xref: /rk3399_ARM-atf/drivers/arm/gic/v2/gicv2_main.c (revision 73a9605197ba04aaf02d436a2a4ad56e695b426c)
1 /*
2  * Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <debug.h>
11 #include <gic_common.h>
12 #include <gicv2.h>
13 #include <interrupt_props.h>
14 #include <spinlock.h>
15 #include "../common/gic_common_private.h"
16 #include "gicv2_private.h"
17 
18 static const gicv2_driver_data_t *driver_data;
19 
20 /*
21  * Spinlock to guard registers needing read-modify-write. APIs protected by this
22  * spinlock are used either at boot time (when only a single CPU is active), or
23  * when the system is fully coherent.
24  */
25 static spinlock_t gic_lock;
26 
27 /*******************************************************************************
28  * Enable secure interrupts and use FIQs to route them. Disable legacy bypass
29  * and set the priority mask register to allow all interrupts to trickle in.
30  ******************************************************************************/
31 void gicv2_cpuif_enable(void)
32 {
33 	unsigned int val;
34 
35 	assert(driver_data);
36 	assert(driver_data->gicc_base);
37 
38 	/*
39 	 * Enable the Group 0 interrupts, FIQEn and disable Group 0/1
40 	 * bypass.
41 	 */
42 	val = CTLR_ENABLE_G0_BIT | FIQ_EN_BIT | FIQ_BYP_DIS_GRP0;
43 	val |= IRQ_BYP_DIS_GRP0 | FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1;
44 
45 	/* Program the idle priority in the PMR */
46 	gicc_write_pmr(driver_data->gicc_base, GIC_PRI_MASK);
47 	gicc_write_ctlr(driver_data->gicc_base, val);
48 }
49 
50 /*******************************************************************************
51  * Place the cpu interface in a state where it can never make a cpu exit wfi as
52  * as result of an asserted interrupt. This is critical for powering down a cpu
53  ******************************************************************************/
54 void gicv2_cpuif_disable(void)
55 {
56 	unsigned int val;
57 
58 	assert(driver_data);
59 	assert(driver_data->gicc_base);
60 
61 	/* Disable secure, non-secure interrupts and disable their bypass */
62 	val = gicc_read_ctlr(driver_data->gicc_base);
63 	val &= ~(CTLR_ENABLE_G0_BIT | CTLR_ENABLE_G1_BIT);
64 	val |= FIQ_BYP_DIS_GRP1 | FIQ_BYP_DIS_GRP0;
65 	val |= IRQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP1;
66 	gicc_write_ctlr(driver_data->gicc_base, val);
67 }
68 
69 /*******************************************************************************
70  * Per cpu gic distributor setup which will be done by all cpus after a cold
71  * boot/hotplug. This marks out the secure SPIs and PPIs & enables them.
72  ******************************************************************************/
73 void gicv2_pcpu_distif_init(void)
74 {
75 	unsigned int ctlr;
76 
77 	assert(driver_data);
78 	assert(driver_data->gicd_base);
79 
80 #if !ERROR_DEPRECATED
81 	if (driver_data->interrupt_props != NULL) {
82 #endif
83 		gicv2_secure_ppi_sgi_setup_props(driver_data->gicd_base,
84 				driver_data->interrupt_props,
85 				driver_data->interrupt_props_num);
86 #if !ERROR_DEPRECATED
87 	} else {
88 		assert(driver_data->g0_interrupt_array);
89 		gicv2_secure_ppi_sgi_setup(driver_data->gicd_base,
90 				driver_data->g0_interrupt_num,
91 				driver_data->g0_interrupt_array);
92 	}
93 #endif
94 
95 	/* Enable G0 interrupts if not already */
96 	ctlr = gicd_read_ctlr(driver_data->gicd_base);
97 	if ((ctlr & CTLR_ENABLE_G0_BIT) == 0) {
98 		gicd_write_ctlr(driver_data->gicd_base,
99 				ctlr | CTLR_ENABLE_G0_BIT);
100 	}
101 }
102 
103 /*******************************************************************************
104  * Global gic distributor init which will be done by the primary cpu after a
105  * cold boot. It marks out the secure SPIs, PPIs & SGIs and enables them. It
106  * then enables the secure GIC distributor interface.
107  ******************************************************************************/
108 void gicv2_distif_init(void)
109 {
110 	unsigned int ctlr;
111 
112 	assert(driver_data);
113 	assert(driver_data->gicd_base);
114 
115 	/* Disable the distributor before going further */
116 	ctlr = gicd_read_ctlr(driver_data->gicd_base);
117 	gicd_write_ctlr(driver_data->gicd_base,
118 			ctlr & ~(CTLR_ENABLE_G0_BIT | CTLR_ENABLE_G1_BIT));
119 
120 	/* Set the default attribute of all SPIs */
121 	gicv2_spis_configure_defaults(driver_data->gicd_base);
122 
123 #if !ERROR_DEPRECATED
124 	if (driver_data->interrupt_props != NULL) {
125 #endif
126 		gicv2_secure_spis_configure_props(driver_data->gicd_base,
127 				driver_data->interrupt_props,
128 				driver_data->interrupt_props_num);
129 #if !ERROR_DEPRECATED
130 	} else {
131 		assert(driver_data->g0_interrupt_array);
132 
133 		/* Configure the G0 SPIs */
134 		gicv2_secure_spis_configure(driver_data->gicd_base,
135 				driver_data->g0_interrupt_num,
136 				driver_data->g0_interrupt_array);
137 	}
138 #endif
139 
140 	/* Re-enable the secure SPIs now that they have been configured */
141 	gicd_write_ctlr(driver_data->gicd_base, ctlr | CTLR_ENABLE_G0_BIT);
142 }
143 
144 /*******************************************************************************
145  * Initialize the ARM GICv2 driver with the provided platform inputs
146  ******************************************************************************/
147 void gicv2_driver_init(const gicv2_driver_data_t *plat_driver_data)
148 {
149 	unsigned int gic_version;
150 	assert(plat_driver_data);
151 	assert(plat_driver_data->gicd_base);
152 	assert(plat_driver_data->gicc_base);
153 
154 #if !ERROR_DEPRECATED
155 	if (plat_driver_data->interrupt_props == NULL) {
156 		/* Interrupt properties array size must be 0 */
157 		assert(plat_driver_data->interrupt_props_num == 0);
158 
159 		/* The platform should provide a list of secure interrupts */
160 		assert(plat_driver_data->g0_interrupt_array);
161 
162 		/*
163 		 * If there are no interrupts of a particular type, then the
164 		 * number of interrupts of that type should be 0 and vice-versa.
165 		 */
166 		assert(plat_driver_data->g0_interrupt_array ?
167 				plat_driver_data->g0_interrupt_num :
168 				plat_driver_data->g0_interrupt_num == 0);
169 	}
170 #else
171 	assert(plat_driver_data->interrupt_props != NULL);
172 	assert(plat_driver_data->interrupt_props_num > 0);
173 #endif
174 
175 	/* Ensure that this is a GICv2 system */
176 	gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
177 	gic_version = (gic_version >> PIDR2_ARCH_REV_SHIFT)
178 					& PIDR2_ARCH_REV_MASK;
179 
180 	/*
181 	 * GICv1 with security extension complies with trusted firmware
182 	 * GICv2 driver as far as virtualization and few tricky power
183 	 * features are not used. GICv2 features that are not supported
184 	 * by GICv1 with Security Extensions are:
185 	 * - virtual interrupt support.
186 	 * - wake up events.
187 	 * - writeable GIC state register (for power sequences)
188 	 * - interrupt priority drop.
189 	 * - interrupt signal bypass.
190 	 */
191 	assert(gic_version == ARCH_REV_GICV2 || gic_version == ARCH_REV_GICV1);
192 
193 	driver_data = plat_driver_data;
194 
195 	/*
196 	 * The GIC driver data is initialized by the primary CPU with caches
197 	 * enabled. When the secondary CPU boots up, it initializes the
198 	 * GICC/GICR interface with the caches disabled. Hence flush the
199 	 * driver_data to ensure coherency. This is not required if the
200 	 * platform has HW_ASSISTED_COHERENCY enabled.
201 	 */
202 #if !HW_ASSISTED_COHERENCY
203 	flush_dcache_range((uintptr_t) &driver_data, sizeof(driver_data));
204 	flush_dcache_range((uintptr_t) driver_data, sizeof(*driver_data));
205 #endif
206 	INFO("ARM GICv2 driver initialized\n");
207 }
208 
209 /******************************************************************************
210  * This function returns whether FIQ is enabled in the GIC CPU interface.
211  *****************************************************************************/
212 unsigned int gicv2_is_fiq_enabled(void)
213 {
214 	unsigned int gicc_ctlr;
215 
216 	assert(driver_data);
217 	assert(driver_data->gicc_base);
218 
219 	gicc_ctlr = gicc_read_ctlr(driver_data->gicc_base);
220 	return (gicc_ctlr >> FIQ_EN_SHIFT) & 0x1;
221 }
222 
223 /*******************************************************************************
224  * This function returns the type of the highest priority pending interrupt at
225  * the GIC cpu interface. The return values can be one of the following :
226  *   PENDING_G1_INTID   : The interrupt type is non secure Group 1.
227  *   0 - 1019           : The interrupt type is secure Group 0.
228  *   GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
229  *                            sufficient priority to be signaled
230  ******************************************************************************/
231 unsigned int gicv2_get_pending_interrupt_type(void)
232 {
233 	assert(driver_data);
234 	assert(driver_data->gicc_base);
235 
236 	return gicc_read_hppir(driver_data->gicc_base) & INT_ID_MASK;
237 }
238 
239 /*******************************************************************************
240  * This function returns the id of the highest priority pending interrupt at
241  * the GIC cpu interface. GIC_SPURIOUS_INTERRUPT is returned when there is no
242  * interrupt pending.
243  ******************************************************************************/
244 unsigned int gicv2_get_pending_interrupt_id(void)
245 {
246 	unsigned int id;
247 
248 	assert(driver_data);
249 	assert(driver_data->gicc_base);
250 
251 	id = gicc_read_hppir(driver_data->gicc_base) & INT_ID_MASK;
252 
253 	/*
254 	 * Find out which non-secure interrupt it is under the assumption that
255 	 * the GICC_CTLR.AckCtl bit is 0.
256 	 */
257 	if (id == PENDING_G1_INTID)
258 		id = gicc_read_ahppir(driver_data->gicc_base) & INT_ID_MASK;
259 
260 	return id;
261 }
262 
263 /*******************************************************************************
264  * This functions reads the GIC cpu interface Interrupt Acknowledge register
265  * to start handling the pending secure 0 interrupt. It returns the
266  * contents of the IAR.
267  ******************************************************************************/
268 unsigned int gicv2_acknowledge_interrupt(void)
269 {
270 	assert(driver_data);
271 	assert(driver_data->gicc_base);
272 
273 	return gicc_read_IAR(driver_data->gicc_base);
274 }
275 
276 /*******************************************************************************
277  * This functions writes the GIC cpu interface End Of Interrupt register with
278  * the passed value to finish handling the active secure group 0 interrupt.
279  ******************************************************************************/
280 void gicv2_end_of_interrupt(unsigned int id)
281 {
282 	assert(driver_data);
283 	assert(driver_data->gicc_base);
284 
285 	gicc_write_EOIR(driver_data->gicc_base, id);
286 }
287 
288 /*******************************************************************************
289  * This function returns the type of the interrupt id depending upon the group
290  * this interrupt has been configured under by the interrupt controller i.e.
291  * group0 secure or group1 non secure. It returns zero for Group 0 secure and
292  * one for Group 1 non secure interrupt.
293  ******************************************************************************/
294 unsigned int gicv2_get_interrupt_group(unsigned int id)
295 {
296 	assert(driver_data);
297 	assert(driver_data->gicd_base);
298 
299 	return gicd_get_igroupr(driver_data->gicd_base, id);
300 }
301 
302 /*******************************************************************************
303  * This function returns the priority of the interrupt the processor is
304  * currently servicing.
305  ******************************************************************************/
306 unsigned int gicv2_get_running_priority(void)
307 {
308 	assert(driver_data);
309 	assert(driver_data->gicc_base);
310 
311 	return gicc_read_rpr(driver_data->gicc_base);
312 }
313 
314 /*******************************************************************************
315  * This function sets the GICv2 target mask pattern for the current PE. The PE
316  * target mask is used to translate linear PE index (returned by platform core
317  * position) to a bit mask used when targeting interrupts to a PE, viz. when
318  * raising SGIs and routing SPIs.
319  ******************************************************************************/
320 void gicv2_set_pe_target_mask(unsigned int proc_num)
321 {
322 	assert(driver_data);
323 	assert(driver_data->gicd_base);
324 	assert(driver_data->target_masks);
325 	assert(proc_num < GICV2_MAX_TARGET_PE);
326 	assert(proc_num < driver_data->target_masks_num);
327 
328 	/* Return if the target mask is already populated */
329 	if (driver_data->target_masks[proc_num])
330 		return;
331 
332 	/*
333 	 * Update target register corresponding to this CPU and flush for it to
334 	 * be visible to other CPUs.
335 	 */
336 	if (driver_data->target_masks[proc_num] == 0) {
337 		driver_data->target_masks[proc_num] =
338 			gicv2_get_cpuif_id(driver_data->gicd_base);
339 #if !HW_ASSISTED_COHERENCY
340 		/*
341 		 * PEs only update their own masks. Primary updates it with
342 		 * caches on. But because secondaries does it with caches off,
343 		 * all updates go to memory directly, and there's no danger of
344 		 * secondaries overwriting each others' mask, despite
345 		 * target_masks[] not being cache line aligned.
346 		 */
347 		flush_dcache_range((uintptr_t)
348 				&driver_data->target_masks[proc_num],
349 				sizeof(driver_data->target_masks[proc_num]));
350 #endif
351 	}
352 }
353 
354 /*******************************************************************************
355  * This function returns the active status of the interrupt (either because the
356  * state is active, or active and pending).
357  ******************************************************************************/
358 unsigned int gicv2_get_interrupt_active(unsigned int id)
359 {
360 	assert(driver_data);
361 	assert(driver_data->gicd_base);
362 	assert(id <= MAX_SPI_ID);
363 
364 	return gicd_get_isactiver(driver_data->gicd_base, id);
365 }
366 
367 /*******************************************************************************
368  * This function enables the interrupt identified by id.
369  ******************************************************************************/
370 void gicv2_enable_interrupt(unsigned int id)
371 {
372 	assert(driver_data);
373 	assert(driver_data->gicd_base);
374 	assert(id <= MAX_SPI_ID);
375 
376 	/*
377 	 * Ensure that any shared variable updates depending on out of band
378 	 * interrupt trigger are observed before enabling interrupt.
379 	 */
380 	dsbishst();
381 	gicd_set_isenabler(driver_data->gicd_base, id);
382 }
383 
384 /*******************************************************************************
385  * This function disables the interrupt identified by id.
386  ******************************************************************************/
387 void gicv2_disable_interrupt(unsigned int id)
388 {
389 	assert(driver_data);
390 	assert(driver_data->gicd_base);
391 	assert(id <= MAX_SPI_ID);
392 
393 	/*
394 	 * Disable interrupt, and ensure that any shared variable updates
395 	 * depending on out of band interrupt trigger are observed afterwards.
396 	 */
397 	gicd_set_icenabler(driver_data->gicd_base, id);
398 	dsbishst();
399 }
400 
401 /*******************************************************************************
402  * This function sets the interrupt priority as supplied for the given interrupt
403  * id.
404  ******************************************************************************/
405 void gicv2_set_interrupt_priority(unsigned int id, unsigned int priority)
406 {
407 	assert(driver_data);
408 	assert(driver_data->gicd_base);
409 	assert(id <= MAX_SPI_ID);
410 
411 	gicd_set_ipriorityr(driver_data->gicd_base, id, priority);
412 }
413 
414 /*******************************************************************************
415  * This function assigns group for the interrupt identified by id. The group can
416  * be any of GICV2_INTR_GROUP*
417  ******************************************************************************/
418 void gicv2_set_interrupt_type(unsigned int id, unsigned int type)
419 {
420 	assert(driver_data);
421 	assert(driver_data->gicd_base);
422 	assert(id <= MAX_SPI_ID);
423 
424 	/* Serialize read-modify-write to Distributor registers */
425 	spin_lock(&gic_lock);
426 	switch (type) {
427 	case GICV2_INTR_GROUP1:
428 		gicd_set_igroupr(driver_data->gicd_base, id);
429 		break;
430 	case GICV2_INTR_GROUP0:
431 		gicd_clr_igroupr(driver_data->gicd_base, id);
432 		break;
433 	default:
434 		assert(0);
435 	}
436 	spin_unlock(&gic_lock);
437 }
438 
439 /*******************************************************************************
440  * This function raises the specified SGI to requested targets.
441  *
442  * The proc_num parameter must be the linear index of the target PE in the
443  * system.
444  ******************************************************************************/
445 void gicv2_raise_sgi(int sgi_num, int proc_num)
446 {
447 	unsigned int sgir_val, target;
448 
449 	assert(driver_data);
450 	assert(proc_num < GICV2_MAX_TARGET_PE);
451 	assert(driver_data->gicd_base);
452 
453 	/*
454 	 * Target masks array must have been supplied, and the core position
455 	 * should be valid.
456 	 */
457 	assert(driver_data->target_masks);
458 	assert(proc_num < driver_data->target_masks_num);
459 
460 	/* Don't raise SGI if the mask hasn't been populated */
461 	target = driver_data->target_masks[proc_num];
462 	assert(target != 0);
463 
464 	sgir_val = GICV2_SGIR_VALUE(SGIR_TGT_SPECIFIC, target, sgi_num);
465 
466 	/*
467 	 * Ensure that any shared variable updates depending on out of band
468 	 * interrupt trigger are observed before raising SGI.
469 	 */
470 	dsbishst();
471 	gicd_write_sgir(driver_data->gicd_base, sgir_val);
472 }
473 
474 /*******************************************************************************
475  * This function sets the interrupt routing for the given SPI interrupt id.
476  * The interrupt routing is specified in routing mode. The proc_num parameter is
477  * linear index of the PE to target SPI. When proc_num < 0, the SPI may target
478  * all PEs.
479  ******************************************************************************/
480 void gicv2_set_spi_routing(unsigned int id, int proc_num)
481 {
482 	int target;
483 
484 	assert(driver_data);
485 	assert(driver_data->gicd_base);
486 
487 	assert(id >= MIN_SPI_ID && id <= MAX_SPI_ID);
488 
489 	/*
490 	 * Target masks array must have been supplied, and the core position
491 	 * should be valid.
492 	 */
493 	assert(driver_data->target_masks);
494 	assert(proc_num < GICV2_MAX_TARGET_PE);
495 	assert(proc_num < driver_data->target_masks_num);
496 
497 	if (proc_num < 0) {
498 		/* Target all PEs */
499 		target = GIC_TARGET_CPU_MASK;
500 	} else {
501 		/* Don't route interrupt if the mask hasn't been populated */
502 		target = driver_data->target_masks[proc_num];
503 		assert(target != 0);
504 	}
505 
506 	gicd_set_itargetsr(driver_data->gicd_base, id, target);
507 }
508 
509 /*******************************************************************************
510  * This function clears the pending status of an interrupt identified by id.
511  ******************************************************************************/
512 void gicv2_clear_interrupt_pending(unsigned int id)
513 {
514 	assert(driver_data);
515 	assert(driver_data->gicd_base);
516 
517 	/* SGIs can't be cleared pending */
518 	assert(id >= MIN_PPI_ID);
519 
520 	/*
521 	 * Clear pending interrupt, and ensure that any shared variable updates
522 	 * depending on out of band interrupt trigger are observed afterwards.
523 	 */
524 	gicd_set_icpendr(driver_data->gicd_base, id);
525 	dsbishst();
526 }
527 
528 /*******************************************************************************
529  * This function sets the pending status of an interrupt identified by id.
530  ******************************************************************************/
531 void gicv2_set_interrupt_pending(unsigned int id)
532 {
533 	assert(driver_data);
534 	assert(driver_data->gicd_base);
535 
536 	/* SGIs can't be cleared pending */
537 	assert(id >= MIN_PPI_ID);
538 
539 	/*
540 	 * Ensure that any shared variable updates depending on out of band
541 	 * interrupt trigger are observed before setting interrupt pending.
542 	 */
543 	dsbishst();
544 	gicd_set_ispendr(driver_data->gicd_base, id);
545 }
546 
547 /*******************************************************************************
548  * This function sets the PMR register with the supplied value. Returns the
549  * original PMR.
550  ******************************************************************************/
551 unsigned int gicv2_set_pmr(unsigned int mask)
552 {
553 	unsigned int old_mask;
554 
555 	assert(driver_data);
556 	assert(driver_data->gicc_base);
557 
558 	old_mask = gicc_read_pmr(driver_data->gicc_base);
559 
560 	/*
561 	 * Order memory updates w.r.t. PMR write, and ensure they're visible
562 	 * before potential out of band interrupt trigger because of PMR update.
563 	 */
564 	dmbishst();
565 	gicc_write_pmr(driver_data->gicc_base, mask);
566 	dsbishst();
567 
568 	return old_mask;
569 }
570