xref: /rk3399_ARM-atf/drivers/arm/gic/v2/gicv2_main.c (revision 3eacacc0ef6a8beefd858ff36cbc35e2b9ff5b07)
1 /*
2  * Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <debug.h>
11 #include <gic_common.h>
12 #include <gicv2.h>
13 #include <interrupt_props.h>
14 #include <spinlock.h>
15 #include "../common/gic_common_private.h"
16 #include "gicv2_private.h"
17 
18 static const gicv2_driver_data_t *driver_data;
19 
20 /*
21  * Spinlock to guard registers needing read-modify-write. APIs protected by this
22  * spinlock are used either at boot time (when only a single CPU is active), or
23  * when the system is fully coherent.
24  */
25 static spinlock_t gic_lock;
26 
27 /*******************************************************************************
28  * Enable secure interrupts and use FIQs to route them. Disable legacy bypass
29  * and set the priority mask register to allow all interrupts to trickle in.
30  ******************************************************************************/
31 void gicv2_cpuif_enable(void)
32 {
33 	unsigned int val;
34 
35 	assert(driver_data);
36 	assert(driver_data->gicc_base);
37 
38 	/*
39 	 * Enable the Group 0 interrupts, FIQEn and disable Group 0/1
40 	 * bypass.
41 	 */
42 	val = CTLR_ENABLE_G0_BIT | FIQ_EN_BIT | FIQ_BYP_DIS_GRP0;
43 	val |= IRQ_BYP_DIS_GRP0 | FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1;
44 
45 	/* Program the idle priority in the PMR */
46 	gicc_write_pmr(driver_data->gicc_base, GIC_PRI_MASK);
47 	gicc_write_ctlr(driver_data->gicc_base, val);
48 }
49 
50 /*******************************************************************************
51  * Place the cpu interface in a state where it can never make a cpu exit wfi as
52  * as result of an asserted interrupt. This is critical for powering down a cpu
53  ******************************************************************************/
54 void gicv2_cpuif_disable(void)
55 {
56 	unsigned int val;
57 
58 	assert(driver_data);
59 	assert(driver_data->gicc_base);
60 
61 	/* Disable secure, non-secure interrupts and disable their bypass */
62 	val = gicc_read_ctlr(driver_data->gicc_base);
63 	val &= ~(CTLR_ENABLE_G0_BIT | CTLR_ENABLE_G1_BIT);
64 	val |= FIQ_BYP_DIS_GRP1 | FIQ_BYP_DIS_GRP0;
65 	val |= IRQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP1;
66 	gicc_write_ctlr(driver_data->gicc_base, val);
67 }
68 
69 /*******************************************************************************
70  * Per cpu gic distributor setup which will be done by all cpus after a cold
71  * boot/hotplug. This marks out the secure SPIs and PPIs & enables them.
72  ******************************************************************************/
73 void gicv2_pcpu_distif_init(void)
74 {
75 	unsigned int ctlr;
76 
77 	assert(driver_data);
78 	assert(driver_data->gicd_base);
79 
80 #if !ERROR_DEPRECATED
81 	if (driver_data->interrupt_props != NULL) {
82 #endif
83 		gicv2_secure_ppi_sgi_setup_props(driver_data->gicd_base,
84 				driver_data->interrupt_props,
85 				driver_data->interrupt_props_num);
86 #if !ERROR_DEPRECATED
87 	} else {
88 		/*
89 		 * Suppress deprecated declaration warnings in compatibility
90 		 * function
91 		 */
92 #pragma GCC diagnostic push
93 #pragma GCC diagnostic ignored "-Wdeprecated-declarations"
94 		assert(driver_data->g0_interrupt_array);
95 		gicv2_secure_ppi_sgi_setup(driver_data->gicd_base,
96 				driver_data->g0_interrupt_num,
97 				driver_data->g0_interrupt_array);
98 #pragma GCC diagnostic pop
99 	}
100 #endif
101 
102 	/* Enable G0 interrupts if not already */
103 	ctlr = gicd_read_ctlr(driver_data->gicd_base);
104 	if ((ctlr & CTLR_ENABLE_G0_BIT) == 0) {
105 		gicd_write_ctlr(driver_data->gicd_base,
106 				ctlr | CTLR_ENABLE_G0_BIT);
107 	}
108 }
109 
110 /*******************************************************************************
111  * Global gic distributor init which will be done by the primary cpu after a
112  * cold boot. It marks out the secure SPIs, PPIs & SGIs and enables them. It
113  * then enables the secure GIC distributor interface.
114  ******************************************************************************/
115 void gicv2_distif_init(void)
116 {
117 	unsigned int ctlr;
118 
119 	assert(driver_data);
120 	assert(driver_data->gicd_base);
121 
122 	/* Disable the distributor before going further */
123 	ctlr = gicd_read_ctlr(driver_data->gicd_base);
124 	gicd_write_ctlr(driver_data->gicd_base,
125 			ctlr & ~(CTLR_ENABLE_G0_BIT | CTLR_ENABLE_G1_BIT));
126 
127 	/* Set the default attribute of all SPIs */
128 	gicv2_spis_configure_defaults(driver_data->gicd_base);
129 
130 #if !ERROR_DEPRECATED
131 	if (driver_data->interrupt_props != NULL) {
132 #endif
133 		gicv2_secure_spis_configure_props(driver_data->gicd_base,
134 				driver_data->interrupt_props,
135 				driver_data->interrupt_props_num);
136 #if !ERROR_DEPRECATED
137 	} else {
138 		/*
139 		 * Suppress deprecated declaration warnings in compatibility
140 		 * function
141 		 */
142 #pragma GCC diagnostic push
143 #pragma GCC diagnostic ignored "-Wdeprecated-declarations"
144 
145 		assert(driver_data->g0_interrupt_array);
146 
147 		/* Configure the G0 SPIs */
148 		gicv2_secure_spis_configure(driver_data->gicd_base,
149 				driver_data->g0_interrupt_num,
150 				driver_data->g0_interrupt_array);
151 #pragma GCC diagnostic pop
152 	}
153 #endif
154 
155 	/* Re-enable the secure SPIs now that they have been configured */
156 	gicd_write_ctlr(driver_data->gicd_base, ctlr | CTLR_ENABLE_G0_BIT);
157 }
158 
159 /*******************************************************************************
160  * Initialize the ARM GICv2 driver with the provided platform inputs
161  ******************************************************************************/
162 void gicv2_driver_init(const gicv2_driver_data_t *plat_driver_data)
163 {
164 	unsigned int gic_version;
165 	assert(plat_driver_data);
166 	assert(plat_driver_data->gicd_base);
167 	assert(plat_driver_data->gicc_base);
168 
169 #if !ERROR_DEPRECATED
170 	if (plat_driver_data->interrupt_props == NULL) {
171 		/* Interrupt properties array size must be 0 */
172 		assert(plat_driver_data->interrupt_props_num == 0);
173 
174 		/*
175 		 * Suppress deprecated declaration warnings in compatibility
176 		 * function
177 		 */
178 #pragma GCC diagnostic push
179 #pragma GCC diagnostic ignored "-Wdeprecated-declarations"
180 
181 		/* The platform should provide a list of secure interrupts */
182 		assert(plat_driver_data->g0_interrupt_array);
183 
184 		/*
185 		 * If there are no interrupts of a particular type, then the
186 		 * number of interrupts of that type should be 0 and vice-versa.
187 		 */
188 		assert(plat_driver_data->g0_interrupt_array ?
189 				plat_driver_data->g0_interrupt_num :
190 				plat_driver_data->g0_interrupt_num == 0);
191 #pragma GCC diagnostic pop
192 
193 		WARN("Using deprecated integer interrupt array in "
194 		     "gicv2_driver_data_t\n");
195 		WARN("Please migrate to using an interrupt_prop_t array\n");
196 	}
197 #else
198 	assert(plat_driver_data->interrupt_props != NULL);
199 	assert(plat_driver_data->interrupt_props_num > 0);
200 #endif
201 
202 	/* Ensure that this is a GICv2 system */
203 	gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
204 	gic_version = (gic_version >> PIDR2_ARCH_REV_SHIFT)
205 					& PIDR2_ARCH_REV_MASK;
206 
207 	/*
208 	 * GICv1 with security extension complies with trusted firmware
209 	 * GICv2 driver as far as virtualization and few tricky power
210 	 * features are not used. GICv2 features that are not supported
211 	 * by GICv1 with Security Extensions are:
212 	 * - virtual interrupt support.
213 	 * - wake up events.
214 	 * - writeable GIC state register (for power sequences)
215 	 * - interrupt priority drop.
216 	 * - interrupt signal bypass.
217 	 */
218 	assert(gic_version == ARCH_REV_GICV2 || gic_version == ARCH_REV_GICV1);
219 
220 	driver_data = plat_driver_data;
221 
222 	/*
223 	 * The GIC driver data is initialized by the primary CPU with caches
224 	 * enabled. When the secondary CPU boots up, it initializes the
225 	 * GICC/GICR interface with the caches disabled. Hence flush the
226 	 * driver_data to ensure coherency. This is not required if the
227 	 * platform has HW_ASSISTED_COHERENCY enabled.
228 	 */
229 #if !HW_ASSISTED_COHERENCY
230 	flush_dcache_range((uintptr_t) &driver_data, sizeof(driver_data));
231 	flush_dcache_range((uintptr_t) driver_data, sizeof(*driver_data));
232 #endif
233 	INFO("ARM GICv2 driver initialized\n");
234 }
235 
236 /******************************************************************************
237  * This function returns whether FIQ is enabled in the GIC CPU interface.
238  *****************************************************************************/
239 unsigned int gicv2_is_fiq_enabled(void)
240 {
241 	unsigned int gicc_ctlr;
242 
243 	assert(driver_data);
244 	assert(driver_data->gicc_base);
245 
246 	gicc_ctlr = gicc_read_ctlr(driver_data->gicc_base);
247 	return (gicc_ctlr >> FIQ_EN_SHIFT) & 0x1;
248 }
249 
250 /*******************************************************************************
251  * This function returns the type of the highest priority pending interrupt at
252  * the GIC cpu interface. The return values can be one of the following :
253  *   PENDING_G1_INTID   : The interrupt type is non secure Group 1.
254  *   0 - 1019           : The interrupt type is secure Group 0.
255  *   GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
256  *                            sufficient priority to be signaled
257  ******************************************************************************/
258 unsigned int gicv2_get_pending_interrupt_type(void)
259 {
260 	assert(driver_data);
261 	assert(driver_data->gicc_base);
262 
263 	return gicc_read_hppir(driver_data->gicc_base) & INT_ID_MASK;
264 }
265 
266 /*******************************************************************************
267  * This function returns the id of the highest priority pending interrupt at
268  * the GIC cpu interface. GIC_SPURIOUS_INTERRUPT is returned when there is no
269  * interrupt pending.
270  ******************************************************************************/
271 unsigned int gicv2_get_pending_interrupt_id(void)
272 {
273 	unsigned int id;
274 
275 	assert(driver_data);
276 	assert(driver_data->gicc_base);
277 
278 	id = gicc_read_hppir(driver_data->gicc_base) & INT_ID_MASK;
279 
280 	/*
281 	 * Find out which non-secure interrupt it is under the assumption that
282 	 * the GICC_CTLR.AckCtl bit is 0.
283 	 */
284 	if (id == PENDING_G1_INTID)
285 		id = gicc_read_ahppir(driver_data->gicc_base) & INT_ID_MASK;
286 
287 	return id;
288 }
289 
290 /*******************************************************************************
291  * This functions reads the GIC cpu interface Interrupt Acknowledge register
292  * to start handling the pending secure 0 interrupt. It returns the
293  * contents of the IAR.
294  ******************************************************************************/
295 unsigned int gicv2_acknowledge_interrupt(void)
296 {
297 	assert(driver_data);
298 	assert(driver_data->gicc_base);
299 
300 	return gicc_read_IAR(driver_data->gicc_base);
301 }
302 
303 /*******************************************************************************
304  * This functions writes the GIC cpu interface End Of Interrupt register with
305  * the passed value to finish handling the active secure group 0 interrupt.
306  ******************************************************************************/
307 void gicv2_end_of_interrupt(unsigned int id)
308 {
309 	assert(driver_data);
310 	assert(driver_data->gicc_base);
311 
312 	gicc_write_EOIR(driver_data->gicc_base, id);
313 }
314 
315 /*******************************************************************************
316  * This function returns the type of the interrupt id depending upon the group
317  * this interrupt has been configured under by the interrupt controller i.e.
318  * group0 secure or group1 non secure. It returns zero for Group 0 secure and
319  * one for Group 1 non secure interrupt.
320  ******************************************************************************/
321 unsigned int gicv2_get_interrupt_group(unsigned int id)
322 {
323 	assert(driver_data);
324 	assert(driver_data->gicd_base);
325 
326 	return gicd_get_igroupr(driver_data->gicd_base, id);
327 }
328 
329 /*******************************************************************************
330  * This function returns the priority of the interrupt the processor is
331  * currently servicing.
332  ******************************************************************************/
333 unsigned int gicv2_get_running_priority(void)
334 {
335 	assert(driver_data);
336 	assert(driver_data->gicc_base);
337 
338 	return gicc_read_rpr(driver_data->gicc_base);
339 }
340 
341 /*******************************************************************************
342  * This function sets the GICv2 target mask pattern for the current PE. The PE
343  * target mask is used to translate linear PE index (returned by platform core
344  * position) to a bit mask used when targeting interrupts to a PE, viz. when
345  * raising SGIs and routing SPIs.
346  ******************************************************************************/
347 void gicv2_set_pe_target_mask(unsigned int proc_num)
348 {
349 	assert(driver_data);
350 	assert(driver_data->gicd_base);
351 	assert(driver_data->target_masks);
352 	assert(proc_num < GICV2_MAX_TARGET_PE);
353 	assert(proc_num < driver_data->target_masks_num);
354 
355 	/* Return if the target mask is already populated */
356 	if (driver_data->target_masks[proc_num])
357 		return;
358 
359 	/*
360 	 * Update target register corresponding to this CPU and flush for it to
361 	 * be visible to other CPUs.
362 	 */
363 	if (driver_data->target_masks[proc_num] == 0) {
364 		driver_data->target_masks[proc_num] =
365 			gicv2_get_cpuif_id(driver_data->gicd_base);
366 #if !HW_ASSISTED_COHERENCY
367 		/*
368 		 * PEs only update their own masks. Primary updates it with
369 		 * caches on. But because secondaries does it with caches off,
370 		 * all updates go to memory directly, and there's no danger of
371 		 * secondaries overwriting each others' mask, despite
372 		 * target_masks[] not being cache line aligned.
373 		 */
374 		flush_dcache_range((uintptr_t)
375 				&driver_data->target_masks[proc_num],
376 				sizeof(driver_data->target_masks[proc_num]));
377 #endif
378 	}
379 }
380 
381 /*******************************************************************************
382  * This function returns the active status of the interrupt (either because the
383  * state is active, or active and pending).
384  ******************************************************************************/
385 unsigned int gicv2_get_interrupt_active(unsigned int id)
386 {
387 	assert(driver_data);
388 	assert(driver_data->gicd_base);
389 	assert(id <= MAX_SPI_ID);
390 
391 	return gicd_get_isactiver(driver_data->gicd_base, id);
392 }
393 
394 /*******************************************************************************
395  * This function enables the interrupt identified by id.
396  ******************************************************************************/
397 void gicv2_enable_interrupt(unsigned int id)
398 {
399 	assert(driver_data);
400 	assert(driver_data->gicd_base);
401 	assert(id <= MAX_SPI_ID);
402 
403 	/*
404 	 * Ensure that any shared variable updates depending on out of band
405 	 * interrupt trigger are observed before enabling interrupt.
406 	 */
407 	dsbishst();
408 	gicd_set_isenabler(driver_data->gicd_base, id);
409 }
410 
411 /*******************************************************************************
412  * This function disables the interrupt identified by id.
413  ******************************************************************************/
414 void gicv2_disable_interrupt(unsigned int id)
415 {
416 	assert(driver_data);
417 	assert(driver_data->gicd_base);
418 	assert(id <= MAX_SPI_ID);
419 
420 	/*
421 	 * Disable interrupt, and ensure that any shared variable updates
422 	 * depending on out of band interrupt trigger are observed afterwards.
423 	 */
424 	gicd_set_icenabler(driver_data->gicd_base, id);
425 	dsbishst();
426 }
427 
428 /*******************************************************************************
429  * This function sets the interrupt priority as supplied for the given interrupt
430  * id.
431  ******************************************************************************/
432 void gicv2_set_interrupt_priority(unsigned int id, unsigned int priority)
433 {
434 	assert(driver_data);
435 	assert(driver_data->gicd_base);
436 	assert(id <= MAX_SPI_ID);
437 
438 	gicd_set_ipriorityr(driver_data->gicd_base, id, priority);
439 }
440 
441 /*******************************************************************************
442  * This function assigns group for the interrupt identified by id. The group can
443  * be any of GICV2_INTR_GROUP*
444  ******************************************************************************/
445 void gicv2_set_interrupt_type(unsigned int id, unsigned int type)
446 {
447 	assert(driver_data);
448 	assert(driver_data->gicd_base);
449 	assert(id <= MAX_SPI_ID);
450 
451 	/* Serialize read-modify-write to Distributor registers */
452 	spin_lock(&gic_lock);
453 	switch (type) {
454 	case GICV2_INTR_GROUP1:
455 		gicd_set_igroupr(driver_data->gicd_base, id);
456 		break;
457 	case GICV2_INTR_GROUP0:
458 		gicd_clr_igroupr(driver_data->gicd_base, id);
459 		break;
460 	default:
461 		assert(0);
462 		break;
463 	}
464 	spin_unlock(&gic_lock);
465 }
466 
467 /*******************************************************************************
468  * This function raises the specified SGI to requested targets.
469  *
470  * The proc_num parameter must be the linear index of the target PE in the
471  * system.
472  ******************************************************************************/
473 void gicv2_raise_sgi(int sgi_num, int proc_num)
474 {
475 	unsigned int sgir_val, target;
476 
477 	assert(driver_data);
478 	assert(proc_num < GICV2_MAX_TARGET_PE);
479 	assert(driver_data->gicd_base);
480 
481 	/*
482 	 * Target masks array must have been supplied, and the core position
483 	 * should be valid.
484 	 */
485 	assert(driver_data->target_masks);
486 	assert(proc_num < driver_data->target_masks_num);
487 
488 	/* Don't raise SGI if the mask hasn't been populated */
489 	target = driver_data->target_masks[proc_num];
490 	assert(target != 0);
491 
492 	sgir_val = GICV2_SGIR_VALUE(SGIR_TGT_SPECIFIC, target, sgi_num);
493 
494 	/*
495 	 * Ensure that any shared variable updates depending on out of band
496 	 * interrupt trigger are observed before raising SGI.
497 	 */
498 	dsbishst();
499 	gicd_write_sgir(driver_data->gicd_base, sgir_val);
500 }
501 
502 /*******************************************************************************
503  * This function sets the interrupt routing for the given SPI interrupt id.
504  * The interrupt routing is specified in routing mode. The proc_num parameter is
505  * linear index of the PE to target SPI. When proc_num < 0, the SPI may target
506  * all PEs.
507  ******************************************************************************/
508 void gicv2_set_spi_routing(unsigned int id, int proc_num)
509 {
510 	int target;
511 
512 	assert(driver_data);
513 	assert(driver_data->gicd_base);
514 
515 	assert(id >= MIN_SPI_ID && id <= MAX_SPI_ID);
516 
517 	/*
518 	 * Target masks array must have been supplied, and the core position
519 	 * should be valid.
520 	 */
521 	assert(driver_data->target_masks);
522 	assert(proc_num < GICV2_MAX_TARGET_PE);
523 	assert(proc_num < driver_data->target_masks_num);
524 
525 	if (proc_num < 0) {
526 		/* Target all PEs */
527 		target = GIC_TARGET_CPU_MASK;
528 	} else {
529 		/* Don't route interrupt if the mask hasn't been populated */
530 		target = driver_data->target_masks[proc_num];
531 		assert(target != 0);
532 	}
533 
534 	gicd_set_itargetsr(driver_data->gicd_base, id, target);
535 }
536 
537 /*******************************************************************************
538  * This function clears the pending status of an interrupt identified by id.
539  ******************************************************************************/
540 void gicv2_clear_interrupt_pending(unsigned int id)
541 {
542 	assert(driver_data);
543 	assert(driver_data->gicd_base);
544 
545 	/* SGIs can't be cleared pending */
546 	assert(id >= MIN_PPI_ID);
547 
548 	/*
549 	 * Clear pending interrupt, and ensure that any shared variable updates
550 	 * depending on out of band interrupt trigger are observed afterwards.
551 	 */
552 	gicd_set_icpendr(driver_data->gicd_base, id);
553 	dsbishst();
554 }
555 
556 /*******************************************************************************
557  * This function sets the pending status of an interrupt identified by id.
558  ******************************************************************************/
559 void gicv2_set_interrupt_pending(unsigned int id)
560 {
561 	assert(driver_data);
562 	assert(driver_data->gicd_base);
563 
564 	/* SGIs can't be cleared pending */
565 	assert(id >= MIN_PPI_ID);
566 
567 	/*
568 	 * Ensure that any shared variable updates depending on out of band
569 	 * interrupt trigger are observed before setting interrupt pending.
570 	 */
571 	dsbishst();
572 	gicd_set_ispendr(driver_data->gicd_base, id);
573 }
574 
575 /*******************************************************************************
576  * This function sets the PMR register with the supplied value. Returns the
577  * original PMR.
578  ******************************************************************************/
579 unsigned int gicv2_set_pmr(unsigned int mask)
580 {
581 	unsigned int old_mask;
582 
583 	assert(driver_data);
584 	assert(driver_data->gicc_base);
585 
586 	old_mask = gicc_read_pmr(driver_data->gicc_base);
587 
588 	/*
589 	 * Order memory updates w.r.t. PMR write, and ensure they're visible
590 	 * before potential out of band interrupt trigger because of PMR update.
591 	 */
592 	dmbishst();
593 	gicc_write_pmr(driver_data->gicc_base, mask);
594 	dsbishst();
595 
596 	return old_mask;
597 }
598