xref: /rk3399_ARM-atf/common/bl_common.c (revision e83b0cadc67882c1ba7f430d16dab80c9b3a0228)
1 /*
2  * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *
7  * Redistributions of source code must retain the above copyright notice, this
8  * list of conditions and the following disclaimer.
9  *
10  * Redistributions in binary form must reproduce the above copyright notice,
11  * this list of conditions and the following disclaimer in the documentation
12  * and/or other materials provided with the distribution.
13  *
14  * Neither the name of ARM nor the names of its contributors may be used
15  * to endorse or promote products derived from this software without specific
16  * prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <stdio.h>
32 #include <string.h>
33 #include <errno.h>
34 #include <assert.h>
35 #include <arch_helpers.h>
36 #include <console.h>
37 #include <platform.h>
38 #include <semihosting.h>
39 #include <bl_common.h>
40 
41 /***********************************************************
42  * Memory for sharing data while changing exception levels.
43  * Only used by the primary core.
44  **********************************************************/
45 unsigned char bl2_el_change_mem_ptr[EL_CHANGE_MEM_SIZE];
46 
47 unsigned long *get_el_change_mem_ptr(void)
48 {
49 	return (unsigned long *) bl2_el_change_mem_ptr;
50 }
51 
52 unsigned long page_align(unsigned long value, unsigned dir)
53 {
54 	unsigned long page_size = 1 << FOUR_KB_SHIFT;
55 
56 	/* Round up the limit to the next page boundary */
57 	if (value & (page_size - 1)) {
58 		value &= ~(page_size - 1);
59 		if (dir == UP)
60 			value += page_size;
61 	}
62 
63 	return value;
64 }
65 
66 static inline unsigned int is_page_aligned (unsigned long addr) {
67 	const unsigned long page_size = 1 << FOUR_KB_SHIFT;
68 
69 	return (addr & (page_size - 1)) == 0;
70 }
71 
72 void change_security_state(unsigned int target_security_state)
73 {
74 	unsigned long scr = read_scr();
75 
76 	if (target_security_state == SECURE)
77 		scr &= ~SCR_NS_BIT;
78 	else if (target_security_state == NON_SECURE)
79 		scr |= SCR_NS_BIT;
80 	else
81 		assert(0);
82 
83 	write_scr(scr);
84 }
85 
86 int drop_el(aapcs64_params *args,
87 	    unsigned long spsr,
88 	    unsigned long entrypoint)
89 {
90 	write_spsr(spsr);
91 	write_elr(entrypoint);
92 	eret(args->arg0,
93 	     args->arg1,
94 	     args->arg2,
95 	     args->arg3,
96 	     args->arg4,
97 	     args->arg5,
98 	     args->arg6,
99 	     args->arg7);
100 	return -EINVAL;
101 }
102 
103 long raise_el(aapcs64_params *args)
104 {
105 	return smc(args->arg0,
106 		   args->arg1,
107 		   args->arg2,
108 		   args->arg3,
109 		   args->arg4,
110 		   args->arg5,
111 		   args->arg6,
112 		   args->arg7);
113 }
114 
115 /*
116  * TODO: If we are not EL3 then currently we only issue an SMC.
117  * Add support for dropping into EL0 etc. Consider adding support
118  * for switching from S-EL1 to S-EL0/1 etc.
119  */
120 long change_el(el_change_info *info)
121 {
122 	unsigned long current_el = read_current_el();
123 
124 	if (GET_EL(current_el) == MODE_EL3) {
125 		/*
126 		 * We can go anywhere from EL3. So find where.
127 		 * TODO: Lots to do if we are going non-secure.
128 		 * Flip the NS bit. Restore NS registers etc.
129 		 * Just doing the bare minimal for now.
130 		 */
131 
132 		if (info->security_state == NON_SECURE)
133 			change_security_state(info->security_state);
134 
135 		return drop_el(&info->args, info->spsr, info->entrypoint);
136 	} else
137 		return raise_el(&info->args);
138 }
139 
140 /* TODO: add a parameter for DAIF. not needed right now */
141 unsigned long make_spsr(unsigned long target_el,
142 			unsigned long target_sp,
143 			unsigned long target_rw)
144 {
145 	unsigned long spsr;
146 
147 	/* Disable all exceptions & setup the EL */
148 	spsr = (DAIF_FIQ_BIT | DAIF_IRQ_BIT | DAIF_ABT_BIT | DAIF_DBG_BIT)
149 		<< PSR_DAIF_SHIFT;
150 	spsr |= PSR_MODE(target_rw, target_el, target_sp);
151 
152 	return spsr;
153 }
154 
155 /*******************************************************************************
156  * The next two functions are the weak definitions. Platform specific
157  * code can override them if it wishes to.
158  ******************************************************************************/
159 
160 /*******************************************************************************
161  * Function that takes a memory layout into which BL31 has been either top or
162  * bottom loaded. Using this information, it populates bl31_mem_layout to tell
163  * BL31 how much memory it has access to and how much is available for use. It
164  * does not need the address where BL31 has been loaded as BL31 will reclaim
165  * all the memory used by BL2.
166  * TODO: Revisit if this and init_bl2_mem_layout can be replaced by a single
167  * routine.
168  ******************************************************************************/
169 void init_bl31_mem_layout(const meminfo *bl2_mem_layout,
170 			  meminfo *bl31_mem_layout,
171 			  unsigned int load_type)
172 {
173 	if (load_type == BOT_LOAD) {
174 		/*
175 		 * ------------                             ^
176 		 * |   BL2    |                             |
177 		 * |----------|                 ^           |  BL2
178 		 * |          |                 | BL2 free  |  total
179 		 * |          |                 |   size    |  size
180 		 * |----------| BL2 free base   v           |
181 		 * |   BL31   |                             |
182 		 * ------------ BL2 total base              v
183 		 */
184 		unsigned long bl31_size;
185 
186 		bl31_mem_layout->free_base = bl2_mem_layout->free_base;
187 
188 		bl31_size = bl2_mem_layout->free_base - bl2_mem_layout->total_base;
189 		bl31_mem_layout->free_size = bl2_mem_layout->total_size - bl31_size;
190 	} else {
191 		/*
192 		 * ------------                             ^
193 		 * |   BL31   |                             |
194 		 * |----------|                 ^           |  BL2
195 		 * |          |                 | BL2 free  |  total
196 		 * |          |                 |   size    |  size
197 		 * |----------| BL2 free base   v           |
198 		 * |   BL2    |                             |
199 		 * ------------ BL2 total base              v
200 		 */
201 		unsigned long bl2_size;
202 
203 		bl31_mem_layout->free_base = bl2_mem_layout->total_base;
204 
205 		bl2_size = bl2_mem_layout->free_base - bl2_mem_layout->total_base;
206 		bl31_mem_layout->free_size = bl2_mem_layout->free_size + bl2_size;
207 	}
208 
209 	bl31_mem_layout->total_base = bl2_mem_layout->total_base;
210 	bl31_mem_layout->total_size = bl2_mem_layout->total_size;
211 	bl31_mem_layout->attr = load_type;
212 
213 	flush_dcache_range((unsigned long) bl31_mem_layout, sizeof(meminfo));
214 	return;
215 }
216 
217 /*******************************************************************************
218  * Function that takes a memory layout into which BL2 has been either top or
219  * bottom loaded along with the address where BL2 has been loaded in it. Using
220  * this information, it populates bl2_mem_layout to tell BL2 how much memory
221  * it has access to and how much is available for use.
222  ******************************************************************************/
223 void init_bl2_mem_layout(meminfo *bl1_mem_layout,
224 			 meminfo *bl2_mem_layout,
225 			 unsigned int load_type,
226 			 unsigned long bl2_base)
227 {
228 	unsigned tmp;
229 
230 	if (load_type == BOT_LOAD) {
231 		bl2_mem_layout->total_base = bl2_base;
232 		tmp = bl1_mem_layout->free_base - bl2_base;
233 		bl2_mem_layout->total_size = bl1_mem_layout->free_size + tmp;
234 
235 	} else {
236 		bl2_mem_layout->total_base = bl1_mem_layout->free_base;
237 		tmp = bl1_mem_layout->total_base + bl1_mem_layout->total_size;
238 		bl2_mem_layout->total_size = tmp - bl1_mem_layout->free_base;
239 	}
240 
241 	bl2_mem_layout->free_base = bl1_mem_layout->free_base;
242 	bl2_mem_layout->free_size = bl1_mem_layout->free_size;
243 	bl2_mem_layout->attr = load_type;
244 
245 	flush_dcache_range((unsigned long) bl2_mem_layout, sizeof(meminfo));
246 	return;
247 }
248 
249 static void dump_load_info(unsigned long image_load_addr,
250 			   unsigned long image_size,
251 			   const meminfo *mem_layout)
252 {
253 #if DEBUG
254 	printf("Trying to load image at address 0x%lx, size = 0x%lx\r\n",
255 		image_load_addr, image_size);
256 	printf("Current memory layout:\r\n");
257 	printf("  total region = [0x%lx, 0x%lx]\r\n", mem_layout->total_base,
258 			mem_layout->total_base + mem_layout->total_size);
259 	printf("  free region = [0x%lx, 0x%lx]\r\n", mem_layout->free_base,
260 			mem_layout->free_base + mem_layout->free_size);
261 #endif
262 }
263 
264 /*******************************************************************************
265  * Generic function to load an image into the trusted RAM using semihosting
266  * given a name, extents of free memory & whether the image should be loaded at
267  * the bottom or top of the free memory. It updates the memory layout if the
268  * load is successful.
269  ******************************************************************************/
270 unsigned long load_image(meminfo *mem_layout,
271 			 const char *image_name,
272 			 unsigned int load_type,
273 			 unsigned long fixed_addr)
274 {
275 	unsigned long temp_image_base, image_base;
276 	long offset;
277 	int image_flen;
278 
279 	/* Find the size of the image */
280 	image_flen = semihosting_get_flen(image_name);
281 	if (image_flen < 0) {
282 		printf("ERROR: Cannot access '%s' file (%i).\r\n",
283 			image_name, image_flen);
284 		return 0;
285 	}
286 
287 	/* See if we have enough space */
288 	if (image_flen > mem_layout->free_size) {
289 		printf("ERROR: Cannot load '%s' file: Not enough space.\r\n",
290 			image_name);
291 		dump_load_info(0, image_flen, mem_layout);
292 		return 0;
293 	}
294 
295 	switch (load_type) {
296 
297 	case TOP_LOAD:
298 
299 	  /* Load the image in the top of free memory */
300 	  temp_image_base = mem_layout->free_base + mem_layout->free_size;
301 	  temp_image_base -= image_flen;
302 
303 	  /* Page align base address and check whether the image still fits */
304 	  image_base = page_align(temp_image_base, DOWN);
305 	  assert(image_base <= temp_image_base);
306 
307 	  if (image_base < mem_layout->free_base) {
308 		  printf("ERROR: Cannot load '%s' file: Not enough space.\r\n",
309 			  image_name);
310 		  dump_load_info(image_base, image_flen, mem_layout);
311 		  return 0;
312 	  }
313 
314 	  /* Calculate the amount of extra memory used due to alignment */
315 	  offset = temp_image_base - image_base;
316 
317 	  break;
318 
319 	case BOT_LOAD:
320 
321 	  /* Load the BL2 image in the bottom of free memory */
322 	  temp_image_base = mem_layout->free_base;
323 	  image_base = page_align(temp_image_base, UP);
324 	  assert(image_base >= temp_image_base);
325 
326 	  /* Page align base address and check whether the image still fits */
327 	  if (image_base + image_flen >
328 	      mem_layout->free_base + mem_layout->free_size) {
329 		  printf("ERROR: Cannot load '%s' file: Not enough space.\r\n",
330 			  image_name);
331 		  dump_load_info(image_base, image_flen, mem_layout);
332 		  return 0;
333 	  }
334 
335 	  /* Calculate the amount of extra memory used due to alignment */
336 	  offset = image_base - temp_image_base;
337 
338 	  break;
339 
340 	default:
341 	  assert(0);
342 
343 	}
344 
345 	/*
346 	 * Some images must be loaded at a fixed address, not a dynamic one.
347 	 *
348 	 * This has been implemented as a hack on top of the existing dynamic
349 	 * loading mechanism, for the time being.  If the 'fixed_addr' function
350 	 * argument is different from zero, then it will force the load address.
351 	 * So we still have this principle of top/bottom loading but the code
352 	 * determining the load address is bypassed and the load address is
353 	 * forced to the fixed one.
354 	 *
355 	 * This can result in quite a lot of wasted space because we still use
356 	 * 1 sole meminfo structure to represent the extents of free memory,
357 	 * where we should use some sort of linked list.
358 	 *
359 	 * E.g. we want to load BL2 at address 0x04020000, the resulting memory
360 	 *      layout should look as follows:
361 	 * ------------ 0x04040000
362 	 * |          |  <- Free space (1)
363 	 * |----------|
364 	 * |   BL2    |
365 	 * |----------| 0x04020000
366 	 * |          |  <- Free space (2)
367 	 * |----------|
368 	 * |   BL1    |
369 	 * ------------ 0x04000000
370 	 *
371 	 * But in the current hacky implementation, we'll need to specify
372 	 * whether BL2 is loaded at the top or bottom of the free memory.
373 	 * E.g. if BL2 is considered as top-loaded, the meminfo structure
374 	 * will give the following view of the memory, hiding the chunk of
375 	 * free memory above BL2:
376 	 * ------------ 0x04040000
377 	 * |          |
378 	 * |          |
379 	 * |   BL2    |
380 	 * |----------| 0x04020000
381 	 * |          |  <- Free space (2)
382 	 * |----------|
383 	 * |   BL1    |
384 	 * ------------ 0x04000000
385 	 */
386 	if (fixed_addr != 0) {
387 		/* Load the image at the given address. */
388 		image_base = fixed_addr;
389 
390 		/* Check whether the image fits. */
391 		if ((image_base < mem_layout->free_base) ||
392 		    (image_base + image_flen >
393 		       mem_layout->free_base + mem_layout->free_size)) {
394 			printf("ERROR: Cannot load '%s' file: Not enough space.\r\n",
395 				image_name);
396 			dump_load_info(image_base, image_flen, mem_layout);
397 			return 0;
398 		}
399 
400 		/* Check whether the fixed load address is page-aligned. */
401 		if (!is_page_aligned(image_base)) {
402 			printf("ERROR: Cannot load '%s' file at unaligned address 0x%lx.\r\n",
403 				image_name, fixed_addr);
404 			return 0;
405 		}
406 
407 		/*
408 		 * Calculate the amount of extra memory used due to fixed
409 		 * loading.
410 		 */
411 		if (load_type == TOP_LOAD) {
412 			unsigned long max_addr, space_used;
413 			/*
414 			 * ------------ max_addr
415 			 * | /wasted/ |                 | offset
416 			 * |..........|..............................
417 			 * |  image   |                 | image_flen
418 			 * |----------| fixed_addr
419 			 * |          |
420 			 * |          |
421 			 * ------------ total_base
422 			 */
423 			max_addr = mem_layout->total_base + mem_layout->total_size;
424 			/*
425 			 * Compute the amount of memory used by the image.
426 			 * Corresponds to all space above the image load
427 			 * address.
428 			 */
429 			space_used = max_addr - fixed_addr;
430 			/*
431 			 * Calculate the amount of wasted memory within the
432 			 * amount of memory used by the image.
433 			 */
434 			offset = space_used - image_flen;
435 		} else /* BOT_LOAD */
436 			/*
437 			 * ------------
438 			 * |          |
439 			 * |          |
440 			 * |----------|
441 			 * |  image   |
442 			 * |..........| fixed_addr
443 			 * | /wasted/ |                 | offset
444 			 * ------------ total_base
445 			 */
446 			offset = fixed_addr - mem_layout->total_base;
447 	}
448 
449 	/* We have enough space so load the image now */
450 	image_flen = semihosting_download_file(image_name,
451 					       image_flen,
452 					       (void *) image_base);
453 	if (image_flen <= 0) {
454 		printf("ERROR: Failed to load '%s' file from semihosting (%i).\r\n",
455 			image_name, image_flen);
456 		return 0;
457 	}
458 
459 	/*
460 	 * File has been successfully loaded. Update the free memory
461 	 * data structure & flush the contents of the TZRAM so that
462 	 * the next EL can see it.
463 	 */
464 	/* Update the memory contents */
465 	flush_dcache_range(image_base, image_flen);
466 
467 	mem_layout->free_size -= image_flen + offset;
468 
469 	/* Update the base of free memory since its moved up */
470 	if (load_type == BOT_LOAD)
471 		mem_layout->free_base += offset + image_flen;
472 
473 	return image_base;
474 }
475 
476 /*******************************************************************************
477  * Run a loaded image from the given entry point. This could result in either
478  * dropping into a lower exception level or jumping to a higher exception level.
479  * The only way of doing the latter is through an SMC. In either case, setup the
480  * parameters for the EL change request correctly.
481  ******************************************************************************/
482 int run_image(unsigned long entrypoint,
483 	      unsigned long spsr,
484 	      unsigned long target_security_state,
485 	      meminfo *mem_layout,
486 	      void *data)
487 {
488 	el_change_info run_image_info;
489 	unsigned long current_el = read_current_el();
490 
491 	/* Tell next EL what we want done */
492 	run_image_info.args.arg0 = RUN_IMAGE;
493 	run_image_info.entrypoint = entrypoint;
494 	run_image_info.spsr = spsr;
495 	run_image_info.security_state = target_security_state;
496 	run_image_info.next = 0;
497 
498 	/*
499 	 * If we are EL3 then only an eret can take us to the desired
500 	 * exception level. Else for the time being assume that we have
501 	 * to jump to a higher EL and issue an SMC. Contents of argY
502 	 * will go into the general purpose register xY e.g. arg0->x0
503 	 */
504 	if (GET_EL(current_el) == MODE_EL3) {
505 		run_image_info.args.arg1 = (unsigned long) mem_layout;
506 		run_image_info.args.arg2 = (unsigned long) data;
507 	} else {
508 		run_image_info.args.arg1 = entrypoint;
509 		run_image_info.args.arg2 = spsr;
510 		run_image_info.args.arg3 = (unsigned long) mem_layout;
511 		run_image_info.args.arg4 = (unsigned long) data;
512 	}
513 
514 	return change_el(&run_image_info);
515 }
516