sgi_val = GICV3_SGIR_VALUE(aff3, aff2, aff1, sgi_num, SGIR_IRM_TO_AFF,
1163 			tgt);
1164 
1165 	/*
1166 	 * Ensure that any shared variable updates depending on out of band
1167 	 * interrupt trigger are observed before raising SGI.
1168 	 */
1169 	dsbishst();
1170 	write_icc_sgi0r_el1(sgi_val);
1171 	isb();
1172 }
1173 
1174 /*******************************************************************************
1175  * This function sets the interrupt routing for the given (E)SPI interrupt id.
1176  * The interrupt routing is specified in routing mode and mpidr.
1177  *
1178  * The routing mode can be either of:
1179  *  - GICV3_IRM_ANY
1180  *  - GICV3_IRM_PE
1181  *
1182  * The mpidr is the affinity of the PE to which the interrupt will be routed,
1183  * and is ignored for routing mode GICV3_IRM_ANY.
1184  ******************************************************************************/
1185 void gicv3_set_spi_routing(unsigned int id, unsigned int irm, u_register_t mpidr)
1186 {
1187 	unsigned long long aff;
1188 	uint64_t router;
1189 
1190 	assert(gicv3_driver_data != NULL);
1191 	assert(gicv3_driver_data->gicd_base != 0U);
1192 
1193 	assert((irm == GICV3_IRM_ANY) || (irm == GICV3_IRM_PE));
1194 
1195 	assert(IS_SPI(id));
1196 
1197 	aff = gicd_irouter_val_from_mpidr(mpidr, irm);
1198 	gicd_write_irouter(gicv3_driver_data->gicd_base, id, aff);
1199 
1200 	/*
1201 	 * In implementations that do not require 1 of N distribution of SPIs,
1202 	 * IRM might be RAZ/WI. Read back and verify IRM bit.
1203 	 */
1204 	if (irm == GICV3_IRM_ANY) {
1205 		router = gicd_read_irouter(gicv3_driver_data->gicd_base, id);
1206 		if (((router >> IROUTER_IRM_SHIFT) & IROUTER_IRM_MASK) == 0U) {
1207 			ERROR("GICv3 implementation doesn't support routing ANY\n");
1208 			panic();
1209 		}
1210 	}
1211 }
1212 
1213 /*******************************************************************************
1214  * This function clears the pending status of an interrupt identified by id.
1215  * The proc_num is used if the interrupt is SGI or (E)PPI, and programs the
1216  * corresponding Redistributor interface.
1217  ******************************************************************************/
1218 void gicv3_clear_interrupt_pending(unsigned int id, unsigned int proc_num)
1219 {
1220 	assert(gicv3_driver_data != NULL);
1221 	assert(gicv3_driver_data->gicd_base != 0U);
1222 	assert(proc_num < gicv3_driver_data->rdistif_num);
1223 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1224 
1225 	/*
1226 	 * Clear pending interrupt, and ensure that any shared variable updates
1227 	 * depending on out of band interrupt trigger are observed afterwards.
1228 	 */
1229 
1230 	/* Check interrupt ID */
1231 	if (is_sgi_ppi(id)) {
1232 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1233 		gicr_set_icpendr(
1234 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
1235 	} else {
1236 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1237 		gicd_set_icpendr(gicv3_driver_data->gicd_base, id);
1238 	}
1239 
1240 	dsbishst();
1241 }
1242 
1243 /*******************************************************************************
1244  * This function sets the pending status of an interrupt identified by id.
1245  * The proc_num is used if the interrupt is SGI or PPI and programs the
1246  * corresponding Redistributor interface.
1247  ******************************************************************************/
1248 void gicv3_set_interrupt_pending(unsigned int id, unsigned int proc_num)
1249 {
1250 	assert(gicv3_driver_data != NULL);
1251 	assert(gicv3_driver_data->gicd_base != 0U);
1252 	assert(proc_num < gicv3_driver_data->rdistif_num);
1253 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1254 
1255 	/*
1256 	 * Ensure that any shared variable updates depending on out of band
1257 	 * interrupt trigger are observed before setting interrupt pending.
1258 	 */
1259 	dsbishst();
1260 
1261 	/* Check interrupt ID */
1262 	if (is_sgi_ppi(id)) {
1263 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1264 		gicr_set_ispendr(
1265 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
1266 	} else {
1267 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1268 		gicd_set_ispendr(gicv3_driver_data->gicd_base, id);
1269 	}
1270 }
1271 
1272 /*******************************************************************************
1273  * This function sets the PMR register with the supplied value. Returns the
1274  * original PMR.
1275  ******************************************************************************/
1276 unsigned int gicv3_set_pmr(unsigned int mask)
1277 {
1278 	unsigned int old_mask;
1279 
1280 	old_mask = (unsigned int)read_icc_pmr_el1();
1281 
1282 	/*
1283 	 * Order memory updates w.r.t. PMR write, and ensure they're visible
1284 	 * before potential out of band interrupt trigger because of PMR update.
1285 	 * PMR system register writes are self-synchronizing, so no ISB required
1286 	 * thereafter.
1287 	 */
1288 	dsbishst();
1289 	write_icc_pmr_el1(mask);
1290 
1291 	return old_mask;
1292 }
1293 
1294 /*******************************************************************************
1295  * This function delegates the responsibility of discovering the corresponding
1296  * Redistributor frames to each CPU itself. It is a modified version of
1297  * gicv3_rdistif_base_addrs_probe() and is executed by each CPU in the platform
1298  * unlike the previous way in which only the Primary CPU did the discovery of
1299  * all the Redistributor frames for every CPU. It also handles the scenario in
1300  * which the frames of various CPUs are not contiguous in physical memory.
1301  ******************************************************************************/
1302 int gicv3_rdistif_probe(const uintptr_t gicr_frame)
1303 {
1304 	u_register_t mpidr, mpidr_self;
1305 	unsigned int proc_num;
1306 	uint64_t typer_val;
1307 	uintptr_t rdistif_base;
1308 	bool gicr_frame_found = false;
1309 
1310 	assert(gicv3_driver_data->gicr_base == 0U);
1311 
1312 	/* Ensure this function is called with Data Cache enabled */
1313 #ifndef __aarch64__
1314 	assert((read_sctlr() & SCTLR_C_BIT) != 0U);
1315 #else
1316 	assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
1317 #endif /* !__aarch64__ */
1318 
1319 	mpidr_self = read_mpidr_el1() & MPIDR_AFFINITY_MASK;
1320 	rdistif_base = gicr_frame;
1321 	do {
1322 		typer_val = gicr_read_typer(rdistif_base);
1323 		mpidr = mpidr_from_gicr_typer(typer_val);
1324 		if (gicv3_driver_data->mpidr_to_core_pos != NULL) {
1325 			proc_num = gicv3_driver_data->mpidr_to_core_pos(mpidr);
1326 		} else {
1327 			proc_num = (unsigned int)(typer_val >>
1328 				TYPER_PROC_NUM_SHIFT) & TYPER_PROC_NUM_MASK;
1329 		}
1330 		if (mpidr == mpidr_self) {
1331 			/* The base address doesn't need to be initialized on
1332 			 * every warm boot.
1333 			 */
1334 			if (gicv3_driver_data->rdistif_base_addrs[proc_num]
1335 								!= 0U) {
1336 				return 0;
1337 			}
1338 			gicv3_driver_data->rdistif_base_addrs[proc_num] =
1339 			rdistif_base;
1340 			gicr_frame_found = true;
1341 			break;
1342 		}
1343 		rdistif_base += (uintptr_t)(ULL(1) << GICR_PCPUBASE_SHIFT);
1344 	} while ((typer_val & TYPER_LAST_BIT) == 0U);
1345 
1346 	if (!gicr_frame_found) {
1347 		return -1;
1348 	}
1349 
1350 	/*
1351 	 * Flush the driver data to ensure coherency. This is
1352 	 * not required if platform has HW_ASSISTED_COHERENCY
1353 	 * enabled.
1354 	 */
1355 #if !HW_ASSISTED_COHERENCY
1356 	/*
1357 	 * Flush the rdistif_base_addrs[] contents linked to the GICv3 driver.
1358 	 */
1359 	flush_dcache_range((uintptr_t)&(gicv3_driver_data->rdistif_base_addrs[proc_num]),
1360 		sizeof(*(gicv3_driver_data->rdistif_base_addrs)));
1361 #endif
1362 	return 0; /* Found matching GICR frame */
1363 }
1364 
1365 /******************************************************************************
1366  * This function checks the interrupt ID and returns true for SGIs and (E)PPIs
1367  * and false for (E)SPIs IDs.
1368  *****************************************************************************/
1369 static bool is_sgi_ppi(unsigned int id)
1370 {
1371 	/* SGIs: 0-15, PPIs: 16-31, EPPIs: 1056-1119 */
1372 	if (IS_SGI_PPI(id)) {
1373 		return true;
1374 	}
1375 
1376 	/* SPIs: 32-1019, ESPIs: 4096-5119 */
1377 	if (IS_SPI(id)) {
1378 		return false;
1379 	}
1380 
1381 	assert(false);
1382 	panic();
1383 }
1384