xref: /rk3399_ARM-atf/common/bl_common.c (revision 9d72b4ea9c7d9cac386f70d8a6581d4b1a45d7b0)
1 /*
2  * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *
7  * Redistributions of source code must retain the above copyright notice, this
8  * list of conditions and the following disclaimer.
9  *
10  * Redistributions in binary form must reproduce the above copyright notice,
11  * this list of conditions and the following disclaimer in the documentation
12  * and/or other materials provided with the distribution.
13  *
14  * Neither the name of ARM nor the names of its contributors may be used
15  * to endorse or promote products derived from this software without specific
16  * prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <stdio.h>
32 #include <string.h>
33 #include <errno.h>
34 #include <assert.h>
35 #include <arch_helpers.h>
36 #include <console.h>
37 #include <platform.h>
38 #include <semihosting.h>
39 #include <bl_common.h>
40 #include "io_storage.h"
41 #include "debug.h"
42 
43 /***********************************************************
44  * Memory for sharing data while changing exception levels.
45  * Only used by the primary core.
46  **********************************************************/
47 unsigned char bl2_el_change_mem_ptr[EL_CHANGE_MEM_SIZE];
48 
49 unsigned long *get_el_change_mem_ptr(void)
50 {
51 	return (unsigned long *) bl2_el_change_mem_ptr;
52 }
53 
54 unsigned long page_align(unsigned long value, unsigned dir)
55 {
56 	unsigned long page_size = 1 << FOUR_KB_SHIFT;
57 
58 	/* Round up the limit to the next page boundary */
59 	if (value & (page_size - 1)) {
60 		value &= ~(page_size - 1);
61 		if (dir == UP)
62 			value += page_size;
63 	}
64 
65 	return value;
66 }
67 
68 static inline unsigned int is_page_aligned (unsigned long addr) {
69 	const unsigned long page_size = 1 << FOUR_KB_SHIFT;
70 
71 	return (addr & (page_size - 1)) == 0;
72 }
73 
74 void change_security_state(unsigned int target_security_state)
75 {
76 	unsigned long scr = read_scr();
77 
78 	if (target_security_state == SECURE)
79 		scr &= ~SCR_NS_BIT;
80 	else if (target_security_state == NON_SECURE)
81 		scr |= SCR_NS_BIT;
82 	else
83 		assert(0);
84 
85 	write_scr(scr);
86 }
87 
88 int drop_el(aapcs64_params *args,
89 	    unsigned long spsr,
90 	    unsigned long entrypoint)
91 {
92 	write_spsr(spsr);
93 	write_elr(entrypoint);
94 	eret(args->arg0,
95 	     args->arg1,
96 	     args->arg2,
97 	     args->arg3,
98 	     args->arg4,
99 	     args->arg5,
100 	     args->arg6,
101 	     args->arg7);
102 	return -EINVAL;
103 }
104 
105 long raise_el(aapcs64_params *args)
106 {
107 	return smc(args->arg0,
108 		   args->arg1,
109 		   args->arg2,
110 		   args->arg3,
111 		   args->arg4,
112 		   args->arg5,
113 		   args->arg6,
114 		   args->arg7);
115 }
116 
117 /*
118  * TODO: If we are not EL3 then currently we only issue an SMC.
119  * Add support for dropping into EL0 etc. Consider adding support
120  * for switching from S-EL1 to S-EL0/1 etc.
121  */
122 long change_el(el_change_info *info)
123 {
124 	unsigned long current_el = read_current_el();
125 
126 	if (GET_EL(current_el) == MODE_EL3) {
127 		/*
128 		 * We can go anywhere from EL3. So find where.
129 		 * TODO: Lots to do if we are going non-secure.
130 		 * Flip the NS bit. Restore NS registers etc.
131 		 * Just doing the bare minimal for now.
132 		 */
133 
134 		if (info->security_state == NON_SECURE)
135 			change_security_state(info->security_state);
136 
137 		return drop_el(&info->args, info->spsr, info->entrypoint);
138 	} else
139 		return raise_el(&info->args);
140 }
141 
142 /* TODO: add a parameter for DAIF. not needed right now */
143 unsigned long make_spsr(unsigned long target_el,
144 			unsigned long target_sp,
145 			unsigned long target_rw)
146 {
147 	unsigned long spsr;
148 
149 	/* Disable all exceptions & setup the EL */
150 	spsr = (DAIF_FIQ_BIT | DAIF_IRQ_BIT | DAIF_ABT_BIT | DAIF_DBG_BIT)
151 		<< PSR_DAIF_SHIFT;
152 	spsr |= PSR_MODE(target_rw, target_el, target_sp);
153 
154 	return spsr;
155 }
156 
157 /*******************************************************************************
158  * The next two functions are the weak definitions. Platform specific
159  * code can override them if it wishes to.
160  ******************************************************************************/
161 
162 /*******************************************************************************
163  * Function that takes a memory layout into which BL31 has been either top or
164  * bottom loaded. Using this information, it populates bl31_mem_layout to tell
165  * BL31 how much memory it has access to and how much is available for use. It
166  * does not need the address where BL31 has been loaded as BL31 will reclaim
167  * all the memory used by BL2.
168  * TODO: Revisit if this and init_bl2_mem_layout can be replaced by a single
169  * routine.
170  ******************************************************************************/
171 void init_bl31_mem_layout(const meminfo *bl2_mem_layout,
172 			  meminfo *bl31_mem_layout,
173 			  unsigned int load_type)
174 {
175 	if (load_type == BOT_LOAD) {
176 		/*
177 		 * ------------                             ^
178 		 * |   BL2    |                             |
179 		 * |----------|                 ^           |  BL2
180 		 * |          |                 | BL2 free  |  total
181 		 * |          |                 |   size    |  size
182 		 * |----------| BL2 free base   v           |
183 		 * |   BL31   |                             |
184 		 * ------------ BL2 total base              v
185 		 */
186 		unsigned long bl31_size;
187 
188 		bl31_mem_layout->free_base = bl2_mem_layout->free_base;
189 
190 		bl31_size = bl2_mem_layout->free_base - bl2_mem_layout->total_base;
191 		bl31_mem_layout->free_size = bl2_mem_layout->total_size - bl31_size;
192 	} else {
193 		/*
194 		 * ------------                             ^
195 		 * |   BL31   |                             |
196 		 * |----------|                 ^           |  BL2
197 		 * |          |                 | BL2 free  |  total
198 		 * |          |                 |   size    |  size
199 		 * |----------| BL2 free base   v           |
200 		 * |   BL2    |                             |
201 		 * ------------ BL2 total base              v
202 		 */
203 		unsigned long bl2_size;
204 
205 		bl31_mem_layout->free_base = bl2_mem_layout->total_base;
206 
207 		bl2_size = bl2_mem_layout->free_base - bl2_mem_layout->total_base;
208 		bl31_mem_layout->free_size = bl2_mem_layout->free_size + bl2_size;
209 	}
210 
211 	bl31_mem_layout->total_base = bl2_mem_layout->total_base;
212 	bl31_mem_layout->total_size = bl2_mem_layout->total_size;
213 	bl31_mem_layout->attr = load_type;
214 
215 	flush_dcache_range((unsigned long) bl31_mem_layout, sizeof(meminfo));
216 	return;
217 }
218 
219 /*******************************************************************************
220  * Function that takes a memory layout into which BL2 has been either top or
221  * bottom loaded along with the address where BL2 has been loaded in it. Using
222  * this information, it populates bl2_mem_layout to tell BL2 how much memory
223  * it has access to and how much is available for use.
224  ******************************************************************************/
225 void init_bl2_mem_layout(meminfo *bl1_mem_layout,
226 			 meminfo *bl2_mem_layout,
227 			 unsigned int load_type,
228 			 unsigned long bl2_base)
229 {
230 	unsigned tmp;
231 
232 	if (load_type == BOT_LOAD) {
233 		bl2_mem_layout->total_base = bl2_base;
234 		tmp = bl1_mem_layout->free_base - bl2_base;
235 		bl2_mem_layout->total_size = bl1_mem_layout->free_size + tmp;
236 
237 	} else {
238 		bl2_mem_layout->total_base = bl1_mem_layout->free_base;
239 		tmp = bl1_mem_layout->total_base + bl1_mem_layout->total_size;
240 		bl2_mem_layout->total_size = tmp - bl1_mem_layout->free_base;
241 	}
242 
243 	bl2_mem_layout->free_base = bl1_mem_layout->free_base;
244 	bl2_mem_layout->free_size = bl1_mem_layout->free_size;
245 	bl2_mem_layout->attr = load_type;
246 
247 	flush_dcache_range((unsigned long) bl2_mem_layout, sizeof(meminfo));
248 	return;
249 }
250 
251 static void dump_load_info(unsigned long image_load_addr,
252 			   unsigned long image_size,
253 			   const meminfo *mem_layout)
254 {
255 #if DEBUG
256 	printf("Trying to load image at address 0x%lx, size = 0x%lx\r\n",
257 		image_load_addr, image_size);
258 	printf("Current memory layout:\r\n");
259 	printf("  total region = [0x%lx, 0x%lx]\r\n", mem_layout->total_base,
260 			mem_layout->total_base + mem_layout->total_size);
261 	printf("  free region = [0x%lx, 0x%lx]\r\n", mem_layout->free_base,
262 			mem_layout->free_base + mem_layout->free_size);
263 #endif
264 }
265 
266 /*******************************************************************************
267  * Generic function to load an image into the trusted RAM,
268  * given a name, extents of free memory & whether the image should be loaded at
269  * the bottom or top of the free memory. It updates the memory layout if the
270  * load is successful.
271  ******************************************************************************/
272 unsigned long load_image(meminfo *mem_layout,
273 			 const char *image_name,
274 			 unsigned int load_type,
275 			 unsigned long fixed_addr)
276 {
277 	io_dev_handle dev_handle;
278 	io_handle image_handle;
279 	void *image_spec;
280 	unsigned long temp_image_base = 0;
281 	unsigned long image_base = 0;
282 	long offset = 0;
283 	size_t image_size = 0;
284 	size_t bytes_read = 0;
285 	int io_result = IO_FAIL;
286 
287 	assert(mem_layout != NULL);
288 	assert(image_name != NULL);
289 
290 	/* Obtain a reference to the image by querying the platform layer */
291 	io_result = plat_get_image_source(image_name, &dev_handle, &image_spec);
292 	if (io_result != IO_SUCCESS) {
293 		ERROR("Failed to obtain reference to image '%s' (%i)\n",
294 			image_name, io_result);
295 		return 0;
296 	}
297 
298 	/* Attempt to access the image */
299 	io_result = io_open(dev_handle, image_spec, &image_handle);
300 	if (io_result != IO_SUCCESS) {
301 		ERROR("Failed to access image '%s' (%i)\n",
302 			image_name, io_result);
303 		return 0;
304 	}
305 
306 	/* Find the size of the image */
307 	io_result = io_size(image_handle, &image_size);
308 	if ((io_result != IO_SUCCESS) || (image_size == 0)) {
309 		ERROR("Failed to determine the size of the image '%s' file (%i)\n",
310 			image_name, io_result);
311 		goto fail;
312 	}
313 
314 	/* See if we have enough space */
315 	if (image_size > mem_layout->free_size) {
316 		ERROR("ERROR: Cannot load '%s' file: Not enough space.\n",
317 			image_name);
318 		dump_load_info(0, image_size, mem_layout);
319 		goto fail;
320 	}
321 
322 	switch (load_type) {
323 
324 	case TOP_LOAD:
325 
326 	  /* Load the image in the top of free memory */
327 	  temp_image_base = mem_layout->free_base + mem_layout->free_size;
328 	  temp_image_base -= image_size;
329 
330 	  /* Page align base address and check whether the image still fits */
331 	  image_base = page_align(temp_image_base, DOWN);
332 	  assert(image_base <= temp_image_base);
333 
334 	  if (image_base < mem_layout->free_base) {
335 		ERROR("Cannot load '%s' file: Not enough space.\n",
336 			image_name);
337 		dump_load_info(image_base, image_size, mem_layout);
338 		goto fail;
339 	  }
340 
341 	  /* Calculate the amount of extra memory used due to alignment */
342 	  offset = temp_image_base - image_base;
343 
344 	  break;
345 
346 	case BOT_LOAD:
347 
348 	  /* Load the BL2 image in the bottom of free memory */
349 	  temp_image_base = mem_layout->free_base;
350 	  image_base = page_align(temp_image_base, UP);
351 	  assert(image_base >= temp_image_base);
352 
353 	  /* Page align base address and check whether the image still fits */
354 	  if (image_base + image_size >
355 	      mem_layout->free_base + mem_layout->free_size) {
356 		  ERROR("Cannot load '%s' file: Not enough space.\n",
357 			  image_name);
358 		  dump_load_info(image_base, image_size, mem_layout);
359 		  goto fail;
360 	  }
361 
362 	  /* Calculate the amount of extra memory used due to alignment */
363 	  offset = image_base - temp_image_base;
364 
365 	  break;
366 
367 	default:
368 	  assert(0);
369 
370 	}
371 
372 	/*
373 	 * Some images must be loaded at a fixed address, not a dynamic one.
374 	 *
375 	 * This has been implemented as a hack on top of the existing dynamic
376 	 * loading mechanism, for the time being.  If the 'fixed_addr' function
377 	 * argument is different from zero, then it will force the load address.
378 	 * So we still have this principle of top/bottom loading but the code
379 	 * determining the load address is bypassed and the load address is
380 	 * forced to the fixed one.
381 	 *
382 	 * This can result in quite a lot of wasted space because we still use
383 	 * 1 sole meminfo structure to represent the extents of free memory,
384 	 * where we should use some sort of linked list.
385 	 *
386 	 * E.g. we want to load BL2 at address 0x04020000, the resulting memory
387 	 *      layout should look as follows:
388 	 * ------------ 0x04040000
389 	 * |          |  <- Free space (1)
390 	 * |----------|
391 	 * |   BL2    |
392 	 * |----------| 0x04020000
393 	 * |          |  <- Free space (2)
394 	 * |----------|
395 	 * |   BL1    |
396 	 * ------------ 0x04000000
397 	 *
398 	 * But in the current hacky implementation, we'll need to specify
399 	 * whether BL2 is loaded at the top or bottom of the free memory.
400 	 * E.g. if BL2 is considered as top-loaded, the meminfo structure
401 	 * will give the following view of the memory, hiding the chunk of
402 	 * free memory above BL2:
403 	 * ------------ 0x04040000
404 	 * |          |
405 	 * |          |
406 	 * |   BL2    |
407 	 * |----------| 0x04020000
408 	 * |          |  <- Free space (2)
409 	 * |----------|
410 	 * |   BL1    |
411 	 * ------------ 0x04000000
412 	 */
413 	if (fixed_addr != 0) {
414 		/* Load the image at the given address. */
415 		image_base = fixed_addr;
416 
417 		/* Check whether the image fits. */
418 		if ((image_base < mem_layout->free_base) ||
419 		    (image_base + image_size >
420 		       mem_layout->free_base + mem_layout->free_size)) {
421 			ERROR("Cannot load '%s' file: Not enough space.\n",
422 				image_name);
423 			dump_load_info(image_base, image_size, mem_layout);
424 			goto fail;
425 		}
426 
427 		/* Check whether the fixed load address is page-aligned. */
428 		if (!is_page_aligned(image_base)) {
429 			ERROR("Cannot load '%s' file at unaligned address 0x%lx\n",
430 				image_name, fixed_addr);
431 			goto fail;
432 		}
433 
434 		/*
435 		 * Calculate the amount of extra memory used due to fixed
436 		 * loading.
437 		 */
438 		if (load_type == TOP_LOAD) {
439 			unsigned long max_addr, space_used;
440 			/*
441 			 * ------------ max_addr
442 			 * | /wasted/ |                 | offset
443 			 * |..........|..............................
444 			 * |  image   |                 | image_flen
445 			 * |----------| fixed_addr
446 			 * |          |
447 			 * |          |
448 			 * ------------ total_base
449 			 */
450 			max_addr = mem_layout->total_base + mem_layout->total_size;
451 			/*
452 			 * Compute the amount of memory used by the image.
453 			 * Corresponds to all space above the image load
454 			 * address.
455 			 */
456 			space_used = max_addr - fixed_addr;
457 			/*
458 			 * Calculate the amount of wasted memory within the
459 			 * amount of memory used by the image.
460 			 */
461 			offset = space_used - image_size;
462 		} else /* BOT_LOAD */
463 			/*
464 			 * ------------
465 			 * |          |
466 			 * |          |
467 			 * |----------|
468 			 * |  image   |
469 			 * |..........| fixed_addr
470 			 * | /wasted/ |                 | offset
471 			 * ------------ total_base
472 			 */
473 			offset = fixed_addr - mem_layout->total_base;
474 	}
475 
476 	/* We have enough space so load the image now */
477 	/* TODO: Consider whether to try to recover/retry a partially successful read */
478 	io_result = io_read(image_handle, (void *)image_base, image_size, &bytes_read);
479 	if ((io_result != IO_SUCCESS) || (bytes_read < image_size)) {
480 		ERROR("Failed to load '%s' file (%i)\n", image_name, io_result);
481 		goto fail;
482 	}
483 
484 	/*
485 	 * File has been successfully loaded. Update the free memory
486 	 * data structure & flush the contents of the TZRAM so that
487 	 * the next EL can see it.
488 	 */
489 	/* Update the memory contents */
490 	flush_dcache_range(image_base, image_size);
491 
492 	mem_layout->free_size -= image_size + offset;
493 
494 	/* Update the base of free memory since its moved up */
495 	if (load_type == BOT_LOAD)
496 		mem_layout->free_base += offset + image_size;
497 
498 exit:
499 	io_result = io_close(image_handle);
500 	/* Ignore improbable/unrecoverable error in 'close' */
501 
502 	/* TODO: Consider maintaining open device connection from this bootloader stage */
503 	io_result = io_dev_close(dev_handle);
504 	/* Ignore improbable/unrecoverable error in 'dev_close' */
505 
506 	return image_base;
507 
508 fail:	image_base = 0;
509 	goto exit;
510 }
511 
512 /*******************************************************************************
513  * Run a loaded image from the given entry point. This could result in either
514  * dropping into a lower exception level or jumping to a higher exception level.
515  * The only way of doing the latter is through an SMC. In either case, setup the
516  * parameters for the EL change request correctly.
517  ******************************************************************************/
518 int run_image(unsigned long entrypoint,
519 	      unsigned long spsr,
520 	      unsigned long target_security_state,
521 	      meminfo *mem_layout,
522 	      void *data)
523 {
524 	el_change_info run_image_info;
525 	unsigned long current_el = read_current_el();
526 
527 	/* Tell next EL what we want done */
528 	run_image_info.args.arg0 = RUN_IMAGE;
529 	run_image_info.entrypoint = entrypoint;
530 	run_image_info.spsr = spsr;
531 	run_image_info.security_state = target_security_state;
532 	run_image_info.next = 0;
533 
534 	/*
535 	 * If we are EL3 then only an eret can take us to the desired
536 	 * exception level. Else for the time being assume that we have
537 	 * to jump to a higher EL and issue an SMC. Contents of argY
538 	 * will go into the general purpose register xY e.g. arg0->x0
539 	 */
540 	if (GET_EL(current_el) == MODE_EL3) {
541 		run_image_info.args.arg1 = (unsigned long) mem_layout;
542 		run_image_info.args.arg2 = (unsigned long) data;
543 	} else {
544 		run_image_info.args.arg1 = entrypoint;
545 		run_image_info.args.arg2 = spsr;
546 		run_image_info.args.arg3 = (unsigned long) mem_layout;
547 		run_image_info.args.arg4 = (unsigned long) data;
548 	}
549 
550 	return change_el(&run_image_info);
551 }
552