xref: /rk3399_ARM-atf/drivers/arm/gic/v3/gicv3_main.c (revision 28d3d614b57730bdf364e49259d3c42599d26145)
1 /*
2  * Copyright (c) 2015-2016, ARM Limited and Contributors. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *
7  * Redistributions of source code must retain the above copyright notice, this
8  * list of conditions and the following disclaimer.
9  *
10  * Redistributions in binary form must reproduce the above copyright notice,
11  * this list of conditions and the following disclaimer in the documentation
12  * and/or other materials provided with the distribution.
13  *
14  * Neither the name of ARM nor the names of its contributors may be used
15  * to endorse or promote products derived from this software without specific
16  * prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <arch.h>
32 #include <arch_helpers.h>
33 #include <assert.h>
34 #include <debug.h>
35 #include <gic_common.h>
36 #include <gicv3.h>
37 #include "../common/gic_common_private.h"
38 #include "gicv3_private.h"
39 
40 static const gicv3_driver_data_t *driver_data;
41 static unsigned int gicv2_compat;
42 
43 /*******************************************************************************
44  * This function initialises the ARM GICv3 driver in EL3 with provided platform
45  * inputs.
46  ******************************************************************************/
47 void gicv3_driver_init(const gicv3_driver_data_t *plat_driver_data)
48 {
49 	unsigned int gic_version;
50 
51 	assert(plat_driver_data);
52 	assert(plat_driver_data->gicd_base);
53 	assert(plat_driver_data->gicr_base);
54 	assert(plat_driver_data->rdistif_num);
55 	assert(plat_driver_data->rdistif_base_addrs);
56 
57 	assert(IS_IN_EL3());
58 
59 	/*
60 	 * The platform should provide a list of at least one type of
61 	 * interrupts
62 	 */
63 	assert(plat_driver_data->g0_interrupt_array ||
64 	       plat_driver_data->g1s_interrupt_array);
65 
66 	/*
67 	 * If there are no interrupts of a particular type, then the number of
68 	 * interrupts of that type should be 0 and vice-versa.
69 	 */
70 	assert(plat_driver_data->g0_interrupt_array ?
71 	       plat_driver_data->g0_interrupt_num :
72 	       plat_driver_data->g0_interrupt_num == 0);
73 	assert(plat_driver_data->g1s_interrupt_array ?
74 	       plat_driver_data->g1s_interrupt_num :
75 	       plat_driver_data->g1s_interrupt_num == 0);
76 
77 	/* Check for system register support */
78 #ifdef AARCH32
79 	assert(read_id_pfr1() & (ID_PFR1_GIC_MASK << ID_PFR1_GIC_SHIFT));
80 #else
81 	assert(read_id_aa64pfr0_el1() &
82 			(ID_AA64PFR0_GIC_MASK << ID_AA64PFR0_GIC_SHIFT));
83 #endif /* AARCH32 */
84 
85 	/* The GIC version should be 3.0 */
86 	gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
87 	gic_version >>=	PIDR2_ARCH_REV_SHIFT;
88 	gic_version &= PIDR2_ARCH_REV_MASK;
89 	assert(gic_version == ARCH_REV_GICV3);
90 
91 	/*
92 	 * Find out whether the GIC supports the GICv2 compatibility mode. The
93 	 * ARE_S bit resets to 0 if supported
94 	 */
95 	gicv2_compat = gicd_read_ctlr(plat_driver_data->gicd_base);
96 	gicv2_compat >>= CTLR_ARE_S_SHIFT;
97 	gicv2_compat = !(gicv2_compat & CTLR_ARE_S_MASK);
98 
99 	/*
100 	 * Find the base address of each implemented Redistributor interface.
101 	 * The number of interfaces should be equal to the number of CPUs in the
102 	 * system. The memory for saving these addresses has to be allocated by
103 	 * the platform port
104 	 */
105 	gicv3_rdistif_base_addrs_probe(plat_driver_data->rdistif_base_addrs,
106 					   plat_driver_data->rdistif_num,
107 					   plat_driver_data->gicr_base,
108 					   plat_driver_data->mpidr_to_core_pos);
109 
110 	driver_data = plat_driver_data;
111 
112 	INFO("GICv3 %s legacy support detected."
113 			" ARM GICV3 driver initialized in EL3\n",
114 			gicv2_compat ? "with" : "without");
115 }
116 
117 /*******************************************************************************
118  * This function initialises the GIC distributor interface based upon the data
119  * provided by the platform while initialising the driver.
120  ******************************************************************************/
121 void gicv3_distif_init(void)
122 {
123 	assert(driver_data);
124 	assert(driver_data->gicd_base);
125 	assert(driver_data->g1s_interrupt_array);
126 	assert(driver_data->g0_interrupt_array);
127 
128 	assert(IS_IN_EL3());
129 
130 	/*
131 	 * Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
132 	 * the ARE_S bit. The Distributor might generate a system error
133 	 * otherwise.
134 	 */
135 	gicd_clr_ctlr(driver_data->gicd_base,
136 		      CTLR_ENABLE_G0_BIT |
137 		      CTLR_ENABLE_G1S_BIT |
138 		      CTLR_ENABLE_G1NS_BIT,
139 		      RWP_TRUE);
140 
141 	/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
142 	gicd_set_ctlr(driver_data->gicd_base,
143 			CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
144 
145 	/* Set the default attribute of all SPIs */
146 	gicv3_spis_configure_defaults(driver_data->gicd_base);
147 
148 	/* Configure the G1S SPIs */
149 	gicv3_secure_spis_configure(driver_data->gicd_base,
150 					driver_data->g1s_interrupt_num,
151 					driver_data->g1s_interrupt_array,
152 					INTR_GROUP1S);
153 
154 	/* Configure the G0 SPIs */
155 	gicv3_secure_spis_configure(driver_data->gicd_base,
156 					driver_data->g0_interrupt_num,
157 					driver_data->g0_interrupt_array,
158 					INTR_GROUP0);
159 
160 	/* Enable the secure SPIs now that they have been configured */
161 	gicd_set_ctlr(driver_data->gicd_base,
162 		      CTLR_ENABLE_G1S_BIT | CTLR_ENABLE_G0_BIT,
163 		      RWP_TRUE);
164 }
165 
166 /*******************************************************************************
167  * This function initialises the GIC Redistributor interface of the calling CPU
168  * (identified by the 'proc_num' parameter) based upon the data provided by the
169  * platform while initialising the driver.
170  ******************************************************************************/
171 void gicv3_rdistif_init(unsigned int proc_num)
172 {
173 	uintptr_t gicr_base;
174 
175 	assert(driver_data);
176 	assert(proc_num < driver_data->rdistif_num);
177 	assert(driver_data->rdistif_base_addrs);
178 	assert(driver_data->gicd_base);
179 	assert(gicd_read_ctlr(driver_data->gicd_base) & CTLR_ARE_S_BIT);
180 	assert(driver_data->g1s_interrupt_array);
181 	assert(driver_data->g0_interrupt_array);
182 
183 	assert(IS_IN_EL3());
184 
185 	gicr_base = driver_data->rdistif_base_addrs[proc_num];
186 
187 	/* Set the default attribute of all SGIs and PPIs */
188 	gicv3_ppi_sgi_configure_defaults(gicr_base);
189 
190 	/* Configure the G1S SGIs/PPIs */
191 	gicv3_secure_ppi_sgi_configure(gicr_base,
192 					   driver_data->g1s_interrupt_num,
193 					   driver_data->g1s_interrupt_array,
194 					   INTR_GROUP1S);
195 
196 	/* Configure the G0 SGIs/PPIs */
197 	gicv3_secure_ppi_sgi_configure(gicr_base,
198 					   driver_data->g0_interrupt_num,
199 					   driver_data->g0_interrupt_array,
200 					   INTR_GROUP0);
201 }
202 
203 /*******************************************************************************
204  * This function enables the GIC CPU interface of the calling CPU using only
205  * system register accesses.
206  ******************************************************************************/
207 void gicv3_cpuif_enable(unsigned int proc_num)
208 {
209 	uintptr_t gicr_base;
210 	unsigned int scr_el3;
211 	unsigned int icc_sre_el3;
212 
213 	assert(driver_data);
214 	assert(proc_num < driver_data->rdistif_num);
215 	assert(driver_data->rdistif_base_addrs);
216 	assert(IS_IN_EL3());
217 
218 	/* Mark the connected core as awake */
219 	gicr_base = driver_data->rdistif_base_addrs[proc_num];
220 	gicv3_rdistif_mark_core_awake(gicr_base);
221 
222 	/* Disable the legacy interrupt bypass */
223 	icc_sre_el3 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT;
224 
225 	/*
226 	 * Enable system register access for EL3 and allow lower exception
227 	 * levels to configure the same for themselves. If the legacy mode is
228 	 * not supported, the SRE bit is RAO/WI
229 	 */
230 	icc_sre_el3 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT);
231 	write_icc_sre_el3(read_icc_sre_el3() | icc_sre_el3);
232 
233 	scr_el3 = read_scr_el3();
234 
235 	/*
236 	 * Switch to NS state to write Non secure ICC_SRE_EL1 and
237 	 * ICC_SRE_EL2 registers.
238 	 */
239 	write_scr_el3(scr_el3 | SCR_NS_BIT);
240 	isb();
241 
242 	write_icc_sre_el2(read_icc_sre_el2() | icc_sre_el3);
243 	write_icc_sre_el1(ICC_SRE_SRE_BIT);
244 	isb();
245 
246 	/* Switch to secure state. */
247 	write_scr_el3(scr_el3 & (~SCR_NS_BIT));
248 	isb();
249 
250 	/* Program the idle priority in the PMR */
251 	write_icc_pmr_el1(GIC_PRI_MASK);
252 
253 	/* Enable Group0 interrupts */
254 	write_icc_igrpen0_el1(IGRPEN1_EL1_ENABLE_G0_BIT);
255 
256 	/* Enable Group1 Secure interrupts */
257 	write_icc_igrpen1_el3(read_icc_igrpen1_el3() |
258 				IGRPEN1_EL3_ENABLE_G1S_BIT);
259 
260 	/* Write the secure ICC_SRE_EL1 register */
261 	write_icc_sre_el1(ICC_SRE_SRE_BIT);
262 	isb();
263 }
264 
265 /*******************************************************************************
266  * This function disables the GIC CPU interface of the calling CPU using
267  * only system register accesses.
268  ******************************************************************************/
269 void gicv3_cpuif_disable(unsigned int proc_num)
270 {
271 	uintptr_t gicr_base;
272 
273 	assert(driver_data);
274 	assert(proc_num < driver_data->rdistif_num);
275 	assert(driver_data->rdistif_base_addrs);
276 
277 	assert(IS_IN_EL3());
278 
279 	/* Disable legacy interrupt bypass */
280 	write_icc_sre_el3(read_icc_sre_el3() |
281 			  (ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT));
282 
283 	/* Disable Group0 interrupts */
284 	write_icc_igrpen0_el1(read_icc_igrpen0_el1() &
285 			      ~IGRPEN1_EL1_ENABLE_G0_BIT);
286 
287 	/* Disable Group1 Secure and Non-Secure interrupts */
288 	write_icc_igrpen1_el3(read_icc_igrpen1_el3() &
289 			      ~(IGRPEN1_EL3_ENABLE_G1NS_BIT |
290 			      IGRPEN1_EL3_ENABLE_G1S_BIT));
291 
292 	/* Synchronise accesses to group enable registers */
293 	isb();
294 
295 	/* Mark the connected core as asleep */
296 	gicr_base = driver_data->rdistif_base_addrs[proc_num];
297 	gicv3_rdistif_mark_core_asleep(gicr_base);
298 }
299 
300 /*******************************************************************************
301  * This function returns the id of the highest priority pending interrupt at
302  * the GIC cpu interface.
303  ******************************************************************************/
304 unsigned int gicv3_get_pending_interrupt_id(void)
305 {
306 	unsigned int id;
307 
308 	assert(IS_IN_EL3());
309 	id = read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
310 
311 	/*
312 	 * If the ID is special identifier corresponding to G1S or G1NS
313 	 * interrupt, then read the highest pending group 1 interrupt.
314 	 */
315 	if ((id == PENDING_G1S_INTID) || (id == PENDING_G1NS_INTID))
316 		return read_icc_hppir1_el1() & HPPIR1_EL1_INTID_MASK;
317 
318 	return id;
319 }
320 
321 /*******************************************************************************
322  * This function returns the type of the highest priority pending interrupt at
323  * the GIC cpu interface. The return values can be one of the following :
324  *   PENDING_G1S_INTID  : The interrupt type is secure Group 1.
325  *   PENDING_G1NS_INTID : The interrupt type is non secure Group 1.
326  *   0 - 1019           : The interrupt type is secure Group 0.
327  *   GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
328  *                            sufficient priority to be signaled
329  ******************************************************************************/
330 unsigned int gicv3_get_pending_interrupt_type(void)
331 {
332 	assert(IS_IN_EL3());
333 	return read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
334 }
335 
336 /*******************************************************************************
337  * This function returns the type of the interrupt id depending upon the group
338  * this interrupt has been configured under by the interrupt controller i.e.
339  * group0 or group1 Secure / Non Secure. The return value can be one of the
340  * following :
341  *    INTR_GROUP0  : The interrupt type is a Secure Group 0 interrupt
342  *    INTR_GROUP1S : The interrupt type is a Secure Group 1 secure interrupt
343  *    INTR_GROUP1NS: The interrupt type is a Secure Group 1 non secure
344  *                   interrupt.
345  ******************************************************************************/
346 unsigned int gicv3_get_interrupt_type(unsigned int id,
347 					  unsigned int proc_num)
348 {
349 	unsigned int igroup, grpmodr;
350 	uintptr_t gicr_base;
351 
352 	assert(IS_IN_EL3());
353 	assert(driver_data);
354 
355 	/* Ensure the parameters are valid */
356 	assert(id < PENDING_G1S_INTID || id >= MIN_LPI_ID);
357 	assert(proc_num < driver_data->rdistif_num);
358 
359 	/* All LPI interrupts are Group 1 non secure */
360 	if (id >= MIN_LPI_ID)
361 		return INTR_GROUP1NS;
362 
363 	if (id < MIN_SPI_ID) {
364 		assert(driver_data->rdistif_base_addrs);
365 		gicr_base = driver_data->rdistif_base_addrs[proc_num];
366 		igroup = gicr_get_igroupr0(gicr_base, id);
367 		grpmodr = gicr_get_igrpmodr0(gicr_base, id);
368 	} else {
369 		assert(driver_data->gicd_base);
370 		igroup = gicd_get_igroupr(driver_data->gicd_base, id);
371 		grpmodr = gicd_get_igrpmodr(driver_data->gicd_base, id);
372 	}
373 
374 	/*
375 	 * If the IGROUP bit is set, then it is a Group 1 Non secure
376 	 * interrupt
377 	 */
378 	if (igroup)
379 		return INTR_GROUP1NS;
380 
381 	/* If the GRPMOD bit is set, then it is a Group 1 Secure interrupt */
382 	if (grpmodr)
383 		return INTR_GROUP1S;
384 
385 	/* Else it is a Group 0 Secure interrupt */
386 	return INTR_GROUP0;
387 }
388