xref: /rk3399_ARM-atf/drivers/arm/gic/v2/gicv2_main.c (revision 82cb2c1ad9897473743f08437d0a3995bed561b9)
1 /*
2  * Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <debug.h>
11 #include <gic_common.h>
12 #include <gicv2.h>
13 #include "../common/gic_common_private.h"
14 #include "gicv2_private.h"
15 
16 static const gicv2_driver_data_t *driver_data;
17 
18 /*******************************************************************************
19  * Enable secure interrupts and use FIQs to route them. Disable legacy bypass
20  * and set the priority mask register to allow all interrupts to trickle in.
21  ******************************************************************************/
22 void gicv2_cpuif_enable(void)
23 {
24 	unsigned int val;
25 
26 	assert(driver_data);
27 	assert(driver_data->gicc_base);
28 
29 	/*
30 	 * Enable the Group 0 interrupts, FIQEn and disable Group 0/1
31 	 * bypass.
32 	 */
33 	val = CTLR_ENABLE_G0_BIT | FIQ_EN_BIT | FIQ_BYP_DIS_GRP0;
34 	val |= IRQ_BYP_DIS_GRP0 | FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1;
35 
36 	/* Program the idle priority in the PMR */
37 	gicc_write_pmr(driver_data->gicc_base, GIC_PRI_MASK);
38 	gicc_write_ctlr(driver_data->gicc_base, val);
39 }
40 
41 /*******************************************************************************
42  * Place the cpu interface in a state where it can never make a cpu exit wfi as
43  * as result of an asserted interrupt. This is critical for powering down a cpu
44  ******************************************************************************/
45 void gicv2_cpuif_disable(void)
46 {
47 	unsigned int val;
48 
49 	assert(driver_data);
50 	assert(driver_data->gicc_base);
51 
52 	/* Disable secure, non-secure interrupts and disable their bypass */
53 	val = gicc_read_ctlr(driver_data->gicc_base);
54 	val &= ~(CTLR_ENABLE_G0_BIT | CTLR_ENABLE_G1_BIT);
55 	val |= FIQ_BYP_DIS_GRP1 | FIQ_BYP_DIS_GRP0;
56 	val |= IRQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP1;
57 	gicc_write_ctlr(driver_data->gicc_base, val);
58 }
59 
60 /*******************************************************************************
61  * Per cpu gic distributor setup which will be done by all cpus after a cold
62  * boot/hotplug. This marks out the secure SPIs and PPIs & enables them.
63  ******************************************************************************/
64 void gicv2_pcpu_distif_init(void)
65 {
66 	assert(driver_data);
67 	assert(driver_data->gicd_base);
68 	assert(driver_data->g0_interrupt_array);
69 
70 	gicv2_secure_ppi_sgi_setup(driver_data->gicd_base,
71 					driver_data->g0_interrupt_num,
72 					driver_data->g0_interrupt_array);
73 }
74 
75 /*******************************************************************************
76  * Global gic distributor init which will be done by the primary cpu after a
77  * cold boot. It marks out the secure SPIs, PPIs & SGIs and enables them. It
78  * then enables the secure GIC distributor interface.
79  ******************************************************************************/
80 void gicv2_distif_init(void)
81 {
82 	unsigned int ctlr;
83 
84 	assert(driver_data);
85 	assert(driver_data->gicd_base);
86 	assert(driver_data->g0_interrupt_array);
87 
88 	/* Disable the distributor before going further */
89 	ctlr = gicd_read_ctlr(driver_data->gicd_base);
90 	gicd_write_ctlr(driver_data->gicd_base,
91 			ctlr & ~(CTLR_ENABLE_G0_BIT | CTLR_ENABLE_G1_BIT));
92 
93 	/* Set the default attribute of all SPIs */
94 	gicv2_spis_configure_defaults(driver_data->gicd_base);
95 
96 	/* Configure the G0 SPIs */
97 	gicv2_secure_spis_configure(driver_data->gicd_base,
98 					driver_data->g0_interrupt_num,
99 					driver_data->g0_interrupt_array);
100 
101 	/* Re-enable the secure SPIs now that they have been configured */
102 	gicd_write_ctlr(driver_data->gicd_base, ctlr | CTLR_ENABLE_G0_BIT);
103 }
104 
105 /*******************************************************************************
106  * Initialize the ARM GICv2 driver with the provided platform inputs
107  ******************************************************************************/
108 void gicv2_driver_init(const gicv2_driver_data_t *plat_driver_data)
109 {
110 	unsigned int gic_version;
111 	assert(plat_driver_data);
112 	assert(plat_driver_data->gicd_base);
113 	assert(plat_driver_data->gicc_base);
114 
115 	/*
116 	 * The platform should provide a list of atleast one type of
117 	 * interrupts
118 	 */
119 	assert(plat_driver_data->g0_interrupt_array);
120 
121 	/*
122 	 * If there are no interrupts of a particular type, then the number of
123 	 * interrupts of that type should be 0 and vice-versa.
124 	 */
125 	assert(plat_driver_data->g0_interrupt_array ?
126 	       plat_driver_data->g0_interrupt_num :
127 	       plat_driver_data->g0_interrupt_num == 0);
128 
129 	/* Ensure that this is a GICv2 system */
130 	gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
131 	gic_version = (gic_version >> PIDR2_ARCH_REV_SHIFT)
132 					& PIDR2_ARCH_REV_MASK;
133 	assert(gic_version == ARCH_REV_GICV2);
134 
135 	driver_data = plat_driver_data;
136 
137 	/*
138 	 * The GIC driver data is initialized by the primary CPU with caches
139 	 * enabled. When the secondary CPU boots up, it initializes the
140 	 * GICC/GICR interface with the caches disabled. Hence flush the
141 	 * driver_data to ensure coherency. This is not required if the
142 	 * platform has HW_ASSISTED_COHERENCY enabled.
143 	 */
144 #if !HW_ASSISTED_COHERENCY
145 	flush_dcache_range((uintptr_t) &driver_data, sizeof(driver_data));
146 	flush_dcache_range((uintptr_t) driver_data, sizeof(*driver_data));
147 #endif
148 	INFO("ARM GICv2 driver initialized\n");
149 }
150 
151 /******************************************************************************
152  * This function returns whether FIQ is enabled in the GIC CPU interface.
153  *****************************************************************************/
154 unsigned int gicv2_is_fiq_enabled(void)
155 {
156 	unsigned int gicc_ctlr;
157 
158 	assert(driver_data);
159 	assert(driver_data->gicc_base);
160 
161 	gicc_ctlr = gicc_read_ctlr(driver_data->gicc_base);
162 	return (gicc_ctlr >> FIQ_EN_SHIFT) & 0x1;
163 }
164 
165 /*******************************************************************************
166  * This function returns the type of the highest priority pending interrupt at
167  * the GIC cpu interface. The return values can be one of the following :
168  *   PENDING_G1_INTID   : The interrupt type is non secure Group 1.
169  *   0 - 1019           : The interrupt type is secure Group 0.
170  *   GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
171  *                            sufficient priority to be signaled
172  ******************************************************************************/
173 unsigned int gicv2_get_pending_interrupt_type(void)
174 {
175 	assert(driver_data);
176 	assert(driver_data->gicc_base);
177 
178 	return gicc_read_hppir(driver_data->gicc_base) & INT_ID_MASK;
179 }
180 
181 /*******************************************************************************
182  * This function returns the id of the highest priority pending interrupt at
183  * the GIC cpu interface. GIC_SPURIOUS_INTERRUPT is returned when there is no
184  * interrupt pending.
185  ******************************************************************************/
186 unsigned int gicv2_get_pending_interrupt_id(void)
187 {
188 	unsigned int id;
189 
190 	assert(driver_data);
191 	assert(driver_data->gicc_base);
192 
193 	id = gicc_read_hppir(driver_data->gicc_base) & INT_ID_MASK;
194 
195 	/*
196 	 * Find out which non-secure interrupt it is under the assumption that
197 	 * the GICC_CTLR.AckCtl bit is 0.
198 	 */
199 	if (id == PENDING_G1_INTID)
200 		id = gicc_read_ahppir(driver_data->gicc_base) & INT_ID_MASK;
201 
202 	return id;
203 }
204 
205 /*******************************************************************************
206  * This functions reads the GIC cpu interface Interrupt Acknowledge register
207  * to start handling the pending secure 0 interrupt. It returns the
208  * contents of the IAR.
209  ******************************************************************************/
210 unsigned int gicv2_acknowledge_interrupt(void)
211 {
212 	assert(driver_data);
213 	assert(driver_data->gicc_base);
214 
215 	return gicc_read_IAR(driver_data->gicc_base);
216 }
217 
218 /*******************************************************************************
219  * This functions writes the GIC cpu interface End Of Interrupt register with
220  * the passed value to finish handling the active secure group 0 interrupt.
221  ******************************************************************************/
222 void gicv2_end_of_interrupt(unsigned int id)
223 {
224 	assert(driver_data);
225 	assert(driver_data->gicc_base);
226 
227 	gicc_write_EOIR(driver_data->gicc_base, id);
228 }
229 
230 /*******************************************************************************
231  * This function returns the type of the interrupt id depending upon the group
232  * this interrupt has been configured under by the interrupt controller i.e.
233  * group0 secure or group1 non secure. It returns zero for Group 0 secure and
234  * one for Group 1 non secure interrupt.
235  ******************************************************************************/
236 unsigned int gicv2_get_interrupt_group(unsigned int id)
237 {
238 	assert(driver_data);
239 	assert(driver_data->gicd_base);
240 
241 	return gicd_get_igroupr(driver_data->gicd_base, id);
242 }
243