xref: /rk3399_ARM-atf/drivers/arm/gic/v3/gicv3_main.c (revision 29461e4c880235532385c01f202e638fb5ba11de)
1 /*
2  * Copyright (c) 2015-2022, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2023, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 
10 #include <arch.h>
11 #include <arch_helpers.h>
12 #include <common/debug.h>
13 #include <common/interrupt_props.h>
14 #include <drivers/arm/gic600_multichip.h>
15 #include <drivers/arm/gicv3.h>
16 #include <lib/spinlock.h>
17 #include <plat/common/platform.h>
18 
19 #include "gicv3_private.h"
20 
21 const gicv3_driver_data_t *gicv3_driver_data;
22 
23 /*
24  * Spinlock to guard registers needing read-modify-write. APIs protected by this
25  * spinlock are used either at boot time (when only a single CPU is active), or
26  * when the system is fully coherent.
27  */
28 static spinlock_t gic_lock;
29 
30 /*
31  * Redistributor power operations are weakly bound so that they can be
32  * overridden
33  */
34 #pragma weak gicv3_rdistif_off
35 #pragma weak gicv3_rdistif_on
36 
37 /* Check interrupt ID for SGI/(E)PPI and (E)SPIs */
38 static bool is_sgi_ppi(unsigned int id);
39 
40 /*
41  * Helper macros to save and restore GICR and GICD registers
42  * corresponding to their numbers to and from the context
43  */
44 #define RESTORE_GICR_REG(base, ctx, name, i)	\
45 	gicr_write_##name((base), (i), (ctx)->gicr_##name[(i)])
46 
47 #define SAVE_GICR_REG(base, ctx, name, i)	\
48 	(ctx)->gicr_##name[(i)] = gicr_read_##name((base), (i))
49 
50 /* Helper macros to save and restore GICD registers to and from the context */
51 #define RESTORE_GICD_REGS(base, ctx, intr_num, reg, REG)		\
52 	do {								\
53 		for (unsigned int int_id = MIN_SPI_ID; int_id < (intr_num);\
54 				int_id += (1U << REG##R_SHIFT)) {	\
55 			gicd_write_##reg((base), int_id,		\
56 				(ctx)->gicd_##reg[(int_id - MIN_SPI_ID) >> \
57 							REG##R_SHIFT]);	\
58 		}							\
59 	} while (false)
60 
61 #define SAVE_GICD_REGS(base, ctx, intr_num, reg, REG)			\
62 	do {								\
63 		for (unsigned int int_id = MIN_SPI_ID; int_id < (intr_num);\
64 				int_id += (1U << REG##R_SHIFT)) {	\
65 			(ctx)->gicd_##reg[(int_id - MIN_SPI_ID) >>	\
66 			REG##R_SHIFT] = gicd_read_##reg((base), int_id); \
67 		}							\
68 	} while (false)
69 
70 #if GIC_EXT_INTID
71 #define RESTORE_GICD_EREGS(base, ctx, intr_num, reg, REG)		\
72 	do {								\
73 		for (unsigned int int_id = MIN_ESPI_ID; int_id < (intr_num);\
74 				int_id += (1U << REG##R_SHIFT)) {	\
75 			gicd_write_##reg((base), int_id,		\
76 			(ctx)->gicd_##reg[(int_id - (MIN_ESPI_ID -	\
77 			round_up(TOTAL_SPI_INTR_NUM, 1U << REG##R_SHIFT)))\
78 						>> REG##R_SHIFT]);	\
79 		}							\
80 	} while (false)
81 
82 #define SAVE_GICD_EREGS(base, ctx, intr_num, reg, REG)			\
83 	do {								\
84 		for (unsigned int int_id = MIN_ESPI_ID; int_id < (intr_num);\
85 				int_id += (1U << REG##R_SHIFT)) {	\
86 			(ctx)->gicd_##reg[(int_id - (MIN_ESPI_ID -	\
87 			round_up(TOTAL_SPI_INTR_NUM, 1U << REG##R_SHIFT)))\
88 			>> REG##R_SHIFT] = gicd_read_##reg((base), int_id);\
89 		}							\
90 	} while (false)
91 #else
92 #define SAVE_GICD_EREGS(base, ctx, intr_num, reg, REG)
93 #define RESTORE_GICD_EREGS(base, ctx, intr_num, reg, REG)
94 #endif /* GIC_EXT_INTID */
95 
96 /*******************************************************************************
97  * This function initialises the ARM GICv3 driver in EL3 with provided platform
98  * inputs.
99  ******************************************************************************/
100 void __init gicv3_driver_init(const gicv3_driver_data_t *plat_driver_data)
101 {
102 	unsigned int gic_version;
103 	unsigned int gicv2_compat;
104 
105 	assert(plat_driver_data != NULL);
106 	assert(plat_driver_data->gicd_base != 0U);
107 	assert(plat_driver_data->rdistif_num != 0U);
108 	assert(plat_driver_data->rdistif_base_addrs != NULL);
109 
110 	assert(IS_IN_EL3());
111 
112 	assert((plat_driver_data->interrupt_props_num != 0U) ?
113 	       (plat_driver_data->interrupt_props != NULL) : 1);
114 
115 	/* Check for system register support */
116 #ifndef __aarch64__
117 	assert((read_id_pfr1() &
118 			(ID_PFR1_GIC_MASK << ID_PFR1_GIC_SHIFT)) != 0U);
119 #else
120 	assert((read_id_aa64pfr0_el1() &
121 			(ID_AA64PFR0_GIC_MASK << ID_AA64PFR0_GIC_SHIFT)) != 0U);
122 #endif /* !__aarch64__ */
123 
124 	gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
125 	gic_version >>= PIDR2_ARCH_REV_SHIFT;
126 	gic_version &= PIDR2_ARCH_REV_MASK;
127 
128 	/* Check GIC version */
129 #if !GIC_ENABLE_V4_EXTN
130 	assert(gic_version == ARCH_REV_GICV3);
131 #endif
132 	/*
133 	 * Find out whether the GIC supports the GICv2 compatibility mode.
134 	 * The ARE_S bit resets to 0 if supported
135 	 */
136 	gicv2_compat = gicd_read_ctlr(plat_driver_data->gicd_base);
137 	gicv2_compat >>= CTLR_ARE_S_SHIFT;
138 	gicv2_compat = gicv2_compat & CTLR_ARE_S_MASK;
139 
140 	if (plat_driver_data->gicr_base != 0U) {
141 		/*
142 		 * Find the base address of each implemented Redistributor interface.
143 		 * The number of interfaces should be equal to the number of CPUs in the
144 		 * system. The memory for saving these addresses has to be allocated by
145 		 * the platform port
146 		 */
147 		gicv3_rdistif_base_addrs_probe(plat_driver_data->rdistif_base_addrs,
148 						   plat_driver_data->rdistif_num,
149 						   plat_driver_data->gicr_base,
150 						   plat_driver_data->mpidr_to_core_pos);
151 #if !HW_ASSISTED_COHERENCY
152 		/*
153 		 * Flush the rdistif_base_addrs[] contents linked to the GICv3 driver.
154 		 */
155 		flush_dcache_range((uintptr_t)(plat_driver_data->rdistif_base_addrs),
156 			plat_driver_data->rdistif_num *
157 			sizeof(*(plat_driver_data->rdistif_base_addrs)));
158 #endif
159 	}
160 	gicv3_driver_data = plat_driver_data;
161 
162 	/*
163 	 * The GIC driver data is initialized by the primary CPU with caches
164 	 * enabled. When the secondary CPU boots up, it initializes the
165 	 * GICC/GICR interface with the caches disabled. Hence flush the
166 	 * driver data to ensure coherency. This is not required if the
167 	 * platform has HW_ASSISTED_COHERENCY enabled.
168 	 */
169 #if !HW_ASSISTED_COHERENCY
170 	flush_dcache_range((uintptr_t)&gicv3_driver_data,
171 		sizeof(gicv3_driver_data));
172 	flush_dcache_range((uintptr_t)gicv3_driver_data,
173 		sizeof(*gicv3_driver_data));
174 #endif
175 	gicv3_check_erratas_applies(plat_driver_data->gicd_base);
176 
177 	INFO("GICv%u with%s legacy support detected.\n", gic_version,
178 				(gicv2_compat == 0U) ? "" : "out");
179 	INFO("ARM GICv%u driver initialized in EL3\n", gic_version);
180 }
181 
182 /*******************************************************************************
183  * This function initialises the GIC distributor interface based upon the data
184  * provided by the platform while initialising the driver.
185  ******************************************************************************/
186 void __init gicv3_distif_init(void)
187 {
188 	unsigned int bitmap;
189 
190 	assert(gicv3_driver_data != NULL);
191 	assert(gicv3_driver_data->gicd_base != 0U);
192 
193 	assert(IS_IN_EL3());
194 
195 	/*
196 	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
197 	 * the ARE_S bit. The Distributor might generate a system error
198 	 * otherwise.
199 	 */
200 	gicd_clr_ctlr(gicv3_driver_data->gicd_base,
201 		      CTLR_ENABLE_G0_BIT |
202 		      CTLR_ENABLE_G1S_BIT |
203 		      CTLR_ENABLE_G1NS_BIT,
204 		      RWP_TRUE);
205 
206 	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
207 	gicd_set_ctlr(gicv3_driver_data->gicd_base,
208 			CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
209 
210 	/* Set the default attribute of all (E)SPIs */
211 	gicv3_spis_config_defaults(gicv3_driver_data->gicd_base);
212 
213 	bitmap = gicv3_secure_spis_config_props(
214 			gicv3_driver_data->gicd_base,
215 			gicv3_driver_data->interrupt_props,
216 			gicv3_driver_data->interrupt_props_num);
217 
218 	/* Enable the secure (E)SPIs now that they have been configured */
219 	gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE);
220 }
221 
222 /*******************************************************************************
223  * This function initialises the GIC Redistributor interface of the calling CPU
224  * (identified by the 'proc_num' parameter) based upon the data provided by the
225  * platform while initialising the driver.
226  ******************************************************************************/
227 void gicv3_rdistif_init(unsigned int proc_num)
228 {
229 	uintptr_t gicr_base;
230 	unsigned int bitmap;
231 	uint32_t ctlr;
232 
233 	assert(gicv3_driver_data != NULL);
234 	assert(proc_num < gicv3_driver_data->rdistif_num);
235 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
236 	assert(gicv3_driver_data->gicd_base != 0U);
237 
238 	ctlr = gicd_read_ctlr(gicv3_driver_data->gicd_base);
239 	assert((ctlr & CTLR_ARE_S_BIT) != 0U);
240 
241 	assert(IS_IN_EL3());
242 
243 	/* Power on redistributor */
244 	gicv3_rdistif_on(proc_num);
245 
246 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
247 	assert(gicr_base != 0U);
248 
249 	/* Set the default attribute of all SGIs and (E)PPIs */
250 	gicv3_ppi_sgi_config_defaults(gicr_base);
251 
252 	bitmap = gicv3_secure_ppi_sgi_config_props(gicr_base,
253 			gicv3_driver_data->interrupt_props,
254 			gicv3_driver_data->interrupt_props_num);
255 
256 	/* Enable interrupt groups as required, if not already */
257 	if ((ctlr & bitmap) != bitmap) {
258 		gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE);
259 	}
260 }
261 
262 /*******************************************************************************
263  * Functions to perform power operations on GIC Redistributor
264  ******************************************************************************/
265 void gicv3_rdistif_off(unsigned int proc_num)
266 {
267 }
268 
269 void gicv3_rdistif_on(unsigned int proc_num)
270 {
271 }
272 
273 /*******************************************************************************
274  * This function enables the GIC CPU interface of the calling CPU using only
275  * system register accesses.
276  ******************************************************************************/
277 void gicv3_cpuif_enable(unsigned int proc_num)
278 {
279 	uintptr_t gicr_base;
280 	u_register_t scr_el3;
281 	unsigned int icc_sre_el3;
282 
283 	assert(gicv3_driver_data != NULL);
284 	assert(proc_num < gicv3_driver_data->rdistif_num);
285 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
286 	assert(IS_IN_EL3());
287 
288 	/* Mark the connected core as awake */
289 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
290 	gicv3_rdistif_mark_core_awake(gicr_base);
291 
292 	/* Disable the legacy interrupt bypass */
293 	icc_sre_el3 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT;
294 
295 	/*
296 	 * Enable system register access for EL3 and allow lower exception
297 	 * levels to configure the same for themselves. If the legacy mode is
298 	 * not supported, the SRE bit is RAO/WI
299 	 */
300 	icc_sre_el3 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT);
301 	write_icc_sre_el3(read_icc_sre_el3() | icc_sre_el3);
302 
303 	scr_el3 = read_scr_el3();
304 
305 	/*
306 	 * Switch to NS state to write Non secure ICC_SRE_EL1 and
307 	 * ICC_SRE_EL2 registers.
308 	 */
309 	write_scr_el3(scr_el3 | SCR_NS_BIT);
310 	isb();
311 
312 	write_icc_sre_el2(read_icc_sre_el2() | icc_sre_el3);
313 	write_icc_sre_el1(ICC_SRE_SRE_BIT);
314 	isb();
315 
316 	/* Switch to secure state. */
317 	write_scr_el3(scr_el3 & (~SCR_NS_BIT));
318 	isb();
319 
320 	/* Write the secure ICC_SRE_EL1 register */
321 	write_icc_sre_el1(ICC_SRE_SRE_BIT);
322 	isb();
323 
324 	/* Program the idle priority in the PMR */
325 	write_icc_pmr_el1(GIC_PRI_MASK);
326 
327 	/* Enable Group0 interrupts */
328 	write_icc_igrpen0_el1(IGRPEN1_EL1_ENABLE_G0_BIT);
329 
330 	/* Enable Group1 Secure interrupts */
331 	write_icc_igrpen1_el3(read_icc_igrpen1_el3() |
332 				IGRPEN1_EL3_ENABLE_G1S_BIT);
333 	/* and restore the original */
334 	write_scr_el3(scr_el3);
335 	isb();
336 	/* Add DSB to ensure visibility of System register writes */
337 	dsb();
338 }
339 
340 /*******************************************************************************
341  * This function disables the GIC CPU interface of the calling CPU using
342  * only system register accesses.
343  ******************************************************************************/
344 void gicv3_cpuif_disable(unsigned int proc_num)
345 {
346 	uintptr_t gicr_base;
347 
348 	assert(gicv3_driver_data != NULL);
349 	assert(proc_num < gicv3_driver_data->rdistif_num);
350 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
351 
352 	assert(IS_IN_EL3());
353 
354 	/* Disable legacy interrupt bypass */
355 	write_icc_sre_el3(read_icc_sre_el3() |
356 			  (ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT));
357 
358 	/* Disable Group0 interrupts */
359 	write_icc_igrpen0_el1(read_icc_igrpen0_el1() &
360 			      ~IGRPEN1_EL1_ENABLE_G0_BIT);
361 
362 	/* Disable Group1 Secure and Non-Secure interrupts */
363 	write_icc_igrpen1_el3(read_icc_igrpen1_el3() &
364 			      ~(IGRPEN1_EL3_ENABLE_G1NS_BIT |
365 			      IGRPEN1_EL3_ENABLE_G1S_BIT));
366 
367 	/* Synchronise accesses to group enable registers */
368 	isb();
369 	/* Add DSB to ensure visibility of System register writes */
370 	dsb();
371 
372 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
373 	assert(gicr_base != 0UL);
374 
375 	/*
376 	 * dsb() already issued previously after clearing the CPU group
377 	 * enabled, apply below workaround to toggle the "DPG*"
378 	 * bits of GICR_CTLR register for unblocking event.
379 	 */
380 	gicv3_apply_errata_wa_2384374(gicr_base);
381 
382 	/* Mark the connected core as asleep */
383 	gicv3_rdistif_mark_core_asleep(gicr_base);
384 }
385 
386 /*******************************************************************************
387  * This function returns the id of the highest priority pending interrupt at
388  * the GIC cpu interface.
389  ******************************************************************************/
390 unsigned int gicv3_get_pending_interrupt_id(void)
391 {
392 	unsigned int id;
393 
394 	assert(IS_IN_EL3());
395 	id = (uint32_t)read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
396 
397 	/*
398 	 * If the ID is special identifier corresponding to G1S or G1NS
399 	 * interrupt, then read the highest pending group 1 interrupt.
400 	 */
401 	if ((id == PENDING_G1S_INTID) || (id == PENDING_G1NS_INTID)) {
402 		return (uint32_t)read_icc_hppir1_el1() & HPPIR1_EL1_INTID_MASK;
403 	}
404 
405 	return id;
406 }
407 
408 /*******************************************************************************
409  * This function returns the type of the highest priority pending interrupt at
410  * the GIC cpu interface. The return values can be one of the following :
411  *   PENDING_G1S_INTID  : The interrupt type is secure Group 1.
412  *   PENDING_G1NS_INTID : The interrupt type is non secure Group 1.
413  *   0 - 1019           : The interrupt type is secure Group 0.
414  *   GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
415  *                            sufficient priority to be signaled
416  ******************************************************************************/
417 unsigned int gicv3_get_pending_interrupt_type(void)
418 {
419 	assert(IS_IN_EL3());
420 	return (uint32_t)read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
421 }
422 
423 /*******************************************************************************
424  * This function returns the type of the interrupt id depending upon the group
425  * this interrupt has been configured under by the interrupt controller i.e.
426  * group0 or group1 Secure / Non Secure. The return value can be one of the
427  * following :
428  *    INTR_GROUP0  : The interrupt type is a Secure Group 0 interrupt
429  *    INTR_GROUP1S : The interrupt type is a Secure Group 1 secure interrupt
430  *    INTR_GROUP1NS: The interrupt type is a Secure Group 1 non secure
431  *                   interrupt.
432  ******************************************************************************/
433 unsigned int gicv3_get_interrupt_type(unsigned int id, unsigned int proc_num)
434 {
435 	unsigned int igroup, grpmodr;
436 	uintptr_t gicr_base;
437 	uintptr_t gicd_base;
438 
439 	assert(IS_IN_EL3());
440 	assert(gicv3_driver_data != NULL);
441 
442 	/* Ensure the parameters are valid */
443 	assert((id < PENDING_G1S_INTID) || (id >= MIN_LPI_ID));
444 	assert(proc_num < gicv3_driver_data->rdistif_num);
445 
446 	/* All LPI interrupts are Group 1 non secure */
447 	if (id >= MIN_LPI_ID) {
448 		return INTR_GROUP1NS;
449 	}
450 
451 	/* Check interrupt ID */
452 	if (is_sgi_ppi(id)) {
453 		/* SGIs: 0-15, PPIs: 16-31, EPPIs: 1056-1119 */
454 		assert(gicv3_driver_data->rdistif_base_addrs != NULL);
455 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
456 		igroup = gicr_get_igroupr(gicr_base, id);
457 		grpmodr = gicr_get_igrpmodr(gicr_base, id);
458 	} else {
459 		/* SPIs: 32-1019, ESPIs: 4096-5119 */
460 		assert(gicv3_driver_data->gicd_base != 0U);
461 		gicd_base = gicv3_get_multichip_base(id, gicv3_driver_data->gicd_base);
462 		igroup = gicd_get_igroupr(gicd_base, id);
463 		grpmodr = gicd_get_igrpmodr(gicd_base, id);
464 	}
465 
466 	/*
467 	 * If the IGROUP bit is set, then it is a Group 1 Non secure
468 	 * interrupt
469 	 */
470 	if (igroup != 0U) {
471 		return INTR_GROUP1NS;
472 	}
473 
474 	/* If the GRPMOD bit is set, then it is a Group 1 Secure interrupt */
475 	if (grpmodr != 0U) {
476 		return INTR_GROUP1S;
477 	}
478 
479 	/* Else it is a Group 0 Secure interrupt */
480 	return INTR_GROUP0;
481 }
482 
483 /*****************************************************************************
484  * Function to save and disable the GIC ITS register context. The power
485  * management of GIC ITS is implementation-defined and this function doesn't
486  * save any memory structures required to support ITS. As the sequence to save
487  * this state is implementation defined, it should be executed in platform
488  * specific code. Calling this function alone and then powering down the GIC and
489  * ITS without implementing the aforementioned platform specific code will
490  * corrupt the ITS state.
491  *
492  * This function must be invoked after the GIC CPU interface is disabled.
493  *****************************************************************************/
494 void gicv3_its_save_disable(uintptr_t gits_base,
495 				gicv3_its_ctx_t * const its_ctx)
496 {
497 	unsigned int i;
498 
499 	assert(gicv3_driver_data != NULL);
500 	assert(IS_IN_EL3());
501 	assert(its_ctx != NULL);
502 	assert(gits_base != 0U);
503 
504 	its_ctx->gits_ctlr = gits_read_ctlr(gits_base);
505 
506 	/* Disable the ITS */
507 	gits_write_ctlr(gits_base, its_ctx->gits_ctlr & ~GITS_CTLR_ENABLED_BIT);
508 
509 	/* Wait for quiescent state */
510 	gits_wait_for_quiescent_bit(gits_base);
511 
512 	its_ctx->gits_cbaser = gits_read_cbaser(gits_base);
513 	its_ctx->gits_cwriter = gits_read_cwriter(gits_base);
514 
515 	for (i = 0U; i < ARRAY_SIZE(its_ctx->gits_baser); i++) {
516 		its_ctx->gits_baser[i] = gits_read_baser(gits_base, i);
517 	}
518 }
519 
520 /*****************************************************************************
521  * Function to restore the GIC ITS register context. The power
522  * management of GIC ITS is implementation defined and this function doesn't
523  * restore any memory structures required to support ITS. The assumption is
524  * that these structures are in memory and are retained during system suspend.
525  *
526  * This must be invoked before the GIC CPU interface is enabled.
527  *****************************************************************************/
528 void gicv3_its_restore(uintptr_t gits_base,
529 			const gicv3_its_ctx_t * const its_ctx)
530 {
531 	unsigned int i;
532 
533 	assert(gicv3_driver_data != NULL);
534 	assert(IS_IN_EL3());
535 	assert(its_ctx != NULL);
536 	assert(gits_base != 0U);
537 
538 	/* Assert that the GITS is disabled and quiescent */
539 	assert((gits_read_ctlr(gits_base) & GITS_CTLR_ENABLED_BIT) == 0U);
540 	assert((gits_read_ctlr(gits_base) & GITS_CTLR_QUIESCENT_BIT) != 0U);
541 
542 	gits_write_cbaser(gits_base, its_ctx->gits_cbaser);
543 	gits_write_cwriter(gits_base, its_ctx->gits_cwriter);
544 
545 	for (i = 0U; i < ARRAY_SIZE(its_ctx->gits_baser); i++) {
546 		gits_write_baser(gits_base, i, its_ctx->gits_baser[i]);
547 	}
548 
549 	/* Restore the ITS CTLR but leave the ITS disabled */
550 	gits_write_ctlr(gits_base, its_ctx->gits_ctlr & ~GITS_CTLR_ENABLED_BIT);
551 }
552 
553 /*****************************************************************************
554  * Function to save the GIC Redistributor register context. This function
555  * must be invoked after CPU interface disable and prior to Distributor save.
556  *****************************************************************************/
557 void gicv3_rdistif_save(unsigned int proc_num,
558 			gicv3_redist_ctx_t * const rdist_ctx)
559 {
560 	uintptr_t gicr_base;
561 	unsigned int i, ppi_regs_num, regs_num;
562 
563 	assert(gicv3_driver_data != NULL);
564 	assert(proc_num < gicv3_driver_data->rdistif_num);
565 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
566 	assert(IS_IN_EL3());
567 	assert(rdist_ctx != NULL);
568 
569 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
570 
571 #if GIC_EXT_INTID
572 	/* Calculate number of PPI registers */
573 	ppi_regs_num = (unsigned int)((gicr_read_typer(gicr_base) >>
574 			TYPER_PPI_NUM_SHIFT) & TYPER_PPI_NUM_MASK) + 1;
575 	/* All other values except PPInum [0-2] are reserved */
576 	if (ppi_regs_num > 3U) {
577 		ppi_regs_num = 1U;
578 	}
579 #else
580 	ppi_regs_num = 1U;
581 #endif
582 	/*
583 	 * Wait for any write to GICR_CTLR to complete before trying to save any
584 	 * state.
585 	 */
586 	gicr_wait_for_pending_write(gicr_base);
587 
588 	rdist_ctx->gicr_ctlr = gicr_read_ctlr(gicr_base);
589 
590 	rdist_ctx->gicr_propbaser = gicr_read_propbaser(gicr_base);
591 	rdist_ctx->gicr_pendbaser = gicr_read_pendbaser(gicr_base);
592 
593 	/* 32 interrupt IDs per register */
594 	for (i = 0U; i < ppi_regs_num; ++i) {
595 		SAVE_GICR_REG(gicr_base, rdist_ctx, igroupr, i);
596 		SAVE_GICR_REG(gicr_base, rdist_ctx, isenabler, i);
597 		SAVE_GICR_REG(gicr_base, rdist_ctx, ispendr, i);
598 		SAVE_GICR_REG(gicr_base, rdist_ctx, isactiver, i);
599 		SAVE_GICR_REG(gicr_base, rdist_ctx, igrpmodr, i);
600 	}
601 
602 	/* 16 interrupt IDs per GICR_ICFGR register */
603 	regs_num = ppi_regs_num << 1;
604 	for (i = 0U; i < regs_num; ++i) {
605 		SAVE_GICR_REG(gicr_base, rdist_ctx, icfgr, i);
606 	}
607 
608 	rdist_ctx->gicr_nsacr = gicr_read_nsacr(gicr_base);
609 
610 	/* 4 interrupt IDs per GICR_IPRIORITYR register */
611 	regs_num = ppi_regs_num << 3;
612 	for (i = 0U; i < regs_num; ++i) {
613 		rdist_ctx->gicr_ipriorityr[i] =
614 		gicr_ipriorityr_read(gicr_base, i);
615 	}
616 
617 	/*
618 	 * Call the pre-save hook that implements the IMP DEF sequence that may
619 	 * be required on some GIC implementations. As this may need to access
620 	 * the Redistributor registers, we pass it proc_num.
621 	 */
622 	gicv3_distif_pre_save(proc_num);
623 }
624 
625 /*****************************************************************************
626  * Function to restore the GIC Redistributor register context. We disable
627  * LPI and per-cpu interrupts before we start restore of the Redistributor.
628  * This function must be invoked after Distributor restore but prior to
629  * CPU interface enable. The pending and active interrupts are restored
630  * after the interrupts are fully configured and enabled.
631  *****************************************************************************/
632 void gicv3_rdistif_init_restore(unsigned int proc_num,
633 				const gicv3_redist_ctx_t * const rdist_ctx)
634 {
635 	uintptr_t gicr_base;
636 	unsigned int i, ppi_regs_num, regs_num;
637 
638 	assert(gicv3_driver_data != NULL);
639 	assert(proc_num < gicv3_driver_data->rdistif_num);
640 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
641 	assert(IS_IN_EL3());
642 	assert(rdist_ctx != NULL);
643 
644 	gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
645 
646 #if GIC_EXT_INTID
647 	/* Calculate number of PPI registers */
648 	ppi_regs_num = (unsigned int)((gicr_read_typer(gicr_base) >>
649 			TYPER_PPI_NUM_SHIFT) & TYPER_PPI_NUM_MASK) + 1;
650 	/* All other values except PPInum [0-2] are reserved */
651 	if (ppi_regs_num > 3U) {
652 		ppi_regs_num = 1U;
653 	}
654 #else
655 	ppi_regs_num = 1U;
656 #endif
657 	/* Power on redistributor */
658 	gicv3_rdistif_on(proc_num);
659 
660 	/*
661 	 * Call the post-restore hook that implements the IMP DEF sequence that
662 	 * may be required on some GIC implementations. As this may need to
663 	 * access the Redistributor registers, we pass it proc_num.
664 	 */
665 	gicv3_distif_post_restore(proc_num);
666 
667 	/*
668 	 * Disable all SGIs (imp. def.)/(E)PPIs before configuring them.
669 	 * This is a more scalable approach as it avoids clearing the enable
670 	 * bits in the GICD_CTLR.
671 	 */
672 	for (i = 0U; i < ppi_regs_num; ++i) {
673 		gicr_write_icenabler(gicr_base, i, ~0U);
674 	}
675 
676 	/* Wait for pending writes to GICR_ICENABLER */
677 	gicr_wait_for_pending_write(gicr_base);
678 
679 	/*
680 	 * Disable the LPIs to avoid unpredictable behavior when writing to
681 	 * GICR_PROPBASER and GICR_PENDBASER.
682 	 */
683 	gicr_write_ctlr(gicr_base,
684 			rdist_ctx->gicr_ctlr & ~(GICR_CTLR_EN_LPIS_BIT));
685 
686 	/* Restore registers' content */
687 	gicr_write_propbaser(gicr_base, rdist_ctx->gicr_propbaser);
688 	gicr_write_pendbaser(gicr_base, rdist_ctx->gicr_pendbaser);
689 
690 	/* 32 interrupt IDs per register */
691 	for (i = 0U; i < ppi_regs_num; ++i) {
692 		RESTORE_GICR_REG(gicr_base, rdist_ctx, igroupr, i);
693 		RESTORE_GICR_REG(gicr_base, rdist_ctx, igrpmodr, i);
694 	}
695 
696 	/* 4 interrupt IDs per GICR_IPRIORITYR register */
697 	regs_num = ppi_regs_num << 3;
698 	for (i = 0U; i < regs_num; ++i) {
699 		gicr_ipriorityr_write(gicr_base, i,
700 					rdist_ctx->gicr_ipriorityr[i]);
701 	}
702 
703 	/* 16 interrupt IDs per GICR_ICFGR register */
704 	regs_num = ppi_regs_num << 1;
705 	for (i = 0U; i < regs_num; ++i) {
706 		RESTORE_GICR_REG(gicr_base, rdist_ctx, icfgr, i);
707 	}
708 
709 	gicr_write_nsacr(gicr_base, rdist_ctx->gicr_nsacr);
710 
711 	/* Restore after group and priorities are set.
712 	 * 32 interrupt IDs per register
713 	 */
714 	for (i = 0U; i < ppi_regs_num; ++i) {
715 		RESTORE_GICR_REG(gicr_base, rdist_ctx, ispendr, i);
716 		RESTORE_GICR_REG(gicr_base, rdist_ctx, isactiver, i);
717 	}
718 
719 	/*
720 	 * Wait for all writes to the Distributor to complete before enabling
721 	 * the SGI and (E)PPIs.
722 	 */
723 	gicr_wait_for_upstream_pending_write(gicr_base);
724 
725 	/* 32 interrupt IDs per GICR_ISENABLER register */
726 	for (i = 0U; i < ppi_regs_num; ++i) {
727 		RESTORE_GICR_REG(gicr_base, rdist_ctx, isenabler, i);
728 	}
729 
730 	/*
731 	 * Restore GICR_CTLR.Enable_LPIs bit and wait for pending writes in case
732 	 * the first write to GICR_CTLR was still in flight (this write only
733 	 * restores GICR_CTLR.Enable_LPIs and no waiting is required for this
734 	 * bit).
735 	 */
736 	gicr_write_ctlr(gicr_base, rdist_ctx->gicr_ctlr);
737 	gicr_wait_for_pending_write(gicr_base);
738 }
739 
740 /*****************************************************************************
741  * Function to save the GIC Distributor register context. This function
742  * must be invoked after CPU interface disable and Redistributor save.
743  *****************************************************************************/
744 void gicv3_distif_save(gicv3_dist_ctx_t * const dist_ctx)
745 {
746 	assert(gicv3_driver_data != NULL);
747 	assert(gicv3_driver_data->gicd_base != 0U);
748 	assert(IS_IN_EL3());
749 	assert(dist_ctx != NULL);
750 
751 	uintptr_t gicd_base = gicv3_driver_data->gicd_base;
752 	unsigned int num_ints = gicv3_get_spi_limit(gicd_base);
753 #if GIC_EXT_INTID
754 	unsigned int num_eints = gicv3_get_espi_limit(gicd_base);
755 #endif
756 
757 	/* Wait for pending write to complete */
758 	gicd_wait_for_pending_write(gicd_base);
759 
760 	/* Save the GICD_CTLR */
761 	dist_ctx->gicd_ctlr = gicd_read_ctlr(gicd_base);
762 
763 	/* Save GICD_IGROUPR for INTIDs 32 - 1019 */
764 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUP);
765 
766 	/* Save GICD_IGROUPRE for INTIDs 4096 - 5119 */
767 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igroupr, IGROUP);
768 
769 	/* Save GICD_ISENABLER for INT_IDs 32 - 1019 */
770 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLE);
771 
772 	/* Save GICD_ISENABLERE for INT_IDs 4096 - 5119 */
773 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isenabler, ISENABLE);
774 
775 	/* Save GICD_ISPENDR for INTIDs 32 - 1019 */
776 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPEND);
777 
778 	/* Save GICD_ISPENDRE for INTIDs 4096 - 5119 */
779 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints,	ispendr, ISPEND);
780 
781 	/* Save GICD_ISACTIVER for INTIDs 32 - 1019 */
782 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVE);
783 
784 	/* Save GICD_ISACTIVERE for INTIDs 4096 - 5119 */
785 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isactiver, ISACTIVE);
786 
787 	/* Save GICD_IPRIORITYR for INTIDs 32 - 1019 */
788 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITY);
789 
790 	/* Save GICD_IPRIORITYRE for INTIDs 4096 - 5119 */
791 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ipriorityr, IPRIORITY);
792 
793 	/* Save GICD_ICFGR for INTIDs 32 - 1019 */
794 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFG);
795 
796 	/* Save GICD_ICFGRE for INTIDs 4096 - 5119 */
797 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, icfgr, ICFG);
798 
799 	/* Save GICD_IGRPMODR for INTIDs 32 - 1019 */
800 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMOD);
801 
802 	/* Save GICD_IGRPMODRE for INTIDs 4096 - 5119 */
803 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igrpmodr, IGRPMOD);
804 
805 	/* Save GICD_NSACR for INTIDs 32 - 1019 */
806 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSAC);
807 
808 	/* Save GICD_NSACRE for INTIDs 4096 - 5119 */
809 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, nsacr, NSAC);
810 
811 	/* Save GICD_IROUTER for INTIDs 32 - 1019 */
812 	SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTE);
813 
814 	/* Save GICD_IROUTERE for INTIDs 4096 - 5119 */
815 	SAVE_GICD_EREGS(gicd_base, dist_ctx, num_eints, irouter, IROUTE);
816 
817 	/*
818 	 * GICD_ITARGETSR<n> and GICD_SPENDSGIR<n> are RAZ/WI when
819 	 * GICD_CTLR.ARE_(S|NS) bits are set which is the case for our GICv3
820 	 * driver.
821 	 */
822 }
823 
824 /*****************************************************************************
825  * Function to restore the GIC Distributor register context. We disable G0, G1S
826  * and G1NS interrupt groups before we start restore of the Distributor. This
827  * function must be invoked prior to Redistributor restore and CPU interface
828  * enable. The pending and active interrupts are restored after the interrupts
829  * are fully configured and enabled.
830  *****************************************************************************/
831 void gicv3_distif_init_restore(const gicv3_dist_ctx_t * const dist_ctx)
832 {
833 	assert(gicv3_driver_data != NULL);
834 	assert(gicv3_driver_data->gicd_base != 0U);
835 	assert(IS_IN_EL3());
836 	assert(dist_ctx != NULL);
837 
838 	uintptr_t gicd_base = gicv3_driver_data->gicd_base;
839 
840 	/*
841 	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
842 	 * the ARE_S bit. The Distributor might generate a system error
843 	 * otherwise.
844 	 */
845 	gicd_clr_ctlr(gicd_base,
846 		      CTLR_ENABLE_G0_BIT |
847 		      CTLR_ENABLE_G1S_BIT |
848 		      CTLR_ENABLE_G1NS_BIT,
849 		      RWP_TRUE);
850 
851 	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
852 	gicd_set_ctlr(gicd_base, CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
853 
854 	unsigned int num_ints = gicv3_get_spi_limit(gicd_base);
855 #if GIC_EXT_INTID
856 	unsigned int num_eints = gicv3_get_espi_limit(gicd_base);
857 #endif
858 	/* Restore GICD_IGROUPR for INTIDs 32 - 1019 */
859 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUP);
860 
861 	/* Restore GICD_IGROUPRE for INTIDs 4096 - 5119 */
862 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igroupr, IGROUP);
863 
864 	/* Restore GICD_IPRIORITYR for INTIDs 32 - 1019 */
865 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITY);
866 
867 	/* Restore GICD_IPRIORITYRE for INTIDs 4096 - 5119 */
868 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ipriorityr, IPRIORITY);
869 
870 	/* Restore GICD_ICFGR for INTIDs 32 - 1019 */
871 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFG);
872 
873 	/* Restore GICD_ICFGRE for INTIDs 4096 - 5119 */
874 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, icfgr, ICFG);
875 
876 	/* Restore GICD_IGRPMODR for INTIDs 32 - 1019 */
877 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMOD);
878 
879 	/* Restore GICD_IGRPMODRE for INTIDs 4096 - 5119 */
880 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, igrpmodr, IGRPMOD);
881 
882 	/* Restore GICD_NSACR for INTIDs 32 - 1019 */
883 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSAC);
884 
885 	/* Restore GICD_NSACRE for INTIDs 4096 - 5119 */
886 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, nsacr, NSAC);
887 
888 	/* Restore GICD_IROUTER for INTIDs 32 - 1019 */
889 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTE);
890 
891 	/* Restore GICD_IROUTERE for INTIDs 4096 - 5119 */
892 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, irouter, IROUTE);
893 
894 	/*
895 	 * Restore ISENABLER(E), ISPENDR(E) and ISACTIVER(E) after
896 	 * the interrupts are configured.
897 	 */
898 
899 	/* Restore GICD_ISENABLER for INT_IDs 32 - 1019 */
900 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLE);
901 
902 	/* Restore GICD_ISENABLERE for INT_IDs 4096 - 5119 */
903 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isenabler, ISENABLE);
904 
905 	/* Restore GICD_ISPENDR for INTIDs 32 - 1019 */
906 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPEND);
907 
908 	/* Restore GICD_ISPENDRE for INTIDs 4096 - 5119 */
909 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, ispendr, ISPEND);
910 
911 	/* Restore GICD_ISACTIVER for INTIDs 32 - 1019 */
912 	RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVE);
913 
914 	/* Restore GICD_ISACTIVERE for INTIDs 4096 - 5119 */
915 	RESTORE_GICD_EREGS(gicd_base, dist_ctx, num_eints, isactiver, ISACTIVE);
916 
917 	/* Restore the GICD_CTLR */
918 	gicd_write_ctlr(gicd_base, dist_ctx->gicd_ctlr);
919 	gicd_wait_for_pending_write(gicd_base);
920 }
921 
922 /*******************************************************************************
923  * This function gets the priority of the interrupt the processor is currently
924  * servicing.
925  ******************************************************************************/
926 unsigned int gicv3_get_running_priority(void)
927 {
928 	return (unsigned int)read_icc_rpr_el1();
929 }
930 
931 /*******************************************************************************
932  * This function checks if the interrupt identified by id is active (whether the
933  * state is either active, or active and pending). The proc_num is used if the
934  * interrupt is SGI or (E)PPI and programs the corresponding Redistributor
935  * interface.
936  ******************************************************************************/
937 unsigned int gicv3_get_interrupt_active(unsigned int id, unsigned int proc_num)
938 {
939 	uintptr_t gicd_base;
940 
941 	assert(gicv3_driver_data != NULL);
942 	assert(gicv3_driver_data->gicd_base != 0U);
943 	assert(proc_num < gicv3_driver_data->rdistif_num);
944 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
945 
946 	/* Check interrupt ID */
947 	if (is_sgi_ppi(id)) {
948 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
949 		return gicr_get_isactiver(
950 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
951 	}
952 
953 	/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
954 	gicd_base = gicv3_get_multichip_base(id, gicv3_driver_data->gicd_base);
955 	return gicd_get_isactiver(gicd_base, id);
956 }
957 
958 /*******************************************************************************
959  * This function enables the interrupt identified by id. The proc_num
960  * is used if the interrupt is SGI or PPI, and programs the corresponding
961  * Redistributor interface.
962  ******************************************************************************/
963 void gicv3_enable_interrupt(unsigned int id, unsigned int proc_num)
964 {
965 	uintptr_t gicd_base;
966 
967 	assert(gicv3_driver_data != NULL);
968 	assert(gicv3_driver_data->gicd_base != 0U);
969 	assert(proc_num < gicv3_driver_data->rdistif_num);
970 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
971 
972 	/*
973 	 * Ensure that any shared variable updates depending on out of band
974 	 * interrupt trigger are observed before enabling interrupt.
975 	 */
976 	dsbishst();
977 
978 	/* Check interrupt ID */
979 	if (is_sgi_ppi(id)) {
980 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
981 		gicr_set_isenabler(
982 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
983 	} else {
984 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
985 		gicd_base = gicv3_get_multichip_base(id, gicv3_driver_data->gicd_base);
986 		gicd_set_isenabler(gicd_base, id);
987 	}
988 }
989 
990 /*******************************************************************************
991  * This function disables the interrupt identified by id. The proc_num
992  * is used if the interrupt is SGI or PPI, and programs the corresponding
993  * Redistributor interface.
994  ******************************************************************************/
995 void gicv3_disable_interrupt(unsigned int id, unsigned int proc_num)
996 {
997 	uintptr_t gicd_base;
998 
999 	assert(gicv3_driver_data != NULL);
1000 	assert(gicv3_driver_data->gicd_base != 0U);
1001 	assert(proc_num < gicv3_driver_data->rdistif_num);
1002 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1003 
1004 	/*
1005 	 * Disable interrupt, and ensure that any shared variable updates
1006 	 * depending on out of band interrupt trigger are observed afterwards.
1007 	 */
1008 
1009 	/* Check interrupt ID */
1010 	if (is_sgi_ppi(id)) {
1011 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1012 		gicr_set_icenabler(
1013 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
1014 
1015 		/* Write to clear enable requires waiting for pending writes */
1016 		gicr_wait_for_pending_write(
1017 			gicv3_driver_data->rdistif_base_addrs[proc_num]);
1018 	} else {
1019 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1020 		gicd_base = gicv3_get_multichip_base(id, gicv3_driver_data->gicd_base);
1021 		gicd_set_icenabler(gicd_base, id);
1022 
1023 		/* Write to clear enable requires waiting for pending writes */
1024 		gicd_wait_for_pending_write(gicd_base);
1025 	}
1026 
1027 	dsbishst();
1028 }
1029 
1030 /*******************************************************************************
1031  * This function sets the interrupt priority as supplied for the given interrupt
1032  * id.
1033  ******************************************************************************/
1034 void gicv3_set_interrupt_priority(unsigned int id, unsigned int proc_num,
1035 		unsigned int priority)
1036 {
1037 	uintptr_t gicr_base;
1038 	uintptr_t gicd_base;
1039 
1040 	assert(gicv3_driver_data != NULL);
1041 	assert(gicv3_driver_data->gicd_base != 0U);
1042 	assert(proc_num < gicv3_driver_data->rdistif_num);
1043 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1044 
1045 	/* Check interrupt ID */
1046 	if (is_sgi_ppi(id)) {
1047 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1048 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
1049 		gicr_set_ipriorityr(gicr_base, id, priority);
1050 	} else {
1051 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1052 		gicd_base = gicv3_get_multichip_base(id, gicv3_driver_data->gicd_base);
1053 		gicd_set_ipriorityr(gicd_base, id, priority);
1054 	}
1055 }
1056 
1057 /*******************************************************************************
1058  * This function assigns group for the interrupt identified by id. The proc_num
1059  * is used if the interrupt is SGI or (E)PPI, and programs the corresponding
1060  * Redistributor interface. The group can be any of GICV3_INTR_GROUP*
1061  ******************************************************************************/
1062 void gicv3_set_interrupt_type(unsigned int id, unsigned int proc_num,
1063 		unsigned int type)
1064 {
1065 	bool igroup = false, grpmod = false;
1066 	uintptr_t gicr_base;
1067 	uintptr_t gicd_base;
1068 
1069 	assert(gicv3_driver_data != NULL);
1070 	assert(gicv3_driver_data->gicd_base != 0U);
1071 	assert(proc_num < gicv3_driver_data->rdistif_num);
1072 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1073 
1074 	switch (type) {
1075 	case INTR_GROUP1S:
1076 		igroup = false;
1077 		grpmod = true;
1078 		break;
1079 	case INTR_GROUP0:
1080 		igroup = false;
1081 		grpmod = false;
1082 		break;
1083 	case INTR_GROUP1NS:
1084 		igroup = true;
1085 		grpmod = false;
1086 		break;
1087 	default:
1088 		assert(false);
1089 		break;
1090 	}
1091 
1092 	/* Check interrupt ID */
1093 	if (is_sgi_ppi(id)) {
1094 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1095 		gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
1096 
1097 		igroup ? gicr_set_igroupr(gicr_base, id) :
1098 			 gicr_clr_igroupr(gicr_base, id);
1099 		grpmod ? gicr_set_igrpmodr(gicr_base, id) :
1100 			 gicr_clr_igrpmodr(gicr_base, id);
1101 	} else {
1102 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1103 
1104 		/* Serialize read-modify-write to Distributor registers */
1105 		spin_lock(&gic_lock);
1106 
1107 		gicd_base = gicv3_get_multichip_base(id, gicv3_driver_data->gicd_base);
1108 
1109 		igroup ? gicd_set_igroupr(gicd_base, id) :
1110 			 gicd_clr_igroupr(gicd_base, id);
1111 		grpmod ? gicd_set_igrpmodr(gicd_base, id) :
1112 			 gicd_clr_igrpmodr(gicd_base, id);
1113 
1114 		spin_unlock(&gic_lock);
1115 	}
1116 }
1117 
1118 /*******************************************************************************
1119  * This function raises the specified SGI of the specified group.
1120  *
1121  * The target parameter must be a valid MPIDR in the system.
1122  ******************************************************************************/
1123 void gicv3_raise_sgi(unsigned int sgi_num, gicv3_irq_group_t group,
1124 		u_register_t target)
1125 {
1126 	unsigned int tgt, aff3, aff2, aff1, aff0;
1127 	uint64_t sgi_val;
1128 
1129 	/* Verify interrupt number is in the SGI range */
1130 	assert((sgi_num >= MIN_SGI_ID) && (sgi_num < MIN_PPI_ID));
1131 
1132 	/* Extract affinity fields from target */
1133 	aff0 = MPIDR_AFFLVL0_VAL(target);
1134 	aff1 = MPIDR_AFFLVL1_VAL(target);
1135 	aff2 = MPIDR_AFFLVL2_VAL(target);
1136 	aff3 = MPIDR_AFFLVL3_VAL(target);
1137 
1138 	/*
1139 	 * Make target list from affinity 0, and ensure GICv3 SGI can target
1140 	 * this PE.
1141 	 */
1142 	assert(aff0 < GICV3_MAX_SGI_TARGETS);
1143 	tgt = BIT_32(aff0);
1144 
1145 	/* Raise SGI to PE specified by its affinity */
1146 	sgi_val = GICV3_SGIR_VALUE(aff3, aff2, aff1, sgi_num, SGIR_IRM_TO_AFF,
1147 			tgt);
1148 
1149 	/*
1150 	 * Ensure that any shared variable updates depending on out of band
1151 	 * interrupt trigger are observed before raising SGI.
1152 	 */
1153 	dsbishst();
1154 
1155 	switch (group) {
1156 	case GICV3_G0:
1157 		write_icc_sgi0r_el1(sgi_val);
1158 		break;
1159 	case GICV3_G1NS:
1160 		write_icc_asgi1r(sgi_val);
1161 		break;
1162 	case GICV3_G1S:
1163 		write_icc_sgi1r(sgi_val);
1164 		break;
1165 	default:
1166 		assert(false);
1167 		break;
1168 	}
1169 
1170 	isb();
1171 }
1172 
1173 /*******************************************************************************
1174  * This function sets the interrupt routing for the given (E)SPI interrupt id.
1175  * The interrupt routing is specified in routing mode and mpidr.
1176  *
1177  * The routing mode can be either of:
1178  *  - GICV3_IRM_ANY
1179  *  - GICV3_IRM_PE
1180  *
1181  * The mpidr is the affinity of the PE to which the interrupt will be routed,
1182  * and is ignored for routing mode GICV3_IRM_ANY.
1183  ******************************************************************************/
1184 void gicv3_set_spi_routing(unsigned int id, unsigned int irm, u_register_t mpidr)
1185 {
1186 	unsigned long long aff;
1187 	uint64_t router;
1188 	uintptr_t gicd_base;
1189 
1190 	assert(gicv3_driver_data != NULL);
1191 	assert(gicv3_driver_data->gicd_base != 0U);
1192 
1193 	assert((irm == GICV3_IRM_ANY) || (irm == GICV3_IRM_PE));
1194 
1195 	assert(IS_SPI(id));
1196 
1197 	aff = gicd_irouter_val_from_mpidr(mpidr, irm);
1198 	gicd_base = gicv3_get_multichip_base(id, gicv3_driver_data->gicd_base);
1199 	gicd_write_irouter(gicd_base, id, aff);
1200 
1201 	/*
1202 	 * In implementations that do not require 1 of N distribution of SPIs,
1203 	 * IRM might be RAZ/WI. Read back and verify IRM bit.
1204 	 */
1205 	if (irm == GICV3_IRM_ANY) {
1206 		router = gicd_read_irouter(gicd_base, id);
1207 		if (((router >> IROUTER_IRM_SHIFT) & IROUTER_IRM_MASK) == 0U) {
1208 			ERROR("GICv3 implementation doesn't support routing ANY\n");
1209 			panic();
1210 		}
1211 	}
1212 }
1213 
1214 /*******************************************************************************
1215  * This function clears the pending status of an interrupt identified by id.
1216  * The proc_num is used if the interrupt is SGI or (E)PPI, and programs the
1217  * corresponding Redistributor interface.
1218  ******************************************************************************/
1219 void gicv3_clear_interrupt_pending(unsigned int id, unsigned int proc_num)
1220 {
1221 	uintptr_t gicd_base;
1222 
1223 	assert(gicv3_driver_data != NULL);
1224 	assert(gicv3_driver_data->gicd_base != 0U);
1225 	assert(proc_num < gicv3_driver_data->rdistif_num);
1226 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1227 
1228 	/*
1229 	 * Clear pending interrupt, and ensure that any shared variable updates
1230 	 * depending on out of band interrupt trigger are observed afterwards.
1231 	 */
1232 
1233 	/* Check interrupt ID */
1234 	if (is_sgi_ppi(id)) {
1235 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1236 		gicr_set_icpendr(
1237 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
1238 	} else {
1239 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1240 		gicd_base = gicv3_get_multichip_base(id, gicv3_driver_data->gicd_base);
1241 		gicd_set_icpendr(gicd_base, id);
1242 	}
1243 
1244 	dsbishst();
1245 }
1246 
1247 /*******************************************************************************
1248  * This function sets the pending status of an interrupt identified by id.
1249  * The proc_num is used if the interrupt is SGI or PPI and programs the
1250  * corresponding Redistributor interface.
1251  ******************************************************************************/
1252 void gicv3_set_interrupt_pending(unsigned int id, unsigned int proc_num)
1253 {
1254 	uintptr_t gicd_base;
1255 
1256 	assert(gicv3_driver_data != NULL);
1257 	assert(gicv3_driver_data->gicd_base != 0U);
1258 	assert(proc_num < gicv3_driver_data->rdistif_num);
1259 	assert(gicv3_driver_data->rdistif_base_addrs != NULL);
1260 
1261 	/*
1262 	 * Ensure that any shared variable updates depending on out of band
1263 	 * interrupt trigger are observed before setting interrupt pending.
1264 	 */
1265 	dsbishst();
1266 
1267 	/* Check interrupt ID */
1268 	if (is_sgi_ppi(id)) {
1269 		/* For SGIs: 0-15, PPIs: 16-31 and EPPIs: 1056-1119 */
1270 		gicr_set_ispendr(
1271 			gicv3_driver_data->rdistif_base_addrs[proc_num], id);
1272 	} else {
1273 		/* For SPIs: 32-1019 and ESPIs: 4096-5119 */
1274 		gicd_base = gicv3_get_multichip_base(id, gicv3_driver_data->gicd_base);
1275 		gicd_set_ispendr(gicd_base, id);
1276 	}
1277 }
1278 
1279 /*******************************************************************************
1280  * This function sets the PMR register with the supplied value. Returns the
1281  * original PMR.
1282  ******************************************************************************/
1283 unsigned int gicv3_set_pmr(unsigned int mask)
1284 {
1285 	unsigned int old_mask;
1286 
1287 	old_mask = (unsigned int)read_icc_pmr_el1();
1288 
1289 	/*
1290 	 * Order memory updates w.r.t. PMR write, and ensure they're visible
1291 	 * before potential out of band interrupt trigger because of PMR update.
1292 	 * PMR system register writes are self-synchronizing, so no ISB required
1293 	 * thereafter.
1294 	 */
1295 	dsbishst();
1296 	write_icc_pmr_el1(mask);
1297 
1298 	return old_mask;
1299 }
1300 
1301 /*******************************************************************************
1302  * This function delegates the responsibility of discovering the corresponding
1303  * Redistributor frames to each CPU itself. It is a modified version of
1304  * gicv3_rdistif_base_addrs_probe() and is executed by each CPU in the platform
1305  * unlike the previous way in which only the Primary CPU did the discovery of
1306  * all the Redistributor frames for every CPU. It also handles the scenario in
1307  * which the frames of various CPUs are not contiguous in physical memory.
1308  ******************************************************************************/
1309 int gicv3_rdistif_probe(const uintptr_t gicr_frame)
1310 {
1311 	u_register_t mpidr, mpidr_self;
1312 	unsigned int proc_num;
1313 	uint64_t typer_val;
1314 	uintptr_t rdistif_base;
1315 	bool gicr_frame_found = false;
1316 
1317 	assert(gicv3_driver_data->gicr_base == 0U);
1318 
1319 	if (plat_can_cmo()) {
1320 	/* Ensure this function is called with Data Cache enabled */
1321 #ifndef __aarch64__
1322 		assert((read_sctlr() & SCTLR_C_BIT) != 0U);
1323 #else
1324 		assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
1325 #endif /* !__aarch64__ */
1326 	}
1327 
1328 	mpidr_self = read_mpidr_el1() & MPIDR_AFFINITY_MASK;
1329 	rdistif_base = gicr_frame;
1330 	do {
1331 		typer_val = gicr_read_typer(rdistif_base);
1332 		mpidr = mpidr_from_gicr_typer(typer_val);
1333 		if (gicv3_driver_data->mpidr_to_core_pos != NULL) {
1334 			proc_num = gicv3_driver_data->mpidr_to_core_pos(mpidr);
1335 		} else {
1336 			proc_num = (unsigned int)(typer_val >>
1337 				TYPER_PROC_NUM_SHIFT) & TYPER_PROC_NUM_MASK;
1338 		}
1339 		if (mpidr == mpidr_self) {
1340 			/* The base address doesn't need to be initialized on
1341 			 * every warm boot.
1342 			 */
1343 			if (gicv3_driver_data->rdistif_base_addrs[proc_num]
1344 								!= 0U) {
1345 				return 0;
1346 			}
1347 			gicv3_driver_data->rdistif_base_addrs[proc_num] =
1348 			rdistif_base;
1349 			gicr_frame_found = true;
1350 			break;
1351 		}
1352 		rdistif_base += gicv3_redist_size(typer_val);
1353 	} while ((typer_val & TYPER_LAST_BIT) == 0U);
1354 
1355 	if (!gicr_frame_found) {
1356 		return -1;
1357 	}
1358 
1359 	/*
1360 	 * Flush the driver data to ensure coherency. This is
1361 	 * not required if platform has HW_ASSISTED_COHERENCY
1362 	 * enabled.
1363 	 */
1364 #if !HW_ASSISTED_COHERENCY
1365 	/*
1366 	 * Flush the rdistif_base_addrs[] contents linked to the GICv3 driver.
1367 	 */
1368 	flush_dcache_range((uintptr_t)&(gicv3_driver_data->rdistif_base_addrs[proc_num]),
1369 		sizeof(*(gicv3_driver_data->rdistif_base_addrs)));
1370 #endif
1371 	return 0; /* Found matching GICR frame */
1372 }
1373 
1374 /******************************************************************************
1375  * This function checks the interrupt ID and returns true for SGIs and (E)PPIs
1376  * and false for (E)SPIs IDs.
1377  *****************************************************************************/
1378 static bool is_sgi_ppi(unsigned int id)
1379 {
1380 	/* SGIs: 0-15, PPIs: 16-31, EPPIs: 1056-1119 */
1381 	if (IS_SGI_PPI(id)) {
1382 		return true;
1383 	}
1384 
1385 	/* SPIs: 32-1019, ESPIs: 4096-5119 */
1386 	if (IS_SPI(id)) {
1387 		return false;
1388 	}
1389 
1390 	assert(false);
1391 	panic();
1392 }
1393