1 /* 2 * Copyright (c) 2016-2022, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 /* 8 * Contains generic routines to fix up the device tree blob passed on to 9 * payloads like BL32 and BL33 (and further down the boot chain). 10 * This allows to easily add PSCI nodes, when the original DT does not have 11 * it or advertises another method. 12 * Also it supports to add reserved memory nodes to describe memory that 13 * is used by the secure world, so that non-secure software avoids using 14 * that. 15 */ 16 17 #include <errno.h> 18 #include <stdio.h> 19 #include <string.h> 20 21 #include <libfdt.h> 22 23 #include <arch.h> 24 #include <common/debug.h> 25 #include <common/fdt_fixup.h> 26 #include <common/fdt_wrappers.h> 27 #include <drivers/console.h> 28 #include <lib/psci/psci.h> 29 #include <plat/common/platform.h> 30 31 32 static int append_psci_compatible(void *fdt, int offs, const char *str) 33 { 34 return fdt_appendprop(fdt, offs, "compatible", str, strlen(str) + 1); 35 } 36 37 /* 38 * Those defines are for PSCI v0.1 legacy clients, which we expect to use 39 * the same execution state (AArch32/AArch64) as TF-A. 40 * Kernels running in AArch32 on an AArch64 TF-A should use PSCI v0.2. 41 */ 42 #ifdef __aarch64__ 43 #define PSCI_CPU_SUSPEND_FNID PSCI_CPU_SUSPEND_AARCH64 44 #define PSCI_CPU_ON_FNID PSCI_CPU_ON_AARCH64 45 #else 46 #define PSCI_CPU_SUSPEND_FNID PSCI_CPU_SUSPEND_AARCH32 47 #define PSCI_CPU_ON_FNID PSCI_CPU_ON_AARCH32 48 #endif 49 50 /******************************************************************************* 51 * dt_add_psci_node() - Add a PSCI node into an existing device tree 52 * @fdt: pointer to the device tree blob in memory 53 * 54 * Add a device tree node describing PSCI into the root level of an existing 55 * device tree blob in memory. 56 * This will add v0.1, v0.2 and v1.0 compatible strings and the standard 57 * function IDs for v0.1 compatibility. 58 * An existing PSCI node will not be touched, the function will return success 59 * in this case. This function will not touch the /cpus enable methods, use 60 * dt_add_psci_cpu_enable_methods() for that. 61 * 62 * Return: 0 on success, -1 otherwise. 63 ******************************************************************************/ 64 int dt_add_psci_node(void *fdt) 65 { 66 int offs; 67 68 if (fdt_path_offset(fdt, "/psci") >= 0) { 69 WARN("PSCI Device Tree node already exists!\n"); 70 return 0; 71 } 72 73 offs = fdt_path_offset(fdt, "/"); 74 if (offs < 0) 75 return -1; 76 offs = fdt_add_subnode(fdt, offs, "psci"); 77 if (offs < 0) 78 return -1; 79 if (append_psci_compatible(fdt, offs, "arm,psci-1.0")) 80 return -1; 81 if (append_psci_compatible(fdt, offs, "arm,psci-0.2")) 82 return -1; 83 if (append_psci_compatible(fdt, offs, "arm,psci")) 84 return -1; 85 if (fdt_setprop_string(fdt, offs, "method", "smc")) 86 return -1; 87 if (fdt_setprop_u32(fdt, offs, "cpu_suspend", PSCI_CPU_SUSPEND_FNID)) 88 return -1; 89 if (fdt_setprop_u32(fdt, offs, "cpu_off", PSCI_CPU_OFF)) 90 return -1; 91 if (fdt_setprop_u32(fdt, offs, "cpu_on", PSCI_CPU_ON_FNID)) 92 return -1; 93 return 0; 94 } 95 96 /* 97 * Find the first subnode that has a "device_type" property with the value 98 * "cpu" and which's enable-method is not "psci" (yet). 99 * Returns 0 if no such subnode is found, so all have already been patched 100 * or none have to be patched in the first place. 101 * Returns 1 if *one* such subnode has been found and successfully changed 102 * to "psci". 103 * Returns negative values on error. 104 * 105 * Call in a loop until it returns 0. Recalculate the node offset after 106 * it has returned 1. 107 */ 108 static int dt_update_one_cpu_node(void *fdt, int offset) 109 { 110 int offs; 111 112 /* Iterate over all subnodes to find those with device_type = "cpu". */ 113 for (offs = fdt_first_subnode(fdt, offset); offs >= 0; 114 offs = fdt_next_subnode(fdt, offs)) { 115 const char *prop; 116 int len; 117 int ret; 118 119 prop = fdt_getprop(fdt, offs, "device_type", &len); 120 if (prop == NULL) 121 continue; 122 if ((strcmp(prop, "cpu") != 0) || (len != 4)) 123 continue; 124 125 /* Ignore any nodes which already use "psci". */ 126 prop = fdt_getprop(fdt, offs, "enable-method", &len); 127 if ((prop != NULL) && 128 (strcmp(prop, "psci") == 0) && (len == 5)) 129 continue; 130 131 ret = fdt_setprop_string(fdt, offs, "enable-method", "psci"); 132 if (ret < 0) 133 return ret; 134 /* 135 * Subnode found and patched. 136 * Restart to accommodate potentially changed offsets. 137 */ 138 return 1; 139 } 140 141 if (offs == -FDT_ERR_NOTFOUND) 142 return 0; 143 144 return offs; 145 } 146 147 /******************************************************************************* 148 * dt_add_psci_cpu_enable_methods() - switch CPU nodes in DT to use PSCI 149 * @fdt: pointer to the device tree blob in memory 150 * 151 * Iterate over all CPU device tree nodes (/cpus/cpu@x) in memory to change 152 * the enable-method to PSCI. This will add the enable-method properties, if 153 * required, or will change existing properties to read "psci". 154 * 155 * Return: 0 on success, or a negative error value otherwise. 156 ******************************************************************************/ 157 158 int dt_add_psci_cpu_enable_methods(void *fdt) 159 { 160 int offs, ret; 161 162 do { 163 offs = fdt_path_offset(fdt, "/cpus"); 164 if (offs < 0) 165 return offs; 166 167 ret = dt_update_one_cpu_node(fdt, offs); 168 } while (ret > 0); 169 170 return ret; 171 } 172 173 #define HIGH_BITS(x) ((sizeof(x) > 4) ? ((x) >> 32) : (typeof(x))0) 174 175 /******************************************************************************* 176 * fdt_add_reserved_memory() - reserve (secure) memory regions in DT 177 * @dtb: pointer to the device tree blob in memory 178 * @node_name: name of the subnode to be used 179 * @base: physical base address of the reserved region 180 * @size: size of the reserved region 181 * 182 * Add a region of memory to the /reserved-memory node in a device tree in 183 * memory, creating that node if required. Each region goes into a subnode 184 * of that node and has a @node_name, a @base address and a @size. 185 * This will prevent any device tree consumer from using that memory. It 186 * can be used to announce secure memory regions, as it adds the "no-map" 187 * property to prevent mapping and speculative operations on that region. 188 * 189 * See reserved-memory/reserved-memory.txt in the (Linux kernel) DT binding 190 * documentation for details. 191 * According to this binding, the address-cells and size-cells must match 192 * those of the root node. 193 * 194 * Return: 0 on success, a negative error value otherwise. 195 ******************************************************************************/ 196 int fdt_add_reserved_memory(void *dtb, const char *node_name, 197 uintptr_t base, size_t size) 198 { 199 int offs = fdt_path_offset(dtb, "/reserved-memory"); 200 int node; 201 uint32_t addresses[4]; 202 int ac, sc; 203 unsigned int idx = 0; 204 205 ac = fdt_address_cells(dtb, 0); 206 sc = fdt_size_cells(dtb, 0); 207 if (offs < 0) { /* create if not existing yet */ 208 offs = fdt_add_subnode(dtb, 0, "reserved-memory"); 209 if (offs < 0) { 210 return offs; 211 } 212 fdt_setprop_u32(dtb, offs, "#address-cells", ac); 213 fdt_setprop_u32(dtb, offs, "#size-cells", sc); 214 fdt_setprop(dtb, offs, "ranges", NULL, 0); 215 } 216 217 /* Check for existing regions */ 218 fdt_for_each_subnode(node, dtb, offs) { 219 uintptr_t c_base; 220 size_t c_size; 221 int ret; 222 223 ret = fdt_get_reg_props_by_index(dtb, node, 0, &c_base, &c_size); 224 /* Ignore illegal subnodes */ 225 if (ret != 0) { 226 continue; 227 } 228 229 /* existing region entirely contains the new region */ 230 if (base >= c_base && (base + size) <= (c_base + c_size)) { 231 return 0; 232 } 233 } 234 235 if (ac > 1) { 236 addresses[idx] = cpu_to_fdt32(HIGH_BITS(base)); 237 idx++; 238 } 239 addresses[idx] = cpu_to_fdt32(base & 0xffffffff); 240 idx++; 241 if (sc > 1) { 242 addresses[idx] = cpu_to_fdt32(HIGH_BITS(size)); 243 idx++; 244 } 245 addresses[idx] = cpu_to_fdt32(size & 0xffffffff); 246 idx++; 247 offs = fdt_add_subnode(dtb, offs, node_name); 248 fdt_setprop(dtb, offs, "no-map", NULL, 0); 249 fdt_setprop(dtb, offs, "reg", addresses, idx * sizeof(uint32_t)); 250 251 return 0; 252 } 253 254 /******************************************************************************* 255 * fdt_add_cpu() Add a new CPU node to the DT 256 * @dtb: Pointer to the device tree blob in memory 257 * @parent: Offset of the parent node 258 * @mpidr: MPIDR for the current CPU 259 * 260 * Create and add a new cpu node to a DTB. 261 * 262 * Return the offset of the new node or a negative value in case of error 263 ******************************************************************************/ 264 265 static int fdt_add_cpu(void *dtb, int parent, u_register_t mpidr) 266 { 267 int cpu_offs; 268 int err; 269 char snode_name[15]; 270 uint64_t reg_prop; 271 272 reg_prop = mpidr & MPID_MASK & ~MPIDR_MT_MASK; 273 274 snprintf(snode_name, sizeof(snode_name), "cpu@%x", 275 (unsigned int)reg_prop); 276 277 cpu_offs = fdt_add_subnode(dtb, parent, snode_name); 278 if (cpu_offs < 0) { 279 ERROR ("FDT: add subnode \"%s\" failed: %i\n", 280 snode_name, cpu_offs); 281 return cpu_offs; 282 } 283 284 err = fdt_setprop_string(dtb, cpu_offs, "compatible", "arm,armv8"); 285 if (err < 0) { 286 ERROR ("FDT: write to \"%s\" property of node at offset %i failed\n", 287 "compatible", cpu_offs); 288 return err; 289 } 290 291 err = fdt_setprop_u64(dtb, cpu_offs, "reg", reg_prop); 292 if (err < 0) { 293 ERROR ("FDT: write to \"%s\" property of node at offset %i failed\n", 294 "reg", cpu_offs); 295 return err; 296 } 297 298 err = fdt_setprop_string(dtb, cpu_offs, "device_type", "cpu"); 299 if (err < 0) { 300 ERROR ("FDT: write to \"%s\" property of node at offset %i failed\n", 301 "device_type", cpu_offs); 302 return err; 303 } 304 305 err = fdt_setprop_string(dtb, cpu_offs, "enable-method", "psci"); 306 if (err < 0) { 307 ERROR ("FDT: write to \"%s\" property of node at offset %i failed\n", 308 "enable-method", cpu_offs); 309 return err; 310 } 311 312 return cpu_offs; 313 } 314 315 /****************************************************************************** 316 * fdt_add_cpus_node() - Add the cpus node to the DTB 317 * @dtb: pointer to the device tree blob in memory 318 * @afflv0: Maximum number of threads per core (affinity level 0). 319 * @afflv1: Maximum number of CPUs per cluster (affinity level 1). 320 * @afflv2: Maximum number of clusters (affinity level 2). 321 * 322 * Iterate over all the possible MPIDs given the maximum affinity levels and 323 * add a cpus node to the DTB with all the valid CPUs on the system. 324 * If there is already a /cpus node, exit gracefully 325 * 326 * A system with two CPUs would generate a node equivalent or similar to: 327 * 328 * cpus { 329 * #address-cells = <2>; 330 * #size-cells = <0>; 331 * 332 * cpu0: cpu@0 { 333 * compatible = "arm,armv8"; 334 * reg = <0x0 0x0>; 335 * device_type = "cpu"; 336 * enable-method = "psci"; 337 * }; 338 * cpu1: cpu@10000 { 339 * compatible = "arm,armv8"; 340 * reg = <0x0 0x100>; 341 * device_type = "cpu"; 342 * enable-method = "psci"; 343 * }; 344 * }; 345 * 346 * Full documentation about the CPU bindings can be found at: 347 * https://www.kernel.org/doc/Documentation/devicetree/bindings/arm/cpus.txt 348 * 349 * Return the offset of the node or a negative value on error. 350 ******************************************************************************/ 351 352 int fdt_add_cpus_node(void *dtb, unsigned int afflv0, 353 unsigned int afflv1, unsigned int afflv2) 354 { 355 int offs; 356 int err; 357 unsigned int i, j, k; 358 u_register_t mpidr; 359 int cpuid; 360 361 if (fdt_path_offset(dtb, "/cpus") >= 0) { 362 return -EEXIST; 363 } 364 365 offs = fdt_add_subnode(dtb, 0, "cpus"); 366 if (offs < 0) { 367 ERROR ("FDT: add subnode \"cpus\" node to parent node failed"); 368 return offs; 369 } 370 371 err = fdt_setprop_u32(dtb, offs, "#address-cells", 2); 372 if (err < 0) { 373 ERROR ("FDT: write to \"%s\" property of node at offset %i failed\n", 374 "#address-cells", offs); 375 return err; 376 } 377 378 err = fdt_setprop_u32(dtb, offs, "#size-cells", 0); 379 if (err < 0) { 380 ERROR ("FDT: write to \"%s\" property of node at offset %i failed\n", 381 "#size-cells", offs); 382 return err; 383 } 384 385 /* 386 * Populate the node with the CPUs. 387 * As libfdt prepends subnodes within a node, reverse the index count 388 * so the CPU nodes would be better ordered. 389 */ 390 for (i = afflv2; i > 0U; i--) { 391 for (j = afflv1; j > 0U; j--) { 392 for (k = afflv0; k > 0U; k--) { 393 mpidr = ((i - 1) << MPIDR_AFF2_SHIFT) | 394 ((j - 1) << MPIDR_AFF1_SHIFT) | 395 ((k - 1) << MPIDR_AFF0_SHIFT) | 396 (read_mpidr_el1() & MPIDR_MT_MASK); 397 398 cpuid = plat_core_pos_by_mpidr(mpidr); 399 if (cpuid >= 0) { 400 /* Valid MPID found */ 401 err = fdt_add_cpu(dtb, offs, mpidr); 402 if (err < 0) { 403 ERROR ("FDT: %s 0x%08x\n", 404 "error adding CPU", 405 (uint32_t)mpidr); 406 return err; 407 } 408 } 409 } 410 } 411 } 412 413 return offs; 414 } 415 416 /******************************************************************************* 417 * fdt_add_cpu_idle_states() - add PSCI CPU idle states to cpu nodes in the DT 418 * @dtb: pointer to the device tree blob in memory 419 * @states: array of idle state descriptions, ending with empty element 420 * 421 * Add information about CPU idle states to the devicetree. This function 422 * assumes that CPU idle states are not already present in the devicetree, and 423 * that all CPU states are equally applicable to all CPUs. 424 * 425 * See arm/idle-states.yaml and arm/psci.yaml in the (Linux kernel) DT binding 426 * documentation for more details. 427 * 428 * Return: 0 on success, a negative error value otherwise. 429 ******************************************************************************/ 430 int fdt_add_cpu_idle_states(void *dtb, const struct psci_cpu_idle_state *state) 431 { 432 int cpu_node, cpus_node, idle_states_node, ret; 433 uint32_t count, phandle; 434 435 ret = fdt_find_max_phandle(dtb, &phandle); 436 phandle++; 437 if (ret < 0) { 438 return ret; 439 } 440 441 cpus_node = fdt_path_offset(dtb, "/cpus"); 442 if (cpus_node < 0) { 443 return cpus_node; 444 } 445 446 /* Create the idle-states node and its child nodes. */ 447 idle_states_node = fdt_add_subnode(dtb, cpus_node, "idle-states"); 448 if (idle_states_node < 0) { 449 return idle_states_node; 450 } 451 452 ret = fdt_setprop_string(dtb, idle_states_node, "entry-method", "psci"); 453 if (ret < 0) { 454 return ret; 455 } 456 457 for (count = 0U; state->name != NULL; count++, phandle++, state++) { 458 int idle_state_node; 459 460 idle_state_node = fdt_add_subnode(dtb, idle_states_node, 461 state->name); 462 if (idle_state_node < 0) { 463 return idle_state_node; 464 } 465 466 fdt_setprop_string(dtb, idle_state_node, "compatible", 467 "arm,idle-state"); 468 fdt_setprop_u32(dtb, idle_state_node, "arm,psci-suspend-param", 469 state->power_state); 470 if (state->local_timer_stop) { 471 fdt_setprop_empty(dtb, idle_state_node, 472 "local-timer-stop"); 473 } 474 fdt_setprop_u32(dtb, idle_state_node, "entry-latency-us", 475 state->entry_latency_us); 476 fdt_setprop_u32(dtb, idle_state_node, "exit-latency-us", 477 state->exit_latency_us); 478 fdt_setprop_u32(dtb, idle_state_node, "min-residency-us", 479 state->min_residency_us); 480 if (state->wakeup_latency_us) { 481 fdt_setprop_u32(dtb, idle_state_node, 482 "wakeup-latency-us", 483 state->wakeup_latency_us); 484 } 485 fdt_setprop_u32(dtb, idle_state_node, "phandle", phandle); 486 } 487 488 if (count == 0U) { 489 return 0; 490 } 491 492 /* Link each cpu node to the idle state nodes. */ 493 fdt_for_each_subnode(cpu_node, dtb, cpus_node) { 494 const char *device_type; 495 fdt32_t *value; 496 497 /* Only process child nodes with device_type = "cpu". */ 498 device_type = fdt_getprop(dtb, cpu_node, "device_type", NULL); 499 if (device_type == NULL || strcmp(device_type, "cpu") != 0) { 500 continue; 501 } 502 503 /* Allocate space for the list of phandles. */ 504 ret = fdt_setprop_placeholder(dtb, cpu_node, "cpu-idle-states", 505 count * sizeof(phandle), 506 (void **)&value); 507 if (ret < 0) { 508 return ret; 509 } 510 511 /* Fill in the phandles of the idle state nodes. */ 512 for (uint32_t i = 0U; i < count; ++i) { 513 value[i] = cpu_to_fdt32(phandle - count + i); 514 } 515 } 516 517 return 0; 518 } 519 520 /** 521 * fdt_adjust_gic_redist() - Adjust GICv3 redistributor size 522 * @dtb: Pointer to the DT blob in memory 523 * @nr_cores: Number of CPU cores on this system. 524 * @gicr_base: Base address of the first GICR frame, or ~0 if unchanged 525 * @gicr_frame_size: Size of the GICR frame per core 526 * 527 * On a GICv3 compatible interrupt controller, the redistributor provides 528 * a number of 64k pages per each supported core. So with a dynamic topology, 529 * this size cannot be known upfront and thus can't be hardcoded into the DTB. 530 * 531 * Find the DT node describing the GICv3 interrupt controller, and adjust 532 * the size of the redistributor to match the number of actual cores on 533 * this system. 534 * A GICv4 compatible redistributor uses four 64K pages per core, whereas GICs 535 * without support for direct injection of virtual interrupts use two 64K pages. 536 * The @gicr_frame_size parameter should be 262144 and 131072, respectively. 537 * Also optionally allow adjusting the GICR frame base address, when this is 538 * different due to ITS frames between distributor and redistributor. 539 * 540 * Return: 0 on success, negative error value otherwise. 541 */ 542 int fdt_adjust_gic_redist(void *dtb, unsigned int nr_cores, 543 uintptr_t gicr_base, unsigned int gicr_frame_size) 544 { 545 int offset = fdt_node_offset_by_compatible(dtb, 0, "arm,gic-v3"); 546 uint64_t reg_64; 547 uint32_t reg_32; 548 void *val; 549 int parent, ret; 550 int ac, sc; 551 552 if (offset < 0) { 553 return offset; 554 } 555 556 parent = fdt_parent_offset(dtb, offset); 557 if (parent < 0) { 558 return parent; 559 } 560 ac = fdt_address_cells(dtb, parent); 561 sc = fdt_size_cells(dtb, parent); 562 if (ac < 0 || sc < 0) { 563 return -EINVAL; 564 } 565 566 if (gicr_base != INVALID_BASE_ADDR) { 567 if (ac == 1) { 568 reg_32 = cpu_to_fdt32(gicr_base); 569 val = ®_32; 570 } else { 571 reg_64 = cpu_to_fdt64(gicr_base); 572 val = ®_64; 573 } 574 /* 575 * The redistributor base address is the second address in 576 * the "reg" entry, so we have to skip one address and one 577 * size cell. 578 */ 579 ret = fdt_setprop_inplace_namelen_partial(dtb, offset, 580 "reg", 3, 581 (ac + sc) * 4, 582 val, ac * 4); 583 if (ret < 0) { 584 return ret; 585 } 586 } 587 588 if (sc == 1) { 589 reg_32 = cpu_to_fdt32(nr_cores * gicr_frame_size); 590 val = ®_32; 591 } else { 592 reg_64 = cpu_to_fdt64(nr_cores * (uint64_t)gicr_frame_size); 593 val = ®_64; 594 } 595 596 /* 597 * The redistributor is described in the second "reg" entry. 598 * So we have to skip one address and one size cell, then another 599 * address cell to get to the second size cell. 600 */ 601 return fdt_setprop_inplace_namelen_partial(dtb, offset, "reg", 3, 602 (ac + sc + ac) * 4, 603 val, sc * 4); 604 } 605 /** 606 * fdt_set_mac_address () - store MAC address in device tree 607 * @dtb: pointer to the device tree blob in memory 608 * @eth_idx: number of Ethernet interface in /aliases node 609 * @mac_addr: pointer to 6 byte MAC address to store 610 * 611 * Use the generic local-mac-address property in a network device DT node 612 * to define the MAC address this device should be using. Many platform 613 * network devices lack device-specific non-volatile storage to hold this 614 * address, and leave it up to firmware to find and store a unique MAC 615 * address in the DT. 616 * The MAC address could be read from some board or firmware defined storage, 617 * or could be derived from some other unique property like a serial number. 618 * 619 * Return: 0 on success, a negative libfdt error value otherwise. 620 */ 621 int fdt_set_mac_address(void *dtb, unsigned int ethernet_idx, 622 const uint8_t *mac_addr) 623 { 624 char eth_alias[12]; 625 const char *path; 626 int node; 627 628 if (ethernet_idx > 9U) { 629 return -FDT_ERR_BADVALUE; 630 } 631 snprintf(eth_alias, sizeof(eth_alias), "ethernet%d", ethernet_idx); 632 633 path = fdt_get_alias(dtb, eth_alias); 634 if (path == NULL) { 635 return -FDT_ERR_NOTFOUND; 636 } 637 638 node = fdt_path_offset(dtb, path); 639 if (node < 0) { 640 ERROR("Path \"%s\" not found in DT: %d\n", path, node); 641 return node; 642 } 643 644 return fdt_setprop(dtb, node, "local-mac-address", mac_addr, 6); 645 } 646