xref: /rk3399_ARM-atf/docs/components/granule-protection-tables-design.rst (revision 341df6af6eb911ffd175e129f61fc59efcf9fcea)
16ee92598Sjohpow01Granule Protection Tables Library
26ee92598Sjohpow01=================================
36ee92598Sjohpow01
46ee92598Sjohpow01This document describes the design of the granule protection tables (GPT)
56ee92598Sjohpow01library used by Trusted Firmware-A (TF-A). This library provides the APIs needed
66ee92598Sjohpow01to initialize the GPTs based on a data structure containing information about
76ee92598Sjohpow01the systems memory layout, configure the system registers to enable granule
86ee92598Sjohpow01protection checks based on these tables, and transition granules between
96ee92598Sjohpow01different PAS (physical address spaces) at runtime.
106ee92598Sjohpow01
116ee92598Sjohpow01Arm CCA adds two new security states for a total of four: root, realm, secure, and
126ee92598Sjohpow01non-secure. In addition to new security states, corresponding physical address
136ee92598Sjohpow01spaces have been added to control memory access for each state. The PAS access
146ee92598Sjohpow01allowed to each security state can be seen in the table below.
156ee92598Sjohpow01
166ee92598Sjohpow01.. list-table:: Security states and PAS access rights
176ee92598Sjohpow01   :widths: 25 25 25 25 25
186ee92598Sjohpow01   :header-rows: 1
196ee92598Sjohpow01
206ee92598Sjohpow01   * -
216ee92598Sjohpow01     - Root state
226ee92598Sjohpow01     - Realm state
236ee92598Sjohpow01     - Secure state
246ee92598Sjohpow01     - Non-secure state
256ee92598Sjohpow01   * - Root PAS
266ee92598Sjohpow01     - yes
276ee92598Sjohpow01     - no
286ee92598Sjohpow01     - no
296ee92598Sjohpow01     - no
306ee92598Sjohpow01   * - Realm PAS
316ee92598Sjohpow01     - yes
326ee92598Sjohpow01     - yes
336ee92598Sjohpow01     - no
346ee92598Sjohpow01     - no
356ee92598Sjohpow01   * - Secure PAS
366ee92598Sjohpow01     - yes
376ee92598Sjohpow01     - no
386ee92598Sjohpow01     - yes
396ee92598Sjohpow01     - no
406ee92598Sjohpow01   * - Non-secure PAS
416ee92598Sjohpow01     - yes
426ee92598Sjohpow01     - yes
436ee92598Sjohpow01     - yes
446ee92598Sjohpow01     - yes
456ee92598Sjohpow01
466ee92598Sjohpow01The GPT can function as either a 1 level or 2 level lookup depending on how a
476ee92598Sjohpow01PAS region is configured. The first step is the level 0 table, each entry in the
486ee92598Sjohpow01level 0 table controls access to a relatively large region in memory (block
496ee92598Sjohpow01descriptor), and the entire region can belong to a single PAS when a one step
506ee92598Sjohpow01mapping is used, or a level 0 entry can link to a level 1 table where relatively
516ee92598Sjohpow01small regions (granules) of memory can be assigned to different PAS with a 2
526ee92598Sjohpow01step mapping. The type of mapping used for each PAS is determined by the user
536ee92598Sjohpow01when setting up the configuration structure.
546ee92598Sjohpow01
556ee92598Sjohpow01Design Concepts and Interfaces
566ee92598Sjohpow01------------------------------
576ee92598Sjohpow01
586ee92598Sjohpow01This section covers some important concepts and data structures used in the GPT
596ee92598Sjohpow01library.
606ee92598Sjohpow01
616ee92598Sjohpow01There are three main parameters that determine how the tables are organized and
626ee92598Sjohpow01function: the PPS (protected physical space) which is the total amount of
636ee92598Sjohpow01protected physical address space in the system, PGS (physical granule size)
646ee92598Sjohpow01which is how large each level 1 granule is, and L0GPTSZ (level 0 GPT size) which
656ee92598Sjohpow01determines how much physical memory is governed by each level 0 entry. A granule
666ee92598Sjohpow01is the smallest unit of memory that can be independently assigned to a PAS.
676ee92598Sjohpow01
686ee92598Sjohpow01L0GPTSZ is determined by the hardware and is read from the GPCCR_EL3 register.
696ee92598Sjohpow01PPS and PGS are passed into the APIs at runtime and can be determined in
706ee92598Sjohpow01whatever way is best for a given platform, either through some algorithm or hard
716ee92598Sjohpow01coded in the firmware.
726ee92598Sjohpow01
736ee92598Sjohpow01GPT setup is split into two parts: table creation and runtime initialization. In
746ee92598Sjohpow01the table creation step, a data structure containing information about the
756ee92598Sjohpow01desired PAS regions is passed into the library which validates the mappings,
766ee92598Sjohpow01creates the tables in memory, and enables granule protection checks. In the
776ee92598Sjohpow01runtime initialization step, the runtime firmware locates the existing tables in
786ee92598Sjohpow01memory using the GPT register configuration and saves important data to a
796ee92598Sjohpow01structure used by the granule transition service which will be covered more
806ee92598Sjohpow01below.
816ee92598Sjohpow01
826ee92598Sjohpow01In the reference implementation for FVP models, you can find an example of PAS
8386e4859aSRohit Mathewregion definitions in the file ``plat/arm/board/fvp/include/fvp_pas_def.h``.
84*341df6afSRohit MathewTable creation API calls can be found in ``plat/arm/common/arm_common.c`` and
856ee92598Sjohpow01runtime initialization API calls can be seen in
866ee92598Sjohpow01``plat/arm/common/arm_bl31_setup.c``.
876ee92598Sjohpow01
886ee92598Sjohpow01Defining PAS regions
896ee92598Sjohpow01~~~~~~~~~~~~~~~~~~~~
906ee92598Sjohpow01
916ee92598Sjohpow01A ``pas_region_t`` structure is a way to represent a physical address space and
926ee92598Sjohpow01its attributes that can be used by the GPT library to initialize the tables.
936ee92598Sjohpow01
946ee92598Sjohpow01This structure is composed of the following:
956ee92598Sjohpow01
966ee92598Sjohpow01#. The base physical address
976ee92598Sjohpow01#. The region size
986ee92598Sjohpow01#. The desired attributes of this memory region (mapping type, PAS type)
996ee92598Sjohpow01
1006ee92598Sjohpow01See the ``pas_region_t`` type in ``include/lib/gpt_rme/gpt_rme.h``.
1016ee92598Sjohpow01
1026ee92598Sjohpow01The programmer should provide the API with an array containing ``pas_region_t``
1036ee92598Sjohpow01structures, then the library will check the desired memory access layout for
1046ee92598Sjohpow01validity and create tables to implement it.
1056ee92598Sjohpow01
1066ee92598Sjohpow01``pas_region_t`` is a public type, however it is recommended that the macros
1076ee92598Sjohpow01``GPT_MAP_REGION_BLOCK`` and ``GPT_MAP_REGION_GRANULE`` be used to populate
1086ee92598Sjohpow01these structures instead of doing it manually to reduce the risk of future
1096ee92598Sjohpow01compatibility issues. These macros take the base physical address, region size,
1106ee92598Sjohpow01and PAS type as arguments to generate the pas_region_t structure. As the names
1116ee92598Sjohpow01imply, ``GPT_MAP_REGION_BLOCK`` creates a region using only L0 mapping while
1126ee92598Sjohpow01``GPT_MAP_REGION_GRANULE`` creates a region using L0 and L1 mappings.
1136ee92598Sjohpow01
1146ee92598Sjohpow01Level 0 and Level 1 Tables
1156ee92598Sjohpow01~~~~~~~~~~~~~~~~~~~~~~~~~~
1166ee92598Sjohpow01
1176ee92598Sjohpow01The GPT initialization APIs require memory to be passed in for the tables to be
1186ee92598Sjohpow01constructed, ``gpt_init_l0_tables`` takes a memory address and size for building
1196ee92598Sjohpow01the level 0 tables and ``gpt_init_pas_l1_tables`` takes an address and size for
1206ee92598Sjohpow01building the level 1 tables which are linked from level 0 descriptors. The
1216ee92598Sjohpow01tables should have PAS type ``GPT_GPI_ROOT`` and a typical system might place
1226ee92598Sjohpow01its level 0 table in SRAM and its level 1 table(s) in DRAM.
1236ee92598Sjohpow01
1246ee92598Sjohpow01Granule Transition Service
1256ee92598Sjohpow01~~~~~~~~~~~~~~~~~~~~~~~~~~
1266ee92598Sjohpow01
1276ee92598Sjohpow01The Granule Transition Service allows memory mapped with GPT_MAP_REGION_GRANULE
1286ee92598Sjohpow01ownership to be changed using SMC calls. Non-secure granules can be transitioned
1296ee92598Sjohpow01to either realm or secure space, and realm and secure granules can be
1306ee92598Sjohpow01transitioned back to non-secure. This library only allows memory mapped as
1316ee92598Sjohpow01granules to be transitioned, memory mapped as blocks have their GPIs fixed after
1326ee92598Sjohpow01table creation.
1336ee92598Sjohpow01
1346ee92598Sjohpow01Library APIs
1356ee92598Sjohpow01------------
1366ee92598Sjohpow01
1376ee92598Sjohpow01The public APIs and types can be found in ``include/lib/gpt_rme/gpt_rme.h`` and this
1386ee92598Sjohpow01section is intended to provide additional details and clarifications.
1396ee92598Sjohpow01
1406ee92598Sjohpow01To create the GPTs and enable granule protection checks the APIs need to be
1416ee92598Sjohpow01called in the correct order and at the correct time during the system boot
1426ee92598Sjohpow01process.
1436ee92598Sjohpow01
1446ee92598Sjohpow01#. Firmware must enable the MMU.
1456ee92598Sjohpow01#. Firmware must call ``gpt_init_l0_tables`` to initialize the level 0 tables to
1466ee92598Sjohpow01   a default state, that is, initializing all of the L0 descriptors to allow all
1476ee92598Sjohpow01   accesses to all memory. The PPS is provided to this function as an argument.
1486ee92598Sjohpow01#. DDR discovery and initialization by the system, the discovered DDR region(s)
1496ee92598Sjohpow01   are then added to the L1 PAS regions to be initialized in the next step and
1506ee92598Sjohpow01   used by the GTSI at runtime.
1516ee92598Sjohpow01#. Firmware must call ``gpt_init_pas_l1_tables`` with a pointer to an array of
1526ee92598Sjohpow01   ``pas_region_t`` structures containing the desired memory access layout. The
1536ee92598Sjohpow01   PGS is provided to this function as an argument.
1546ee92598Sjohpow01#. Firmware must call ``gpt_enable`` to enable granule protection checks by
1556ee92598Sjohpow01   setting the correct register values.
1566ee92598Sjohpow01#. In systems that make use of the granule transition service, runtime
1576ee92598Sjohpow01   firmware must call ``gpt_runtime_init`` to set up the data structures needed
1586ee92598Sjohpow01   by the GTSI to find the tables and transition granules between PAS types.
1596ee92598Sjohpow01
1606ee92598Sjohpow01API Constraints
1616ee92598Sjohpow01~~~~~~~~~~~~~~~
1626ee92598Sjohpow01
1636ee92598Sjohpow01The values allowed by the API for PPS and PGS are enumerated types
1646ee92598Sjohpow01defined in the file ``include/lib/gpt_rme/gpt_rme.h``.
1656ee92598Sjohpow01
1666ee92598Sjohpow01Allowable values for PPS along with their corresponding size.
1676ee92598Sjohpow01
1686ee92598Sjohpow01* ``GPCCR_PPS_4GB`` (4GB protected space, 0x100000000 bytes)
1696ee92598Sjohpow01* ``GPCCR_PPS_64GB`` (64GB protected space, 0x1000000000 bytes)
1706ee92598Sjohpow01* ``GPCCR_PPS_1TB`` (1TB protected space, 0x10000000000 bytes)
1716ee92598Sjohpow01* ``GPCCR_PPS_4TB`` (4TB protected space, 0x40000000000 bytes)
1726ee92598Sjohpow01* ``GPCCR_PPS_16TB`` (16TB protected space, 0x100000000000 bytes)
1736ee92598Sjohpow01* ``GPCCR_PPS_256TB`` (256TB protected space, 0x1000000000000 bytes)
1746ee92598Sjohpow01* ``GPCCR_PPS_4PB`` (4PB protected space, 0x10000000000000 bytes)
1756ee92598Sjohpow01
1766ee92598Sjohpow01Allowable values for PGS along with their corresponding size.
1776ee92598Sjohpow01
1786ee92598Sjohpow01* ``GPCCR_PGS_4K`` (4KB granules, 0x1000 bytes)
1796ee92598Sjohpow01* ``GPCCR_PGS_16K`` (16KB granules, 0x4000 bytes)
1806ee92598Sjohpow01* ``GPCCR_PGS_64K`` (64KB granules, 0x10000 bytes)
1816ee92598Sjohpow01
1826ee92598Sjohpow01Allowable values for L0GPTSZ along with the corresponding size.
1836ee92598Sjohpow01
1846ee92598Sjohpow01* ``GPCCR_L0GPTSZ_30BITS`` (1GB regions, 0x40000000 bytes)
1856ee92598Sjohpow01* ``GPCCR_L0GPTSZ_34BITS`` (16GB regions, 0x400000000 bytes)
1866ee92598Sjohpow01* ``GPCCR_L0GPTSZ_36BITS`` (64GB regions, 0x1000000000 bytes)
1876ee92598Sjohpow01* ``GPCCR_L0GPTSZ_39BITS`` (512GB regions, 0x8000000000 bytes)
1886ee92598Sjohpow01
1896ee92598Sjohpow01Note that the value of the PPS, PGS, and L0GPTSZ definitions is an encoded value
1906ee92598Sjohpow01corresponding to the size, not the size itself. The decoded hex representations
1916ee92598Sjohpow01of the sizes have been provided for convenience.
1926ee92598Sjohpow01
1936ee92598Sjohpow01The L0 table memory has some constraints that must be taken into account.
1946ee92598Sjohpow01
1956ee92598Sjohpow01* The L0 table must be aligned to either the table size or 4096 bytes, whichever
1966ee92598Sjohpow01  is greater. L0 table size is the total protected space (PPS) divided by the
1976ee92598Sjohpow01  size of each L0 region (L0GPTSZ) multiplied by the size of each L0 descriptor
1986ee92598Sjohpow01  (8 bytes). ((PPS / L0GPTSZ) * 8)
1996ee92598Sjohpow01* The L0 memory size must be greater than or equal to the table size.
2006ee92598Sjohpow01* The L0 memory must fall within a PAS of type GPT_GPI_ROOT.
2016ee92598Sjohpow01
2026ee92598Sjohpow01The L1 memory also has some constraints.
2036ee92598Sjohpow01
2046ee92598Sjohpow01* The L1 tables must be aligned to their size. The size of each L1 table is the
2056ee92598Sjohpow01  size of each L0 region (L0GPTSZ) divided by the granule size (PGS) divided by
2066ee92598Sjohpow01  the granules controlled in each byte (2). ((L0GPTSZ / PGS) / 2)
2076ee92598Sjohpow01* There must be enough L1 memory supplied to build all requested L1 tables.
2086ee92598Sjohpow01* The L1 memory must fall within a PAS of type GPT_GPI_ROOT.
2096ee92598Sjohpow01
2106ee92598Sjohpow01If an invalid combination of parameters is supplied, the APIs will print an
2116ee92598Sjohpow01error message and return a negative value. The return values of APIs should be
2126ee92598Sjohpow01checked to ensure successful configuration.
2136ee92598Sjohpow01
2146ee92598Sjohpow01Sample Calculation for L0 memory size and alignment
2156ee92598Sjohpow01~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2166ee92598Sjohpow01
2176ee92598Sjohpow01Let PPS=GPCCR_PPS_4GB and L0GPTSZ=GPCCR_L0GPTSZ_30BITS
2186ee92598Sjohpow01
2196ee92598Sjohpow01We can find the total L0 table size with ((PPS / L0GPTSZ) * 8)
2206ee92598Sjohpow01
2216ee92598Sjohpow01Substitute values to get this: ((0x100000000 / 0x40000000) * 8)
2226ee92598Sjohpow01
2236ee92598Sjohpow01And solve to get 32 bytes. In this case, 4096 is greater than 32, so the L0
2246ee92598Sjohpow01tables must be aligned to 4096 bytes.
2256ee92598Sjohpow01
2266ee92598Sjohpow01Sample calculation for L1 table size and alignment
2276ee92598Sjohpow01~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2286ee92598Sjohpow01
2296ee92598Sjohpow01Let PGS=GPCCR_PGS_4K and L0GPTSZ=GPCCR_L0GPTSZ_30BITS
2306ee92598Sjohpow01
2316ee92598Sjohpow01We can find the size of each L1 table with ((L0GPTSZ / PGS) / 2).
2326ee92598Sjohpow01
2336ee92598Sjohpow01Substitute values: ((0x40000000 / 0x1000) / 2)
2346ee92598Sjohpow01
2356ee92598Sjohpow01And solve to get 0x20000 bytes per L1 table.
236