xref: /rk3399_ARM-atf/drivers/arm/gic/v3/gicv3_helpers.c (revision 82cb2c1ad9897473743f08437d0a3995bed561b9)
1 /*
2  * Copyright (c) 2015-2016, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <debug.h>
11 #include <gic_common.h>
12 #include "../common/gic_common_private.h"
13 #include "gicv3_private.h"
14 
15 /*
16  * Accessor to read the GIC Distributor IGRPMODR corresponding to the
17  * interrupt `id`, 32 interrupt IDs at a time.
18  */
19 unsigned int gicd_read_igrpmodr(uintptr_t base, unsigned int id)
20 {
21 	unsigned n = id >> IGRPMODR_SHIFT;
22 	return mmio_read_32(base + GICD_IGRPMODR + (n << 2));
23 }
24 
25 /*
26  * Accessor to write the GIC Distributor IGRPMODR corresponding to the
27  * interrupt `id`, 32 interrupt IDs at a time.
28  */
29 void gicd_write_igrpmodr(uintptr_t base, unsigned int id, unsigned int val)
30 {
31 	unsigned n = id >> IGRPMODR_SHIFT;
32 	mmio_write_32(base + GICD_IGRPMODR + (n << 2), val);
33 }
34 
35 /*
36  * Accessor to get the bit corresponding to interrupt ID
37  * in GIC Distributor IGRPMODR.
38  */
39 unsigned int gicd_get_igrpmodr(uintptr_t base, unsigned int id)
40 {
41 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
42 	unsigned int reg_val = gicd_read_igrpmodr(base, id);
43 
44 	return (reg_val >> bit_num) & 0x1;
45 }
46 
47 /*
48  * Accessor to set the bit corresponding to interrupt ID
49  * in GIC Distributor IGRPMODR.
50  */
51 void gicd_set_igrpmodr(uintptr_t base, unsigned int id)
52 {
53 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
54 	unsigned int reg_val = gicd_read_igrpmodr(base, id);
55 
56 	gicd_write_igrpmodr(base, id, reg_val | (1 << bit_num));
57 }
58 
59 /*
60  * Accessor to clear the bit corresponding to interrupt ID
61  * in GIC Distributor IGRPMODR.
62  */
63 void gicd_clr_igrpmodr(uintptr_t base, unsigned int id)
64 {
65 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
66 	unsigned int reg_val = gicd_read_igrpmodr(base, id);
67 
68 	gicd_write_igrpmodr(base, id, reg_val & ~(1 << bit_num));
69 }
70 
71 /*
72  * Accessor to read the GIC Re-distributor IPRIORITYR corresponding to the
73  * interrupt `id`, 4 interrupts IDs at a time.
74  */
75 unsigned int gicr_read_ipriorityr(uintptr_t base, unsigned int id)
76 {
77 	unsigned n = id >> IPRIORITYR_SHIFT;
78 	return mmio_read_32(base + GICR_IPRIORITYR + (n << 2));
79 }
80 
81 /*
82  * Accessor to write the GIC Re-distributor IPRIORITYR corresponding to the
83  * interrupt `id`, 4 interrupts IDs at a time.
84  */
85 void gicr_write_ipriorityr(uintptr_t base, unsigned int id, unsigned int val)
86 {
87 	unsigned n = id >> IPRIORITYR_SHIFT;
88 	mmio_write_32(base + GICR_IPRIORITYR + (n << 2), val);
89 }
90 
91 /*
92  * Accessor to get the bit corresponding to interrupt ID
93  * from GIC Re-distributor IGROUPR0.
94  */
95 unsigned int gicr_get_igroupr0(uintptr_t base, unsigned int id)
96 {
97 	unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
98 	unsigned int reg_val = gicr_read_igroupr0(base);
99 
100 	return (reg_val >> bit_num) & 0x1;
101 }
102 
103 /*
104  * Accessor to set the bit corresponding to interrupt ID
105  * in GIC Re-distributor IGROUPR0.
106  */
107 void gicr_set_igroupr0(uintptr_t base, unsigned int id)
108 {
109 	unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
110 	unsigned int reg_val = gicr_read_igroupr0(base);
111 
112 	gicr_write_igroupr0(base, reg_val | (1 << bit_num));
113 }
114 
115 /*
116  * Accessor to clear the bit corresponding to interrupt ID
117  * in GIC Re-distributor IGROUPR0.
118  */
119 void gicr_clr_igroupr0(uintptr_t base, unsigned int id)
120 {
121 	unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
122 	unsigned int reg_val = gicr_read_igroupr0(base);
123 
124 	gicr_write_igroupr0(base, reg_val & ~(1 << bit_num));
125 }
126 
127 /*
128  * Accessor to get the bit corresponding to interrupt ID
129  * from GIC Re-distributor IGRPMODR0.
130  */
131 unsigned int gicr_get_igrpmodr0(uintptr_t base, unsigned int id)
132 {
133 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
134 	unsigned int reg_val = gicr_read_igrpmodr0(base);
135 
136 	return (reg_val >> bit_num) & 0x1;
137 }
138 
139 /*
140  * Accessor to set the bit corresponding to interrupt ID
141  * in GIC Re-distributor IGRPMODR0.
142  */
143 void gicr_set_igrpmodr0(uintptr_t base, unsigned int id)
144 {
145 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
146 	unsigned int reg_val = gicr_read_igrpmodr0(base);
147 
148 	gicr_write_igrpmodr0(base, reg_val | (1 << bit_num));
149 }
150 
151 /*
152  * Accessor to clear the bit corresponding to interrupt ID
153  * in GIC Re-distributor IGRPMODR0.
154  */
155 void gicr_clr_igrpmodr0(uintptr_t base, unsigned int id)
156 {
157 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
158 	unsigned int reg_val = gicr_read_igrpmodr0(base);
159 
160 	gicr_write_igrpmodr0(base, reg_val & ~(1 << bit_num));
161 }
162 
163 /*
164  * Accessor to set the bit corresponding to interrupt ID
165  * in GIC Re-distributor ISENABLER0.
166  */
167 void gicr_set_isenabler0(uintptr_t base, unsigned int id)
168 {
169 	unsigned bit_num = id & ((1 << ISENABLER_SHIFT) - 1);
170 
171 	gicr_write_isenabler0(base, (1 << bit_num));
172 }
173 
174 /*
175  * Accessor to set the byte corresponding to interrupt ID
176  * in GIC Re-distributor IPRIORITYR.
177  */
178 void gicr_set_ipriorityr(uintptr_t base, unsigned int id, unsigned int pri)
179 {
180 	mmio_write_8(base + GICR_IPRIORITYR + id, pri & GIC_PRI_MASK);
181 }
182 
183 /******************************************************************************
184  * This function marks the core as awake in the re-distributor and
185  * ensures that the interface is active.
186  *****************************************************************************/
187 void gicv3_rdistif_mark_core_awake(uintptr_t gicr_base)
188 {
189 	/*
190 	 * The WAKER_PS_BIT should be changed to 0
191 	 * only when WAKER_CA_BIT is 1.
192 	 */
193 	assert(gicr_read_waker(gicr_base) & WAKER_CA_BIT);
194 
195 	/* Mark the connected core as awake */
196 	gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) & ~WAKER_PS_BIT);
197 
198 	/* Wait till the WAKER_CA_BIT changes to 0 */
199 	while (gicr_read_waker(gicr_base) & WAKER_CA_BIT)
200 		;
201 }
202 
203 
204 /******************************************************************************
205  * This function marks the core as asleep in the re-distributor and ensures
206  * that the interface is quiescent.
207  *****************************************************************************/
208 void gicv3_rdistif_mark_core_asleep(uintptr_t gicr_base)
209 {
210 	/* Mark the connected core as asleep */
211 	gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) | WAKER_PS_BIT);
212 
213 	/* Wait till the WAKER_CA_BIT changes to 1 */
214 	while (!(gicr_read_waker(gicr_base) & WAKER_CA_BIT))
215 		;
216 }
217 
218 
219 /*******************************************************************************
220  * This function probes the Redistributor frames when the driver is initialised
221  * and saves their base addresses. These base addresses are used later to
222  * initialise each Redistributor interface.
223  ******************************************************************************/
224 void gicv3_rdistif_base_addrs_probe(uintptr_t *rdistif_base_addrs,
225 					unsigned int rdistif_num,
226 					uintptr_t gicr_base,
227 					mpidr_hash_fn mpidr_to_core_pos)
228 {
229 	u_register_t mpidr;
230 	unsigned int proc_num;
231 	unsigned long long typer_val;
232 	uintptr_t rdistif_base = gicr_base;
233 
234 	assert(rdistif_base_addrs);
235 
236 	/*
237 	 * Iterate over the Redistributor frames. Store the base address of each
238 	 * frame in the platform provided array. Use the "Processor Number"
239 	 * field to index into the array if the platform has not provided a hash
240 	 * function to convert an MPIDR (obtained from the "Affinity Value"
241 	 * field into a linear index.
242 	 */
243 	do {
244 		typer_val = gicr_read_typer(rdistif_base);
245 		if (mpidr_to_core_pos) {
246 			mpidr = mpidr_from_gicr_typer(typer_val);
247 			proc_num = mpidr_to_core_pos(mpidr);
248 		} else {
249 			proc_num = (typer_val >> TYPER_PROC_NUM_SHIFT) &
250 				TYPER_PROC_NUM_MASK;
251 		}
252 		assert(proc_num < rdistif_num);
253 		rdistif_base_addrs[proc_num] = rdistif_base;
254 		rdistif_base += (1 << GICR_PCPUBASE_SHIFT);
255 	} while (!(typer_val & TYPER_LAST_BIT));
256 }
257 
258 /*******************************************************************************
259  * Helper function to configure the default attributes of SPIs.
260  ******************************************************************************/
261 void gicv3_spis_configure_defaults(uintptr_t gicd_base)
262 {
263 	unsigned int index, num_ints;
264 
265 	num_ints = gicd_read_typer(gicd_base);
266 	num_ints &= TYPER_IT_LINES_NO_MASK;
267 	num_ints = (num_ints + 1) << 5;
268 
269 	/*
270 	 * Treat all SPIs as G1NS by default. The number of interrupts is
271 	 * calculated as 32 * (IT_LINES + 1). We do 32 at a time.
272 	 */
273 	for (index = MIN_SPI_ID; index < num_ints; index += 32)
274 		gicd_write_igroupr(gicd_base, index, ~0U);
275 
276 	/* Setup the default SPI priorities doing four at a time */
277 	for (index = MIN_SPI_ID; index < num_ints; index += 4)
278 		gicd_write_ipriorityr(gicd_base,
279 				      index,
280 				      GICD_IPRIORITYR_DEF_VAL);
281 
282 	/*
283 	 * Treat all SPIs as level triggered by default, write 16 at
284 	 * a time
285 	 */
286 	for (index = MIN_SPI_ID; index < num_ints; index += 16)
287 		gicd_write_icfgr(gicd_base, index, 0);
288 }
289 
290 /*******************************************************************************
291  * Helper function to configure secure G0 and G1S SPIs.
292  ******************************************************************************/
293 void gicv3_secure_spis_configure(uintptr_t gicd_base,
294 				     unsigned int num_ints,
295 				     const unsigned int *sec_intr_list,
296 				     unsigned int int_grp)
297 {
298 	unsigned int index, irq_num;
299 	unsigned long long gic_affinity_val;
300 
301 	assert((int_grp == INTR_GROUP1S) || (int_grp == INTR_GROUP0));
302 	/* If `num_ints` is not 0, ensure that `sec_intr_list` is not NULL */
303 	assert(num_ints ? (uintptr_t)sec_intr_list : 1);
304 
305 	for (index = 0; index < num_ints; index++) {
306 		irq_num = sec_intr_list[index];
307 		if (irq_num >= MIN_SPI_ID) {
308 
309 			/* Configure this interrupt as a secure interrupt */
310 			gicd_clr_igroupr(gicd_base, irq_num);
311 
312 			/* Configure this interrupt as G0 or a G1S interrupt */
313 			if (int_grp == INTR_GROUP1S)
314 				gicd_set_igrpmodr(gicd_base, irq_num);
315 			else
316 				gicd_clr_igrpmodr(gicd_base, irq_num);
317 
318 			/* Set the priority of this interrupt */
319 			gicd_set_ipriorityr(gicd_base,
320 					      irq_num,
321 					      GIC_HIGHEST_SEC_PRIORITY);
322 
323 			/* Target SPIs to the primary CPU */
324 			gic_affinity_val =
325 				gicd_irouter_val_from_mpidr(read_mpidr(), 0);
326 			gicd_write_irouter(gicd_base,
327 					   irq_num,
328 					   gic_affinity_val);
329 
330 			/* Enable this interrupt */
331 			gicd_set_isenabler(gicd_base, irq_num);
332 		}
333 	}
334 
335 }
336 
337 /*******************************************************************************
338  * Helper function to configure the default attributes of SPIs.
339  ******************************************************************************/
340 void gicv3_ppi_sgi_configure_defaults(uintptr_t gicr_base)
341 {
342 	unsigned int index;
343 
344 	/*
345 	 * Disable all SGIs (imp. def.)/PPIs before configuring them. This is a
346 	 * more scalable approach as it avoids clearing the enable bits in the
347 	 * GICD_CTLR
348 	 */
349 	gicr_write_icenabler0(gicr_base, ~0);
350 	gicr_wait_for_pending_write(gicr_base);
351 
352 	/* Treat all SGIs/PPIs as G1NS by default. */
353 	gicr_write_igroupr0(gicr_base, ~0U);
354 
355 	/* Setup the default PPI/SGI priorities doing four at a time */
356 	for (index = 0; index < MIN_SPI_ID; index += 4)
357 		gicr_write_ipriorityr(gicr_base,
358 				      index,
359 				      GICD_IPRIORITYR_DEF_VAL);
360 
361 	/* Configure all PPIs as level triggered by default */
362 	gicr_write_icfgr1(gicr_base, 0);
363 }
364 
365 /*******************************************************************************
366  * Helper function to configure secure G0 and G1S SPIs.
367  ******************************************************************************/
368 void gicv3_secure_ppi_sgi_configure(uintptr_t gicr_base,
369 					unsigned int num_ints,
370 					const unsigned int *sec_intr_list,
371 					unsigned int int_grp)
372 {
373 	unsigned int index, irq_num;
374 
375 	assert((int_grp == INTR_GROUP1S) || (int_grp == INTR_GROUP0));
376 	/* If `num_ints` is not 0, ensure that `sec_intr_list` is not NULL */
377 	assert(num_ints ? (uintptr_t)sec_intr_list : 1);
378 
379 	for (index = 0; index < num_ints; index++) {
380 		irq_num = sec_intr_list[index];
381 		if (irq_num < MIN_SPI_ID) {
382 
383 			/* Configure this interrupt as a secure interrupt */
384 			gicr_clr_igroupr0(gicr_base, irq_num);
385 
386 			/* Configure this interrupt as G0 or a G1S interrupt */
387 			if (int_grp == INTR_GROUP1S)
388 				gicr_set_igrpmodr0(gicr_base, irq_num);
389 			else
390 				gicr_clr_igrpmodr0(gicr_base, irq_num);
391 
392 			/* Set the priority of this interrupt */
393 			gicr_set_ipriorityr(gicr_base,
394 					    irq_num,
395 					    GIC_HIGHEST_SEC_PRIORITY);
396 
397 			/* Enable this interrupt */
398 			gicr_set_isenabler0(gicr_base, irq_num);
399 		}
400 	}
401 }
402