xref: /rk3399_ARM-atf/drivers/arm/gic/v2/gicv2_main.c (revision 74dce7fa6e42cab3aa54a9543e4a546c1450b2ae)
1 /*
2  * Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <debug.h>
11 #include <gic_common.h>
12 #include <gicv2.h>
13 #include <spinlock.h>
14 #include "../common/gic_common_private.h"
15 #include "gicv2_private.h"
16 
17 static const gicv2_driver_data_t *driver_data;
18 
19 /*
20  * Spinlock to guard registers needing read-modify-write. APIs protected by this
21  * spinlock are used either at boot time (when only a single CPU is active), or
22  * when the system is fully coherent.
23  */
24 spinlock_t gic_lock;
25 
26 /*******************************************************************************
27  * Enable secure interrupts and use FIQs to route them. Disable legacy bypass
28  * and set the priority mask register to allow all interrupts to trickle in.
29  ******************************************************************************/
30 void gicv2_cpuif_enable(void)
31 {
32 	unsigned int val;
33 
34 	assert(driver_data);
35 	assert(driver_data->gicc_base);
36 
37 	/*
38 	 * Enable the Group 0 interrupts, FIQEn and disable Group 0/1
39 	 * bypass.
40 	 */
41 	val = CTLR_ENABLE_G0_BIT | FIQ_EN_BIT | FIQ_BYP_DIS_GRP0;
42 	val |= IRQ_BYP_DIS_GRP0 | FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1;
43 
44 	/* Program the idle priority in the PMR */
45 	gicc_write_pmr(driver_data->gicc_base, GIC_PRI_MASK);
46 	gicc_write_ctlr(driver_data->gicc_base, val);
47 }
48 
49 /*******************************************************************************
50  * Place the cpu interface in a state where it can never make a cpu exit wfi as
51  * as result of an asserted interrupt. This is critical for powering down a cpu
52  ******************************************************************************/
53 void gicv2_cpuif_disable(void)
54 {
55 	unsigned int val;
56 
57 	assert(driver_data);
58 	assert(driver_data->gicc_base);
59 
60 	/* Disable secure, non-secure interrupts and disable their bypass */
61 	val = gicc_read_ctlr(driver_data->gicc_base);
62 	val &= ~(CTLR_ENABLE_G0_BIT | CTLR_ENABLE_G1_BIT);
63 	val |= FIQ_BYP_DIS_GRP1 | FIQ_BYP_DIS_GRP0;
64 	val |= IRQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP1;
65 	gicc_write_ctlr(driver_data->gicc_base, val);
66 }
67 
68 /*******************************************************************************
69  * Per cpu gic distributor setup which will be done by all cpus after a cold
70  * boot/hotplug. This marks out the secure SPIs and PPIs & enables them.
71  ******************************************************************************/
72 void gicv2_pcpu_distif_init(void)
73 {
74 	assert(driver_data);
75 	assert(driver_data->gicd_base);
76 	assert(driver_data->g0_interrupt_array);
77 
78 	gicv2_secure_ppi_sgi_setup(driver_data->gicd_base,
79 					driver_data->g0_interrupt_num,
80 					driver_data->g0_interrupt_array);
81 }
82 
83 /*******************************************************************************
84  * Global gic distributor init which will be done by the primary cpu after a
85  * cold boot. It marks out the secure SPIs, PPIs & SGIs and enables them. It
86  * then enables the secure GIC distributor interface.
87  ******************************************************************************/
88 void gicv2_distif_init(void)
89 {
90 	unsigned int ctlr;
91 
92 	assert(driver_data);
93 	assert(driver_data->gicd_base);
94 	assert(driver_data->g0_interrupt_array);
95 
96 	/* Disable the distributor before going further */
97 	ctlr = gicd_read_ctlr(driver_data->gicd_base);
98 	gicd_write_ctlr(driver_data->gicd_base,
99 			ctlr & ~(CTLR_ENABLE_G0_BIT | CTLR_ENABLE_G1_BIT));
100 
101 	/* Set the default attribute of all SPIs */
102 	gicv2_spis_configure_defaults(driver_data->gicd_base);
103 
104 	/* Configure the G0 SPIs */
105 	gicv2_secure_spis_configure(driver_data->gicd_base,
106 					driver_data->g0_interrupt_num,
107 					driver_data->g0_interrupt_array);
108 
109 	/* Re-enable the secure SPIs now that they have been configured */
110 	gicd_write_ctlr(driver_data->gicd_base, ctlr | CTLR_ENABLE_G0_BIT);
111 }
112 
113 /*******************************************************************************
114  * Initialize the ARM GICv2 driver with the provided platform inputs
115  ******************************************************************************/
116 void gicv2_driver_init(const gicv2_driver_data_t *plat_driver_data)
117 {
118 	unsigned int gic_version;
119 	assert(plat_driver_data);
120 	assert(plat_driver_data->gicd_base);
121 	assert(plat_driver_data->gicc_base);
122 
123 	/*
124 	 * The platform should provide a list of atleast one type of
125 	 * interrupts
126 	 */
127 	assert(plat_driver_data->g0_interrupt_array);
128 
129 	/*
130 	 * If there are no interrupts of a particular type, then the number of
131 	 * interrupts of that type should be 0 and vice-versa.
132 	 */
133 	assert(plat_driver_data->g0_interrupt_array ?
134 	       plat_driver_data->g0_interrupt_num :
135 	       plat_driver_data->g0_interrupt_num == 0);
136 
137 	/* Ensure that this is a GICv2 system */
138 	gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
139 	gic_version = (gic_version >> PIDR2_ARCH_REV_SHIFT)
140 					& PIDR2_ARCH_REV_MASK;
141 	assert(gic_version == ARCH_REV_GICV2);
142 
143 	driver_data = plat_driver_data;
144 
145 	/*
146 	 * The GIC driver data is initialized by the primary CPU with caches
147 	 * enabled. When the secondary CPU boots up, it initializes the
148 	 * GICC/GICR interface with the caches disabled. Hence flush the
149 	 * driver_data to ensure coherency. This is not required if the
150 	 * platform has HW_ASSISTED_COHERENCY enabled.
151 	 */
152 #if !HW_ASSISTED_COHERENCY
153 	flush_dcache_range((uintptr_t) &driver_data, sizeof(driver_data));
154 	flush_dcache_range((uintptr_t) driver_data, sizeof(*driver_data));
155 #endif
156 	INFO("ARM GICv2 driver initialized\n");
157 }
158 
159 /******************************************************************************
160  * This function returns whether FIQ is enabled in the GIC CPU interface.
161  *****************************************************************************/
162 unsigned int gicv2_is_fiq_enabled(void)
163 {
164 	unsigned int gicc_ctlr;
165 
166 	assert(driver_data);
167 	assert(driver_data->gicc_base);
168 
169 	gicc_ctlr = gicc_read_ctlr(driver_data->gicc_base);
170 	return (gicc_ctlr >> FIQ_EN_SHIFT) & 0x1;
171 }
172 
173 /*******************************************************************************
174  * This function returns the type of the highest priority pending interrupt at
175  * the GIC cpu interface. The return values can be one of the following :
176  *   PENDING_G1_INTID   : The interrupt type is non secure Group 1.
177  *   0 - 1019           : The interrupt type is secure Group 0.
178  *   GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
179  *                            sufficient priority to be signaled
180  ******************************************************************************/
181 unsigned int gicv2_get_pending_interrupt_type(void)
182 {
183 	assert(driver_data);
184 	assert(driver_data->gicc_base);
185 
186 	return gicc_read_hppir(driver_data->gicc_base) & INT_ID_MASK;
187 }
188 
189 /*******************************************************************************
190  * This function returns the id of the highest priority pending interrupt at
191  * the GIC cpu interface. GIC_SPURIOUS_INTERRUPT is returned when there is no
192  * interrupt pending.
193  ******************************************************************************/
194 unsigned int gicv2_get_pending_interrupt_id(void)
195 {
196 	unsigned int id;
197 
198 	assert(driver_data);
199 	assert(driver_data->gicc_base);
200 
201 	id = gicc_read_hppir(driver_data->gicc_base) & INT_ID_MASK;
202 
203 	/*
204 	 * Find out which non-secure interrupt it is under the assumption that
205 	 * the GICC_CTLR.AckCtl bit is 0.
206 	 */
207 	if (id == PENDING_G1_INTID)
208 		id = gicc_read_ahppir(driver_data->gicc_base) & INT_ID_MASK;
209 
210 	return id;
211 }
212 
213 /*******************************************************************************
214  * This functions reads the GIC cpu interface Interrupt Acknowledge register
215  * to start handling the pending secure 0 interrupt. It returns the
216  * contents of the IAR.
217  ******************************************************************************/
218 unsigned int gicv2_acknowledge_interrupt(void)
219 {
220 	assert(driver_data);
221 	assert(driver_data->gicc_base);
222 
223 	return gicc_read_IAR(driver_data->gicc_base);
224 }
225 
226 /*******************************************************************************
227  * This functions writes the GIC cpu interface End Of Interrupt register with
228  * the passed value to finish handling the active secure group 0 interrupt.
229  ******************************************************************************/
230 void gicv2_end_of_interrupt(unsigned int id)
231 {
232 	assert(driver_data);
233 	assert(driver_data->gicc_base);
234 
235 	gicc_write_EOIR(driver_data->gicc_base, id);
236 }
237 
238 /*******************************************************************************
239  * This function returns the type of the interrupt id depending upon the group
240  * this interrupt has been configured under by the interrupt controller i.e.
241  * group0 secure or group1 non secure. It returns zero for Group 0 secure and
242  * one for Group 1 non secure interrupt.
243  ******************************************************************************/
244 unsigned int gicv2_get_interrupt_group(unsigned int id)
245 {
246 	assert(driver_data);
247 	assert(driver_data->gicd_base);
248 
249 	return gicd_get_igroupr(driver_data->gicd_base, id);
250 }
251 
252 /*******************************************************************************
253  * This function returns the priority of the interrupt the processor is
254  * currently servicing.
255  ******************************************************************************/
256 unsigned int gicv2_get_running_priority(void)
257 {
258 	assert(driver_data);
259 	assert(driver_data->gicc_base);
260 
261 	return gicc_read_rpr(driver_data->gicc_base);
262 }
263 
264 /*******************************************************************************
265  * This function sets the GICv2 target mask pattern for the current PE. The PE
266  * target mask is used to translate linear PE index (returned by platform core
267  * position) to a bit mask used when targeting interrupts to a PE, viz. when
268  * raising SGIs and routing SPIs.
269  ******************************************************************************/
270 void gicv2_set_pe_target_mask(unsigned int proc_num)
271 {
272 	assert(driver_data);
273 	assert(driver_data->gicd_base);
274 	assert(driver_data->target_masks);
275 	assert(proc_num < GICV2_MAX_TARGET_PE);
276 	assert(proc_num < driver_data->target_masks_num);
277 
278 	/* Return if the target mask is already populated */
279 	if (driver_data->target_masks[proc_num])
280 		return;
281 
282 	/* Read target register corresponding to this CPU */
283 	driver_data->target_masks[proc_num] =
284 		gicv2_get_cpuif_id(driver_data->gicd_base);
285 }
286 
287 /*******************************************************************************
288  * This function returns the active status of the interrupt (either because the
289  * state is active, or active and pending).
290  ******************************************************************************/
291 unsigned int gicv2_get_interrupt_active(unsigned int id)
292 {
293 	assert(driver_data);
294 	assert(driver_data->gicd_base);
295 	assert(id <= MAX_SPI_ID);
296 
297 	return gicd_get_isactiver(driver_data->gicd_base, id);
298 }
299 
300 /*******************************************************************************
301  * This function enables the interrupt identified by id.
302  ******************************************************************************/
303 void gicv2_enable_interrupt(unsigned int id)
304 {
305 	assert(driver_data);
306 	assert(driver_data->gicd_base);
307 	assert(id <= MAX_SPI_ID);
308 
309 	/*
310 	 * Ensure that any shared variable updates depending on out of band
311 	 * interrupt trigger are observed before enabling interrupt.
312 	 */
313 	dsbishst();
314 	gicd_set_isenabler(driver_data->gicd_base, id);
315 }
316 
317 /*******************************************************************************
318  * This function disables the interrupt identified by id.
319  ******************************************************************************/
320 void gicv2_disable_interrupt(unsigned int id)
321 {
322 	assert(driver_data);
323 	assert(driver_data->gicd_base);
324 	assert(id <= MAX_SPI_ID);
325 
326 	/*
327 	 * Disable interrupt, and ensure that any shared variable updates
328 	 * depending on out of band interrupt trigger are observed afterwards.
329 	 */
330 	gicd_set_icenabler(driver_data->gicd_base, id);
331 	dsbishst();
332 }
333 
334 /*******************************************************************************
335  * This function sets the interrupt priority as supplied for the given interrupt
336  * id.
337  ******************************************************************************/
338 void gicv2_set_interrupt_priority(unsigned int id, unsigned int priority)
339 {
340 	assert(driver_data);
341 	assert(driver_data->gicd_base);
342 	assert(id <= MAX_SPI_ID);
343 
344 	gicd_set_ipriorityr(driver_data->gicd_base, id, priority);
345 }
346 
347 /*******************************************************************************
348  * This function assigns group for the interrupt identified by id. The group can
349  * be any of GICV2_INTR_GROUP*
350  ******************************************************************************/
351 void gicv2_set_interrupt_type(unsigned int id, unsigned int type)
352 {
353 	assert(driver_data);
354 	assert(driver_data->gicd_base);
355 	assert(id <= MAX_SPI_ID);
356 
357 	/* Serialize read-modify-write to Distributor registers */
358 	spin_lock(&gic_lock);
359 	switch (type) {
360 	case GICV2_INTR_GROUP1:
361 		gicd_set_igroupr(driver_data->gicd_base, id);
362 		break;
363 	case GICV2_INTR_GROUP0:
364 		gicd_clr_igroupr(driver_data->gicd_base, id);
365 		break;
366 	default:
367 		assert(0);
368 	}
369 	spin_unlock(&gic_lock);
370 }
371