1*6ee92598Sjohpow01Granule Protection Tables Library 2*6ee92598Sjohpow01================================= 3*6ee92598Sjohpow01 4*6ee92598Sjohpow01This document describes the design of the granule protection tables (GPT) 5*6ee92598Sjohpow01library used by Trusted Firmware-A (TF-A). This library provides the APIs needed 6*6ee92598Sjohpow01to initialize the GPTs based on a data structure containing information about 7*6ee92598Sjohpow01the systems memory layout, configure the system registers to enable granule 8*6ee92598Sjohpow01protection checks based on these tables, and transition granules between 9*6ee92598Sjohpow01different PAS (physical address spaces) at runtime. 10*6ee92598Sjohpow01 11*6ee92598Sjohpow01Arm CCA adds two new security states for a total of four: root, realm, secure, and 12*6ee92598Sjohpow01non-secure. In addition to new security states, corresponding physical address 13*6ee92598Sjohpow01spaces have been added to control memory access for each state. The PAS access 14*6ee92598Sjohpow01allowed to each security state can be seen in the table below. 15*6ee92598Sjohpow01 16*6ee92598Sjohpow01.. list-table:: Security states and PAS access rights 17*6ee92598Sjohpow01 :widths: 25 25 25 25 25 18*6ee92598Sjohpow01 :header-rows: 1 19*6ee92598Sjohpow01 20*6ee92598Sjohpow01 * - 21*6ee92598Sjohpow01 - Root state 22*6ee92598Sjohpow01 - Realm state 23*6ee92598Sjohpow01 - Secure state 24*6ee92598Sjohpow01 - Non-secure state 25*6ee92598Sjohpow01 * - Root PAS 26*6ee92598Sjohpow01 - yes 27*6ee92598Sjohpow01 - no 28*6ee92598Sjohpow01 - no 29*6ee92598Sjohpow01 - no 30*6ee92598Sjohpow01 * - Realm PAS 31*6ee92598Sjohpow01 - yes 32*6ee92598Sjohpow01 - yes 33*6ee92598Sjohpow01 - no 34*6ee92598Sjohpow01 - no 35*6ee92598Sjohpow01 * - Secure PAS 36*6ee92598Sjohpow01 - yes 37*6ee92598Sjohpow01 - no 38*6ee92598Sjohpow01 - yes 39*6ee92598Sjohpow01 - no 40*6ee92598Sjohpow01 * - Non-secure PAS 41*6ee92598Sjohpow01 - yes 42*6ee92598Sjohpow01 - yes 43*6ee92598Sjohpow01 - yes 44*6ee92598Sjohpow01 - yes 45*6ee92598Sjohpow01 46*6ee92598Sjohpow01The GPT can function as either a 1 level or 2 level lookup depending on how a 47*6ee92598Sjohpow01PAS region is configured. The first step is the level 0 table, each entry in the 48*6ee92598Sjohpow01level 0 table controls access to a relatively large region in memory (block 49*6ee92598Sjohpow01descriptor), and the entire region can belong to a single PAS when a one step 50*6ee92598Sjohpow01mapping is used, or a level 0 entry can link to a level 1 table where relatively 51*6ee92598Sjohpow01small regions (granules) of memory can be assigned to different PAS with a 2 52*6ee92598Sjohpow01step mapping. The type of mapping used for each PAS is determined by the user 53*6ee92598Sjohpow01when setting up the configuration structure. 54*6ee92598Sjohpow01 55*6ee92598Sjohpow01Design Concepts and Interfaces 56*6ee92598Sjohpow01------------------------------ 57*6ee92598Sjohpow01 58*6ee92598Sjohpow01This section covers some important concepts and data structures used in the GPT 59*6ee92598Sjohpow01library. 60*6ee92598Sjohpow01 61*6ee92598Sjohpow01There are three main parameters that determine how the tables are organized and 62*6ee92598Sjohpow01function: the PPS (protected physical space) which is the total amount of 63*6ee92598Sjohpow01protected physical address space in the system, PGS (physical granule size) 64*6ee92598Sjohpow01which is how large each level 1 granule is, and L0GPTSZ (level 0 GPT size) which 65*6ee92598Sjohpow01determines how much physical memory is governed by each level 0 entry. A granule 66*6ee92598Sjohpow01is the smallest unit of memory that can be independently assigned to a PAS. 67*6ee92598Sjohpow01 68*6ee92598Sjohpow01L0GPTSZ is determined by the hardware and is read from the GPCCR_EL3 register. 69*6ee92598Sjohpow01PPS and PGS are passed into the APIs at runtime and can be determined in 70*6ee92598Sjohpow01whatever way is best for a given platform, either through some algorithm or hard 71*6ee92598Sjohpow01coded in the firmware. 72*6ee92598Sjohpow01 73*6ee92598Sjohpow01GPT setup is split into two parts: table creation and runtime initialization. In 74*6ee92598Sjohpow01the table creation step, a data structure containing information about the 75*6ee92598Sjohpow01desired PAS regions is passed into the library which validates the mappings, 76*6ee92598Sjohpow01creates the tables in memory, and enables granule protection checks. In the 77*6ee92598Sjohpow01runtime initialization step, the runtime firmware locates the existing tables in 78*6ee92598Sjohpow01memory using the GPT register configuration and saves important data to a 79*6ee92598Sjohpow01structure used by the granule transition service which will be covered more 80*6ee92598Sjohpow01below. 81*6ee92598Sjohpow01 82*6ee92598Sjohpow01In the reference implementation for FVP models, you can find an example of PAS 83*6ee92598Sjohpow01region definitions in the file ``include/plat/arm/common/arm_pas_def.h``. Table 84*6ee92598Sjohpow01creation API calls can be found in ``plat/arm/common/arm_bl2_setup.c`` and 85*6ee92598Sjohpow01runtime initialization API calls can be seen in 86*6ee92598Sjohpow01``plat/arm/common/arm_bl31_setup.c``. 87*6ee92598Sjohpow01 88*6ee92598Sjohpow01Defining PAS regions 89*6ee92598Sjohpow01~~~~~~~~~~~~~~~~~~~~ 90*6ee92598Sjohpow01 91*6ee92598Sjohpow01A ``pas_region_t`` structure is a way to represent a physical address space and 92*6ee92598Sjohpow01its attributes that can be used by the GPT library to initialize the tables. 93*6ee92598Sjohpow01 94*6ee92598Sjohpow01This structure is composed of the following: 95*6ee92598Sjohpow01 96*6ee92598Sjohpow01#. The base physical address 97*6ee92598Sjohpow01#. The region size 98*6ee92598Sjohpow01#. The desired attributes of this memory region (mapping type, PAS type) 99*6ee92598Sjohpow01 100*6ee92598Sjohpow01See the ``pas_region_t`` type in ``include/lib/gpt_rme/gpt_rme.h``. 101*6ee92598Sjohpow01 102*6ee92598Sjohpow01The programmer should provide the API with an array containing ``pas_region_t`` 103*6ee92598Sjohpow01structures, then the library will check the desired memory access layout for 104*6ee92598Sjohpow01validity and create tables to implement it. 105*6ee92598Sjohpow01 106*6ee92598Sjohpow01``pas_region_t`` is a public type, however it is recommended that the macros 107*6ee92598Sjohpow01``GPT_MAP_REGION_BLOCK`` and ``GPT_MAP_REGION_GRANULE`` be used to populate 108*6ee92598Sjohpow01these structures instead of doing it manually to reduce the risk of future 109*6ee92598Sjohpow01compatibility issues. These macros take the base physical address, region size, 110*6ee92598Sjohpow01and PAS type as arguments to generate the pas_region_t structure. As the names 111*6ee92598Sjohpow01imply, ``GPT_MAP_REGION_BLOCK`` creates a region using only L0 mapping while 112*6ee92598Sjohpow01``GPT_MAP_REGION_GRANULE`` creates a region using L0 and L1 mappings. 113*6ee92598Sjohpow01 114*6ee92598Sjohpow01Level 0 and Level 1 Tables 115*6ee92598Sjohpow01~~~~~~~~~~~~~~~~~~~~~~~~~~ 116*6ee92598Sjohpow01 117*6ee92598Sjohpow01The GPT initialization APIs require memory to be passed in for the tables to be 118*6ee92598Sjohpow01constructed, ``gpt_init_l0_tables`` takes a memory address and size for building 119*6ee92598Sjohpow01the level 0 tables and ``gpt_init_pas_l1_tables`` takes an address and size for 120*6ee92598Sjohpow01building the level 1 tables which are linked from level 0 descriptors. The 121*6ee92598Sjohpow01tables should have PAS type ``GPT_GPI_ROOT`` and a typical system might place 122*6ee92598Sjohpow01its level 0 table in SRAM and its level 1 table(s) in DRAM. 123*6ee92598Sjohpow01 124*6ee92598Sjohpow01Granule Transition Service 125*6ee92598Sjohpow01~~~~~~~~~~~~~~~~~~~~~~~~~~ 126*6ee92598Sjohpow01 127*6ee92598Sjohpow01The Granule Transition Service allows memory mapped with GPT_MAP_REGION_GRANULE 128*6ee92598Sjohpow01ownership to be changed using SMC calls. Non-secure granules can be transitioned 129*6ee92598Sjohpow01to either realm or secure space, and realm and secure granules can be 130*6ee92598Sjohpow01transitioned back to non-secure. This library only allows memory mapped as 131*6ee92598Sjohpow01granules to be transitioned, memory mapped as blocks have their GPIs fixed after 132*6ee92598Sjohpow01table creation. 133*6ee92598Sjohpow01 134*6ee92598Sjohpow01Library APIs 135*6ee92598Sjohpow01------------ 136*6ee92598Sjohpow01 137*6ee92598Sjohpow01The public APIs and types can be found in ``include/lib/gpt_rme/gpt_rme.h`` and this 138*6ee92598Sjohpow01section is intended to provide additional details and clarifications. 139*6ee92598Sjohpow01 140*6ee92598Sjohpow01To create the GPTs and enable granule protection checks the APIs need to be 141*6ee92598Sjohpow01called in the correct order and at the correct time during the system boot 142*6ee92598Sjohpow01process. 143*6ee92598Sjohpow01 144*6ee92598Sjohpow01#. Firmware must enable the MMU. 145*6ee92598Sjohpow01#. Firmware must call ``gpt_init_l0_tables`` to initialize the level 0 tables to 146*6ee92598Sjohpow01 a default state, that is, initializing all of the L0 descriptors to allow all 147*6ee92598Sjohpow01 accesses to all memory. The PPS is provided to this function as an argument. 148*6ee92598Sjohpow01#. DDR discovery and initialization by the system, the discovered DDR region(s) 149*6ee92598Sjohpow01 are then added to the L1 PAS regions to be initialized in the next step and 150*6ee92598Sjohpow01 used by the GTSI at runtime. 151*6ee92598Sjohpow01#. Firmware must call ``gpt_init_pas_l1_tables`` with a pointer to an array of 152*6ee92598Sjohpow01 ``pas_region_t`` structures containing the desired memory access layout. The 153*6ee92598Sjohpow01 PGS is provided to this function as an argument. 154*6ee92598Sjohpow01#. Firmware must call ``gpt_enable`` to enable granule protection checks by 155*6ee92598Sjohpow01 setting the correct register values. 156*6ee92598Sjohpow01#. In systems that make use of the granule transition service, runtime 157*6ee92598Sjohpow01 firmware must call ``gpt_runtime_init`` to set up the data structures needed 158*6ee92598Sjohpow01 by the GTSI to find the tables and transition granules between PAS types. 159*6ee92598Sjohpow01 160*6ee92598Sjohpow01API Constraints 161*6ee92598Sjohpow01~~~~~~~~~~~~~~~ 162*6ee92598Sjohpow01 163*6ee92598Sjohpow01The values allowed by the API for PPS and PGS are enumerated types 164*6ee92598Sjohpow01defined in the file ``include/lib/gpt_rme/gpt_rme.h``. 165*6ee92598Sjohpow01 166*6ee92598Sjohpow01Allowable values for PPS along with their corresponding size. 167*6ee92598Sjohpow01 168*6ee92598Sjohpow01* ``GPCCR_PPS_4GB`` (4GB protected space, 0x100000000 bytes) 169*6ee92598Sjohpow01* ``GPCCR_PPS_64GB`` (64GB protected space, 0x1000000000 bytes) 170*6ee92598Sjohpow01* ``GPCCR_PPS_1TB`` (1TB protected space, 0x10000000000 bytes) 171*6ee92598Sjohpow01* ``GPCCR_PPS_4TB`` (4TB protected space, 0x40000000000 bytes) 172*6ee92598Sjohpow01* ``GPCCR_PPS_16TB`` (16TB protected space, 0x100000000000 bytes) 173*6ee92598Sjohpow01* ``GPCCR_PPS_256TB`` (256TB protected space, 0x1000000000000 bytes) 174*6ee92598Sjohpow01* ``GPCCR_PPS_4PB`` (4PB protected space, 0x10000000000000 bytes) 175*6ee92598Sjohpow01 176*6ee92598Sjohpow01Allowable values for PGS along with their corresponding size. 177*6ee92598Sjohpow01 178*6ee92598Sjohpow01* ``GPCCR_PGS_4K`` (4KB granules, 0x1000 bytes) 179*6ee92598Sjohpow01* ``GPCCR_PGS_16K`` (16KB granules, 0x4000 bytes) 180*6ee92598Sjohpow01* ``GPCCR_PGS_64K`` (64KB granules, 0x10000 bytes) 181*6ee92598Sjohpow01 182*6ee92598Sjohpow01Allowable values for L0GPTSZ along with the corresponding size. 183*6ee92598Sjohpow01 184*6ee92598Sjohpow01* ``GPCCR_L0GPTSZ_30BITS`` (1GB regions, 0x40000000 bytes) 185*6ee92598Sjohpow01* ``GPCCR_L0GPTSZ_34BITS`` (16GB regions, 0x400000000 bytes) 186*6ee92598Sjohpow01* ``GPCCR_L0GPTSZ_36BITS`` (64GB regions, 0x1000000000 bytes) 187*6ee92598Sjohpow01* ``GPCCR_L0GPTSZ_39BITS`` (512GB regions, 0x8000000000 bytes) 188*6ee92598Sjohpow01 189*6ee92598Sjohpow01Note that the value of the PPS, PGS, and L0GPTSZ definitions is an encoded value 190*6ee92598Sjohpow01corresponding to the size, not the size itself. The decoded hex representations 191*6ee92598Sjohpow01of the sizes have been provided for convenience. 192*6ee92598Sjohpow01 193*6ee92598Sjohpow01The L0 table memory has some constraints that must be taken into account. 194*6ee92598Sjohpow01 195*6ee92598Sjohpow01* The L0 table must be aligned to either the table size or 4096 bytes, whichever 196*6ee92598Sjohpow01 is greater. L0 table size is the total protected space (PPS) divided by the 197*6ee92598Sjohpow01 size of each L0 region (L0GPTSZ) multiplied by the size of each L0 descriptor 198*6ee92598Sjohpow01 (8 bytes). ((PPS / L0GPTSZ) * 8) 199*6ee92598Sjohpow01* The L0 memory size must be greater than or equal to the table size. 200*6ee92598Sjohpow01* The L0 memory must fall within a PAS of type GPT_GPI_ROOT. 201*6ee92598Sjohpow01 202*6ee92598Sjohpow01The L1 memory also has some constraints. 203*6ee92598Sjohpow01 204*6ee92598Sjohpow01* The L1 tables must be aligned to their size. The size of each L1 table is the 205*6ee92598Sjohpow01 size of each L0 region (L0GPTSZ) divided by the granule size (PGS) divided by 206*6ee92598Sjohpow01 the granules controlled in each byte (2). ((L0GPTSZ / PGS) / 2) 207*6ee92598Sjohpow01* There must be enough L1 memory supplied to build all requested L1 tables. 208*6ee92598Sjohpow01* The L1 memory must fall within a PAS of type GPT_GPI_ROOT. 209*6ee92598Sjohpow01 210*6ee92598Sjohpow01If an invalid combination of parameters is supplied, the APIs will print an 211*6ee92598Sjohpow01error message and return a negative value. The return values of APIs should be 212*6ee92598Sjohpow01checked to ensure successful configuration. 213*6ee92598Sjohpow01 214*6ee92598Sjohpow01Sample Calculation for L0 memory size and alignment 215*6ee92598Sjohpow01~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 216*6ee92598Sjohpow01 217*6ee92598Sjohpow01Let PPS=GPCCR_PPS_4GB and L0GPTSZ=GPCCR_L0GPTSZ_30BITS 218*6ee92598Sjohpow01 219*6ee92598Sjohpow01We can find the total L0 table size with ((PPS / L0GPTSZ) * 8) 220*6ee92598Sjohpow01 221*6ee92598Sjohpow01Substitute values to get this: ((0x100000000 / 0x40000000) * 8) 222*6ee92598Sjohpow01 223*6ee92598Sjohpow01And solve to get 32 bytes. In this case, 4096 is greater than 32, so the L0 224*6ee92598Sjohpow01tables must be aligned to 4096 bytes. 225*6ee92598Sjohpow01 226*6ee92598Sjohpow01Sample calculation for L1 table size and alignment 227*6ee92598Sjohpow01~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 228*6ee92598Sjohpow01 229*6ee92598Sjohpow01Let PGS=GPCCR_PGS_4K and L0GPTSZ=GPCCR_L0GPTSZ_30BITS 230*6ee92598Sjohpow01 231*6ee92598Sjohpow01We can find the size of each L1 table with ((L0GPTSZ / PGS) / 2). 232*6ee92598Sjohpow01 233*6ee92598Sjohpow01Substitute values: ((0x40000000 / 0x1000) / 2) 234*6ee92598Sjohpow01 235*6ee92598Sjohpow01And solve to get 0x20000 bytes per L1 table. 236