1 /* 2 * Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <arch.h> 8 #include <arch_helpers.h> 9 #include <assert.h> 10 #include <debug.h> 11 #include <gic_common.h> 12 #include <gicv2.h> 13 #include <interrupt_props.h> 14 #include <spinlock.h> 15 #include "../common/gic_common_private.h" 16 #include "gicv2_private.h" 17 18 static const gicv2_driver_data_t *driver_data; 19 20 /* 21 * Spinlock to guard registers needing read-modify-write. APIs protected by this 22 * spinlock are used either at boot time (when only a single CPU is active), or 23 * when the system is fully coherent. 24 */ 25 spinlock_t gic_lock; 26 27 /******************************************************************************* 28 * Enable secure interrupts and use FIQs to route them. Disable legacy bypass 29 * and set the priority mask register to allow all interrupts to trickle in. 30 ******************************************************************************/ 31 void gicv2_cpuif_enable(void) 32 { 33 unsigned int val; 34 35 assert(driver_data); 36 assert(driver_data->gicc_base); 37 38 /* 39 * Enable the Group 0 interrupts, FIQEn and disable Group 0/1 40 * bypass. 41 */ 42 val = CTLR_ENABLE_G0_BIT | FIQ_EN_BIT | FIQ_BYP_DIS_GRP0; 43 val |= IRQ_BYP_DIS_GRP0 | FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1; 44 45 /* Program the idle priority in the PMR */ 46 gicc_write_pmr(driver_data->gicc_base, GIC_PRI_MASK); 47 gicc_write_ctlr(driver_data->gicc_base, val); 48 } 49 50 /******************************************************************************* 51 * Place the cpu interface in a state where it can never make a cpu exit wfi as 52 * as result of an asserted interrupt. This is critical for powering down a cpu 53 ******************************************************************************/ 54 void gicv2_cpuif_disable(void) 55 { 56 unsigned int val; 57 58 assert(driver_data); 59 assert(driver_data->gicc_base); 60 61 /* Disable secure, non-secure interrupts and disable their bypass */ 62 val = gicc_read_ctlr(driver_data->gicc_base); 63 val &= ~(CTLR_ENABLE_G0_BIT | CTLR_ENABLE_G1_BIT); 64 val |= FIQ_BYP_DIS_GRP1 | FIQ_BYP_DIS_GRP0; 65 val |= IRQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP1; 66 gicc_write_ctlr(driver_data->gicc_base, val); 67 } 68 69 /******************************************************************************* 70 * Per cpu gic distributor setup which will be done by all cpus after a cold 71 * boot/hotplug. This marks out the secure SPIs and PPIs & enables them. 72 ******************************************************************************/ 73 void gicv2_pcpu_distif_init(void) 74 { 75 unsigned int ctlr; 76 77 assert(driver_data); 78 assert(driver_data->gicd_base); 79 80 #if !ERROR_DEPRECATED 81 if (driver_data->interrupt_props != NULL) { 82 #endif 83 gicv2_secure_ppi_sgi_setup_props(driver_data->gicd_base, 84 driver_data->interrupt_props, 85 driver_data->interrupt_props_num); 86 #if !ERROR_DEPRECATED 87 } else { 88 assert(driver_data->g0_interrupt_array); 89 gicv2_secure_ppi_sgi_setup(driver_data->gicd_base, 90 driver_data->g0_interrupt_num, 91 driver_data->g0_interrupt_array); 92 } 93 #endif 94 95 /* Enable G0 interrupts if not already */ 96 ctlr = gicd_read_ctlr(driver_data->gicd_base); 97 if ((ctlr & CTLR_ENABLE_G0_BIT) == 0) { 98 gicd_write_ctlr(driver_data->gicd_base, 99 ctlr | CTLR_ENABLE_G0_BIT); 100 } 101 } 102 103 /******************************************************************************* 104 * Global gic distributor init which will be done by the primary cpu after a 105 * cold boot. It marks out the secure SPIs, PPIs & SGIs and enables them. It 106 * then enables the secure GIC distributor interface. 107 ******************************************************************************/ 108 void gicv2_distif_init(void) 109 { 110 unsigned int ctlr; 111 112 assert(driver_data); 113 assert(driver_data->gicd_base); 114 115 /* Disable the distributor before going further */ 116 ctlr = gicd_read_ctlr(driver_data->gicd_base); 117 gicd_write_ctlr(driver_data->gicd_base, 118 ctlr & ~(CTLR_ENABLE_G0_BIT | CTLR_ENABLE_G1_BIT)); 119 120 /* Set the default attribute of all SPIs */ 121 gicv2_spis_configure_defaults(driver_data->gicd_base); 122 123 #if !ERROR_DEPRECATED 124 if (driver_data->interrupt_props != NULL) { 125 #endif 126 gicv2_secure_spis_configure_props(driver_data->gicd_base, 127 driver_data->interrupt_props, 128 driver_data->interrupt_props_num); 129 #if !ERROR_DEPRECATED 130 } else { 131 assert(driver_data->g0_interrupt_array); 132 133 /* Configure the G0 SPIs */ 134 gicv2_secure_spis_configure(driver_data->gicd_base, 135 driver_data->g0_interrupt_num, 136 driver_data->g0_interrupt_array); 137 } 138 #endif 139 140 /* Re-enable the secure SPIs now that they have been configured */ 141 gicd_write_ctlr(driver_data->gicd_base, ctlr | CTLR_ENABLE_G0_BIT); 142 } 143 144 /******************************************************************************* 145 * Initialize the ARM GICv2 driver with the provided platform inputs 146 ******************************************************************************/ 147 void gicv2_driver_init(const gicv2_driver_data_t *plat_driver_data) 148 { 149 unsigned int gic_version; 150 assert(plat_driver_data); 151 assert(plat_driver_data->gicd_base); 152 assert(plat_driver_data->gicc_base); 153 154 #if !ERROR_DEPRECATED 155 if (plat_driver_data->interrupt_props == NULL) { 156 /* Interrupt properties array size must be 0 */ 157 assert(plat_driver_data->interrupt_props_num == 0); 158 159 /* The platform should provide a list of secure interrupts */ 160 assert(plat_driver_data->g0_interrupt_array); 161 162 /* 163 * If there are no interrupts of a particular type, then the 164 * number of interrupts of that type should be 0 and vice-versa. 165 */ 166 assert(plat_driver_data->g0_interrupt_array ? 167 plat_driver_data->g0_interrupt_num : 168 plat_driver_data->g0_interrupt_num == 0); 169 } 170 #else 171 assert(plat_driver_data->interrupt_props != NULL); 172 assert(plat_driver_data->interrupt_props_num > 0); 173 #endif 174 175 /* Ensure that this is a GICv2 system */ 176 gic_version = gicd_read_pidr2(plat_driver_data->gicd_base); 177 gic_version = (gic_version >> PIDR2_ARCH_REV_SHIFT) 178 & PIDR2_ARCH_REV_MASK; 179 180 /* 181 * GICv1 with security extension complies with trusted firmware 182 * GICv2 driver as far as virtualization and few tricky power 183 * features are not used. GICv2 features that are not supported 184 * by GICv1 with Security Extensions are: 185 * - virtual interrupt support. 186 * - wake up events. 187 * - writeable GIC state register (for power sequences) 188 * - interrupt priority drop. 189 * - interrupt signal bypass. 190 */ 191 assert(gic_version == ARCH_REV_GICV2 || gic_version == ARCH_REV_GICV1); 192 193 driver_data = plat_driver_data; 194 195 /* 196 * The GIC driver data is initialized by the primary CPU with caches 197 * enabled. When the secondary CPU boots up, it initializes the 198 * GICC/GICR interface with the caches disabled. Hence flush the 199 * driver_data to ensure coherency. This is not required if the 200 * platform has HW_ASSISTED_COHERENCY enabled. 201 */ 202 #if !HW_ASSISTED_COHERENCY 203 flush_dcache_range((uintptr_t) &driver_data, sizeof(driver_data)); 204 flush_dcache_range((uintptr_t) driver_data, sizeof(*driver_data)); 205 #endif 206 INFO("ARM GICv2 driver initialized\n"); 207 } 208 209 /****************************************************************************** 210 * This function returns whether FIQ is enabled in the GIC CPU interface. 211 *****************************************************************************/ 212 unsigned int gicv2_is_fiq_enabled(void) 213 { 214 unsigned int gicc_ctlr; 215 216 assert(driver_data); 217 assert(driver_data->gicc_base); 218 219 gicc_ctlr = gicc_read_ctlr(driver_data->gicc_base); 220 return (gicc_ctlr >> FIQ_EN_SHIFT) & 0x1; 221 } 222 223 /******************************************************************************* 224 * This function returns the type of the highest priority pending interrupt at 225 * the GIC cpu interface. The return values can be one of the following : 226 * PENDING_G1_INTID : The interrupt type is non secure Group 1. 227 * 0 - 1019 : The interrupt type is secure Group 0. 228 * GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with 229 * sufficient priority to be signaled 230 ******************************************************************************/ 231 unsigned int gicv2_get_pending_interrupt_type(void) 232 { 233 assert(driver_data); 234 assert(driver_data->gicc_base); 235 236 return gicc_read_hppir(driver_data->gicc_base) & INT_ID_MASK; 237 } 238 239 /******************************************************************************* 240 * This function returns the id of the highest priority pending interrupt at 241 * the GIC cpu interface. GIC_SPURIOUS_INTERRUPT is returned when there is no 242 * interrupt pending. 243 ******************************************************************************/ 244 unsigned int gicv2_get_pending_interrupt_id(void) 245 { 246 unsigned int id; 247 248 assert(driver_data); 249 assert(driver_data->gicc_base); 250 251 id = gicc_read_hppir(driver_data->gicc_base) & INT_ID_MASK; 252 253 /* 254 * Find out which non-secure interrupt it is under the assumption that 255 * the GICC_CTLR.AckCtl bit is 0. 256 */ 257 if (id == PENDING_G1_INTID) 258 id = gicc_read_ahppir(driver_data->gicc_base) & INT_ID_MASK; 259 260 return id; 261 } 262 263 /******************************************************************************* 264 * This functions reads the GIC cpu interface Interrupt Acknowledge register 265 * to start handling the pending secure 0 interrupt. It returns the 266 * contents of the IAR. 267 ******************************************************************************/ 268 unsigned int gicv2_acknowledge_interrupt(void) 269 { 270 assert(driver_data); 271 assert(driver_data->gicc_base); 272 273 return gicc_read_IAR(driver_data->gicc_base); 274 } 275 276 /******************************************************************************* 277 * This functions writes the GIC cpu interface End Of Interrupt register with 278 * the passed value to finish handling the active secure group 0 interrupt. 279 ******************************************************************************/ 280 void gicv2_end_of_interrupt(unsigned int id) 281 { 282 assert(driver_data); 283 assert(driver_data->gicc_base); 284 285 gicc_write_EOIR(driver_data->gicc_base, id); 286 } 287 288 /******************************************************************************* 289 * This function returns the type of the interrupt id depending upon the group 290 * this interrupt has been configured under by the interrupt controller i.e. 291 * group0 secure or group1 non secure. It returns zero for Group 0 secure and 292 * one for Group 1 non secure interrupt. 293 ******************************************************************************/ 294 unsigned int gicv2_get_interrupt_group(unsigned int id) 295 { 296 assert(driver_data); 297 assert(driver_data->gicd_base); 298 299 return gicd_get_igroupr(driver_data->gicd_base, id); 300 } 301 302 /******************************************************************************* 303 * This function returns the priority of the interrupt the processor is 304 * currently servicing. 305 ******************************************************************************/ 306 unsigned int gicv2_get_running_priority(void) 307 { 308 assert(driver_data); 309 assert(driver_data->gicc_base); 310 311 return gicc_read_rpr(driver_data->gicc_base); 312 } 313 314 /******************************************************************************* 315 * This function sets the GICv2 target mask pattern for the current PE. The PE 316 * target mask is used to translate linear PE index (returned by platform core 317 * position) to a bit mask used when targeting interrupts to a PE, viz. when 318 * raising SGIs and routing SPIs. 319 ******************************************************************************/ 320 void gicv2_set_pe_target_mask(unsigned int proc_num) 321 { 322 assert(driver_data); 323 assert(driver_data->gicd_base); 324 assert(driver_data->target_masks); 325 assert(proc_num < GICV2_MAX_TARGET_PE); 326 assert(proc_num < driver_data->target_masks_num); 327 328 /* Return if the target mask is already populated */ 329 if (driver_data->target_masks[proc_num]) 330 return; 331 332 /* 333 * Update target register corresponding to this CPU and flush for it to 334 * be visible to other CPUs. 335 */ 336 if (driver_data->target_masks[proc_num] == 0) { 337 driver_data->target_masks[proc_num] = 338 gicv2_get_cpuif_id(driver_data->gicd_base); 339 #if !HW_ASSISTED_COHERENCY 340 /* 341 * PEs only update their own masks. Primary updates it with 342 * caches on. But because secondaries does it with caches off, 343 * all updates go to memory directly, and there's no danger of 344 * secondaries overwriting each others' mask, despite 345 * target_masks[] not being cache line aligned. 346 */ 347 flush_dcache_range((uintptr_t) 348 &driver_data->target_masks[proc_num], 349 sizeof(driver_data->target_masks[proc_num])); 350 #endif 351 } 352 } 353 354 /******************************************************************************* 355 * This function returns the active status of the interrupt (either because the 356 * state is active, or active and pending). 357 ******************************************************************************/ 358 unsigned int gicv2_get_interrupt_active(unsigned int id) 359 { 360 assert(driver_data); 361 assert(driver_data->gicd_base); 362 assert(id <= MAX_SPI_ID); 363 364 return gicd_get_isactiver(driver_data->gicd_base, id); 365 } 366 367 /******************************************************************************* 368 * This function enables the interrupt identified by id. 369 ******************************************************************************/ 370 void gicv2_enable_interrupt(unsigned int id) 371 { 372 assert(driver_data); 373 assert(driver_data->gicd_base); 374 assert(id <= MAX_SPI_ID); 375 376 /* 377 * Ensure that any shared variable updates depending on out of band 378 * interrupt trigger are observed before enabling interrupt. 379 */ 380 dsbishst(); 381 gicd_set_isenabler(driver_data->gicd_base, id); 382 } 383 384 /******************************************************************************* 385 * This function disables the interrupt identified by id. 386 ******************************************************************************/ 387 void gicv2_disable_interrupt(unsigned int id) 388 { 389 assert(driver_data); 390 assert(driver_data->gicd_base); 391 assert(id <= MAX_SPI_ID); 392 393 /* 394 * Disable interrupt, and ensure that any shared variable updates 395 * depending on out of band interrupt trigger are observed afterwards. 396 */ 397 gicd_set_icenabler(driver_data->gicd_base, id); 398 dsbishst(); 399 } 400 401 /******************************************************************************* 402 * This function sets the interrupt priority as supplied for the given interrupt 403 * id. 404 ******************************************************************************/ 405 void gicv2_set_interrupt_priority(unsigned int id, unsigned int priority) 406 { 407 assert(driver_data); 408 assert(driver_data->gicd_base); 409 assert(id <= MAX_SPI_ID); 410 411 gicd_set_ipriorityr(driver_data->gicd_base, id, priority); 412 } 413 414 /******************************************************************************* 415 * This function assigns group for the interrupt identified by id. The group can 416 * be any of GICV2_INTR_GROUP* 417 ******************************************************************************/ 418 void gicv2_set_interrupt_type(unsigned int id, unsigned int type) 419 { 420 assert(driver_data); 421 assert(driver_data->gicd_base); 422 assert(id <= MAX_SPI_ID); 423 424 /* Serialize read-modify-write to Distributor registers */ 425 spin_lock(&gic_lock); 426 switch (type) { 427 case GICV2_INTR_GROUP1: 428 gicd_set_igroupr(driver_data->gicd_base, id); 429 break; 430 case GICV2_INTR_GROUP0: 431 gicd_clr_igroupr(driver_data->gicd_base, id); 432 break; 433 default: 434 assert(0); 435 } 436 spin_unlock(&gic_lock); 437 } 438 439 /******************************************************************************* 440 * This function raises the specified SGI to requested targets. 441 * 442 * The proc_num parameter must be the linear index of the target PE in the 443 * system. 444 ******************************************************************************/ 445 void gicv2_raise_sgi(int sgi_num, int proc_num) 446 { 447 unsigned int sgir_val, target; 448 449 assert(driver_data); 450 assert(proc_num < GICV2_MAX_TARGET_PE); 451 assert(driver_data->gicd_base); 452 453 /* 454 * Target masks array must have been supplied, and the core position 455 * should be valid. 456 */ 457 assert(driver_data->target_masks); 458 assert(proc_num < driver_data->target_masks_num); 459 460 /* Don't raise SGI if the mask hasn't been populated */ 461 target = driver_data->target_masks[proc_num]; 462 assert(target != 0); 463 464 sgir_val = GICV2_SGIR_VALUE(SGIR_TGT_SPECIFIC, target, sgi_num); 465 466 /* 467 * Ensure that any shared variable updates depending on out of band 468 * interrupt trigger are observed before raising SGI. 469 */ 470 dsbishst(); 471 gicd_write_sgir(driver_data->gicd_base, sgir_val); 472 } 473 474 /******************************************************************************* 475 * This function sets the interrupt routing for the given SPI interrupt id. 476 * The interrupt routing is specified in routing mode. The proc_num parameter is 477 * linear index of the PE to target SPI. When proc_num < 0, the SPI may target 478 * all PEs. 479 ******************************************************************************/ 480 void gicv2_set_spi_routing(unsigned int id, int proc_num) 481 { 482 int target; 483 484 assert(driver_data); 485 assert(driver_data->gicd_base); 486 487 assert(id >= MIN_SPI_ID && id <= MAX_SPI_ID); 488 489 /* 490 * Target masks array must have been supplied, and the core position 491 * should be valid. 492 */ 493 assert(driver_data->target_masks); 494 assert(proc_num < GICV2_MAX_TARGET_PE); 495 assert(proc_num < driver_data->target_masks_num); 496 497 if (proc_num < 0) { 498 /* Target all PEs */ 499 target = GIC_TARGET_CPU_MASK; 500 } else { 501 /* Don't route interrupt if the mask hasn't been populated */ 502 target = driver_data->target_masks[proc_num]; 503 assert(target != 0); 504 } 505 506 gicd_set_itargetsr(driver_data->gicd_base, id, target); 507 } 508 509 /******************************************************************************* 510 * This function clears the pending status of an interrupt identified by id. 511 ******************************************************************************/ 512 void gicv2_clear_interrupt_pending(unsigned int id) 513 { 514 assert(driver_data); 515 assert(driver_data->gicd_base); 516 517 /* SGIs can't be cleared pending */ 518 assert(id >= MIN_PPI_ID); 519 520 /* 521 * Clear pending interrupt, and ensure that any shared variable updates 522 * depending on out of band interrupt trigger are observed afterwards. 523 */ 524 gicd_set_icpendr(driver_data->gicd_base, id); 525 dsbishst(); 526 } 527 528 /******************************************************************************* 529 * This function sets the pending status of an interrupt identified by id. 530 ******************************************************************************/ 531 void gicv2_set_interrupt_pending(unsigned int id) 532 { 533 assert(driver_data); 534 assert(driver_data->gicd_base); 535 536 /* SGIs can't be cleared pending */ 537 assert(id >= MIN_PPI_ID); 538 539 /* 540 * Ensure that any shared variable updates depending on out of band 541 * interrupt trigger are observed before setting interrupt pending. 542 */ 543 dsbishst(); 544 gicd_set_ispendr(driver_data->gicd_base, id); 545 } 546 547 /******************************************************************************* 548 * This function sets the PMR register with the supplied value. Returns the 549 * original PMR. 550 ******************************************************************************/ 551 unsigned int gicv2_set_pmr(unsigned int mask) 552 { 553 unsigned int old_mask; 554 555 assert(driver_data); 556 assert(driver_data->gicc_base); 557 558 old_mask = gicc_read_pmr(driver_data->gicc_base); 559 560 /* 561 * Order memory updates w.r.t. PMR write, and ensure they're visible 562 * before potential out of band interrupt trigger because of PMR update. 563 */ 564 dmbishst(); 565 gicc_write_pmr(driver_data->gicc_base, mask); 566 dsbishst(); 567 568 return old_mask; 569 } 570