xref: /rk3399_ARM-atf/docs/plat/arm/fvp/fvp-specific-configs.rst (revision 1a219805187d0fe1194e4d0214313cbbe3783f2e)
1Booting Firmware Update images
2------------------------------
3
4When Firmware Update (FWU) is enabled there are at least 2 new images
5that have to be loaded, the Non-Secure FWU ROM (NS-BL1U), and the
6FWU FIP.
7
8The additional fip images must be loaded with:
9
10::
11
12    --data cluster0.cpu0="<path_to>/ns_bl1u.bin"@0x0beb8000	[ns_bl1u_base_address]
13    --data cluster0.cpu0="<path_to>/fwu_fip.bin"@0x08400000	[ns_bl2u_base_address]
14
15The address ns_bl1u_base_address is the value of NS_BL1U_BASE.
16In the same way, the address ns_bl2u_base_address is the value of
17NS_BL2U_BASE.
18
19Booting an EL3 payload
20----------------------
21
22The EL3 payloads boot flow requires the CPU's mailbox to be cleared at reset for
23the secondary CPUs holding pen to work properly. Unfortunately, its reset value
24is undefined on the FVP platform and the FVP platform code doesn't clear it.
25Therefore, one must modify the way the model is normally invoked in order to
26clear the mailbox at start-up.
27
28One way to do that is to create an 8-byte file containing all zero bytes using
29the following command:
30
31.. code:: shell
32
33    dd if=/dev/zero of=mailbox.dat bs=1 count=8
34
35and pre-load it into the FVP memory at the mailbox address (i.e. ``0x04000000``)
36using the following model parameters:
37
38::
39
40    --data cluster0.cpu0=mailbox.dat@0x04000000   [Base FVPs]
41    --data=mailbox.dat@0x04000000                 [Foundation FVP]
42
43To provide the model with the EL3 payload image, the following methods may be
44used:
45
46#. If the EL3 payload is able to execute in place, it may be programmed into
47   flash memory. On Base Cortex and AEM FVPs, the following model parameter
48   loads it at the base address of the NOR FLASH1 (the NOR FLASH0 is already
49   used for the FIP):
50
51   ::
52
53       -C bp.flashloader1.fname="<path-to>/<el3-payload>"
54
55   On Foundation FVP, there is no flash loader component and the EL3 payload
56   may be programmed anywhere in flash using method 3 below.
57
58#. When using the ``SPIN_ON_BL1_EXIT=1`` loading method, the following DS-5
59   command may be used to load the EL3 payload ELF image over JTAG:
60
61   ::
62
63       load <path-to>/el3-payload.elf
64
65#. The EL3 payload may be pre-loaded in volatile memory using the following
66   model parameters:
67
68   ::
69
70       --data cluster0.cpu0="<path-to>/el3-payload>"@address   [Base FVPs]
71       --data="<path-to>/<el3-payload>"@address                [Foundation FVP]
72
73   The address provided to the FVP must match the ``EL3_PAYLOAD_BASE`` address
74   used when building TF-A.
75
76Booting a preloaded kernel image
77--------------------------------
78
79TF-A can boot a Linux kernel, which uses a ramdisk as a filesystem. The
80required initrd properties are injected in to the device tree blob (DTB) at
81build time.
82
83Preloaded kernel image - Normal flow
84^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
85
86The following example uses a simplified boot flow to boot a Linux kernel
87using TF-A. This can be useful if the kernel is already present in memory
88(like in FVP).
89
90For example, if the kernel is loaded at ``0x80080000`` the firmware can be
91built like this:
92
93.. code:: shell
94
95    make PLAT=fvp DEBUG=1             \
96    ARM_LINUX_KERNEL_AS_BL33=1        \
97    PRELOADED_BL33_BASE=0x80080000    \
98    INITRD_SIZE=0x8000000             \
99    all fip
100
101The options ``INITRD_SIZE`` or ``INITRD_PATH`` triggers the insertion of initrd
102properties in to the DTB. ``INITRD_BASE`` is also required but a default value
103is set by the FVP platform.
104
105The options available here are:
106
107    ::
108        INITRD_BASE: Set the initrd base address in memory. Defaults to 0x90000000 in FVP.
109        INITRD_SIZE: Set the initrd size in dec or hex format. Hex format must precede with '0x'.
110        INITRD_PATH: Provide an initrd path for the build time to determine its exact size.
111
112Users can provide either ``INITRD_SIZE`` or ``INITRD_PATH`` to set the initrd
113size value. ``INITRD_SIZE`` takes prioty over ``INITRD_PATH``.
114
115Now the FVP binary can be run with the following command:
116
117.. code:: shell
118
119    <path-to>/FVP_Base_AEMv8A-AEMv8A                            \
120    -C bp.secureflashloader.fname=<path-to>/bl1.bin             \
121    -C bp.flashloader0.fname=<path-to>/fip.bin                  \
122    --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
123    --data cluster0.cpu0="<path-to>/<initrd.bin>"@0x90000000
124
125.. note::
126    Providing a higher value for an initrd size than the actual size of the file
127    is supported but it will trigger a non-breaking "Initramfs unpacking failed"
128    error by the kernel at runtime. This error can be ignored because initrd's
129    can be stacked one after another, when the kernel unpacks the first initrd it
130    looks for another in the extra space which it won't find, hence the error.
131
132Booting a preloaded kernel image - Reset to BL31 (Base FVP)
133^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
134
135We can also boot a Linux kernel by jumping directly to BL31 ``RESET_TO_BL31=1``.
136This requires preloading a DTB into memory. We can inject the initrd start and
137end properties into the DTB (HW_CONFIG) at build time which is then stored by
138TF-A in ``build/fvp/<build-type>/fdts/`` directory.
139
140For example, we can build the firmware as:
141
142.. code:: shell
143
144    make PLAT=fvp DEBUG=1                   \
145    RESET_TO_BL31=1                         \
146    ARM_LINUX_KERNEL_AS_BL33=1              \
147    PRELOADED_BL33_BASE=0x80080000          \
148    ARM_PRELOADED_DTB_BASE=0x87F00000       \
149    INITRD_BASE=0x88000000                  \
150    INITRD_PATH=<path-to>/initrd.bin
151
152Now we can run the binary as:
153
154.. code:: shell
155
156    <path-to>/FVP_Base_AEMv8A-AEMv8A                               \
157    -C cluster0.NUM_CORES=4                                        \
158    -C cluster0.cpu0.RVBAR=0x04001000                              \
159    -C cluster0.cpu1.RVBAR=0x04001000                              \
160    -C cluster0.cpu2.RVBAR=0x04001000                              \
161    -C cluster0.cpu3.RVBAR=0x04001000                              \
162    --data cluster0.cpu0="<path-to>/bl31.bin"@0x04001000           \
163    --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000    \
164    --data cluster0.cpu0="<path-to>/<initrd.bin>"@0x88000000       \
165    --data cluster0.cpu0="<path-to>/fdts/fvp-base-gicv3-psci.dtb"@87F00000
166
167Obtaining the Flattened Device Trees
168^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
169
170Depending on the FVP configuration and Linux configuration used, different
171FDT files are required. FDT source files for the Foundation and Base FVPs can
172be found in the TF-A source directory under ``fdts/``. The Foundation FVP has
173a subset of the Base FVP components. For example, the Foundation FVP lacks
174CLCD and MMC support, and has only one CPU cluster.
175
176.. note::
177   It is not recommended to use the FDTs built along the kernel because not
178   all FDTs are available from there.
179
180The dynamic configuration capability is enabled in the firmware for FVPs.
181This means that the firmware can authenticate and load the FDT if present in
182FIP. A default FDT is packaged into FIP during the build based on
183the build configuration. This can be overridden by using the ``FVP_HW_CONFIG``
184or ``FVP_HW_CONFIG_DTS`` build options (refer to
185:ref:`build_options_arm_fvp_platform` for details on the options).
186
187-  ``fvp-base-gicv2-psci.dts``
188
189   For use with models such as the Cortex-A57-A53 or Cortex-A32 Base FVPs
190   without shifted affinities and with Base memory map configuration.
191
192-  ``fvp-base-gicv3-psci.dts``
193
194   For use with models such as the Cortex-A57-A53 or Cortex-A32 Base FVPs
195   without shifted affinities and with Base memory map configuration and
196   Linux GICv3 support.
197
198-  ``fvp-base-gicv3-psci-1t.dts``
199
200   For use with models such as the AEMv8-RevC Base FVP with shifted affinities,
201   single threaded CPUs, Base memory map configuration and Linux GICv3 support.
202
203-  ``fvp-base-gicv3-psci-dynamiq.dts``
204
205   For use with models as the Cortex-A55-A75 Base FVPs with shifted affinities,
206   single cluster, single threaded CPUs, Base memory map configuration and Linux
207   GICv3 support.
208
209-  ``fvp-foundation-gicv2-psci.dts``
210
211   For use with Foundation FVP with Base memory map configuration.
212
213-  ``fvp-foundation-gicv3-psci.dts``
214
215   (Default) For use with Foundation FVP with Base memory map configuration
216   and Linux GICv3 support.
217
218--------------
219
220*Copyright (c) 2019-2024, Arm Limited. All rights reserved.*
221