xref: /rk3399_ARM-atf/common/bl_common.c (revision 4f6ad66ae9fcc8bcb3b0fcee10b7ab1ffcaf1a56)
1 /*
2  * Copyright (c) 2013, ARM Limited. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *
7  * Redistributions of source code must retain the above copyright notice, this
8  * list of conditions and the following disclaimer.
9  *
10  * Redistributions in binary form must reproduce the above copyright notice,
11  * this list of conditions and the following disclaimer in the documentation
12  * and/or other materials provided with the distribution.
13  *
14  * Neither the name of ARM nor the names of its contributors may be used
15  * to endorse or promote products derived from this software without specific
16  * prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <stdio.h>
32 #include <string.h>
33 #include <errno.h>
34 #include <assert.h>
35 #include <arch_helpers.h>
36 #include <console.h>
37 #include <platform.h>
38 #include <semihosting.h>
39 #include <bl_common.h>
40 #include <bl1.h>
41 
42 /***********************************************************
43  * Memory for sharing data while changing exception levels.
44  * Only used by the primary core.
45  **********************************************************/
46 unsigned char bl2_el_change_mem_ptr[EL_CHANGE_MEM_SIZE];
47 
48 unsigned long *get_el_change_mem_ptr(void)
49 {
50 	return (unsigned long *) bl2_el_change_mem_ptr;
51 }
52 
53 unsigned long page_align(unsigned long value, unsigned dir)
54 {
55 	unsigned long page_size = 1 << FOUR_KB_SHIFT;
56 
57 	/* Round up the limit to the next page boundary */
58 	if (value & (page_size - 1)) {
59 		value &= ~(page_size - 1);
60 		if (dir == UP)
61 			value += page_size;
62 	}
63 
64 	return value;
65 }
66 
67 static inline unsigned int is_page_aligned (unsigned long addr) {
68 	const unsigned long page_size = 1 << FOUR_KB_SHIFT;
69 
70 	return (addr & (page_size - 1)) == 0;
71 }
72 
73 void change_security_state(unsigned int target_security_state)
74 {
75 	unsigned long scr = read_scr();
76 
77 	if (target_security_state == SECURE)
78 		scr &= ~SCR_NS_BIT;
79 	else if (target_security_state == NON_SECURE)
80 		scr |= SCR_NS_BIT;
81 	else
82 		assert(0);
83 
84 	write_scr(scr);
85 }
86 
87 int drop_el(aapcs64_params *args,
88 	    unsigned long spsr,
89 	    unsigned long entrypoint)
90 {
91 	write_spsr(spsr);
92 	write_elr(entrypoint);
93 	eret(args->arg0,
94 	     args->arg1,
95 	     args->arg2,
96 	     args->arg3,
97 	     args->arg4,
98 	     args->arg5,
99 	     args->arg6,
100 	     args->arg7);
101 	return -EINVAL;
102 }
103 
104 long raise_el(aapcs64_params *args)
105 {
106 	return smc(args->arg0,
107 		   args->arg1,
108 		   args->arg2,
109 		   args->arg3,
110 		   args->arg4,
111 		   args->arg5,
112 		   args->arg6,
113 		   args->arg7);
114 }
115 
116 /*
117  * TODO: If we are not EL3 then currently we only issue an SMC.
118  * Add support for dropping into EL0 etc. Consider adding support
119  * for switching from S-EL1 to S-EL0/1 etc.
120  */
121 long change_el(el_change_info *info)
122 {
123 	unsigned long current_el = read_current_el();
124 
125 	if (GET_EL(current_el) == MODE_EL3) {
126 		/*
127 		 * We can go anywhere from EL3. So find where.
128 		 * TODO: Lots to do if we are going non-secure.
129 		 * Flip the NS bit. Restore NS registers etc.
130 		 * Just doing the bare minimal for now.
131 		 */
132 
133 		if (info->security_state == NON_SECURE)
134 			change_security_state(info->security_state);
135 
136 		return drop_el(&info->args, info->spsr, info->entrypoint);
137 	} else
138 		return raise_el(&info->args);
139 }
140 
141 /* TODO: add a parameter for DAIF. not needed right now */
142 unsigned long make_spsr(unsigned long target_el,
143 			unsigned long target_sp,
144 			unsigned long target_rw)
145 {
146 	unsigned long spsr;
147 
148 	/* Disable all exceptions & setup the EL */
149 	spsr = (DAIF_FIQ_BIT | DAIF_IRQ_BIT | DAIF_ABT_BIT | DAIF_DBG_BIT)
150 		<< PSR_DAIF_SHIFT;
151 	spsr |= PSR_MODE(target_rw, target_el, target_sp);
152 
153 	return spsr;
154 }
155 
156 /*******************************************************************************
157  * The next two functions are the weak definitions. Platform specific
158  * code can override them if it wishes to.
159  ******************************************************************************/
160 
161 /*******************************************************************************
162  * Function that takes a memory layout into which BL31 has been either top or
163  * bottom loaded. Using this information, it populates bl31_mem_layout to tell
164  * BL31 how much memory it has access to and how much is available for use. It
165  * does not need the address where BL31 has been loaded as BL31 will reclaim
166  * all the memory used by BL2.
167  * TODO: Revisit if this and init_bl2_mem_layout can be replaced by a single
168  * routine.
169  ******************************************************************************/
170 void init_bl31_mem_layout(const meminfo *bl2_mem_layout,
171 			  meminfo *bl31_mem_layout,
172 			  unsigned int load_type)
173 {
174 	if (load_type == BOT_LOAD) {
175 		/*
176 		 * ------------                             ^
177 		 * |   BL2    |                             |
178 		 * |----------|                 ^           |  BL2
179 		 * |          |                 | BL2 free  |  total
180 		 * |          |                 |   size    |  size
181 		 * |----------| BL2 free base   v           |
182 		 * |   BL31   |                             |
183 		 * ------------ BL2 total base              v
184 		 */
185 		unsigned long bl31_size;
186 
187 		bl31_mem_layout->free_base = bl2_mem_layout->free_base;
188 
189 		bl31_size = bl2_mem_layout->free_base - bl2_mem_layout->total_base;
190 		bl31_mem_layout->free_size = bl2_mem_layout->total_size - bl31_size;
191 	} else {
192 		/*
193 		 * ------------                             ^
194 		 * |   BL31   |                             |
195 		 * |----------|                 ^           |  BL2
196 		 * |          |                 | BL2 free  |  total
197 		 * |          |                 |   size    |  size
198 		 * |----------| BL2 free base   v           |
199 		 * |   BL2    |                             |
200 		 * ------------ BL2 total base              v
201 		 */
202 		unsigned long bl2_size;
203 
204 		bl31_mem_layout->free_base = bl2_mem_layout->total_base;
205 
206 		bl2_size = bl2_mem_layout->free_base - bl2_mem_layout->total_base;
207 		bl31_mem_layout->free_size = bl2_mem_layout->free_size + bl2_size;
208 	}
209 
210 	bl31_mem_layout->total_base = bl2_mem_layout->total_base;
211 	bl31_mem_layout->total_size = bl2_mem_layout->total_size;
212 	bl31_mem_layout->attr = load_type;
213 
214 	flush_dcache_range((unsigned long) bl31_mem_layout, sizeof(meminfo));
215 	return;
216 }
217 
218 /*******************************************************************************
219  * Function that takes a memory layout into which BL2 has been either top or
220  * bottom loaded along with the address where BL2 has been loaded in it. Using
221  * this information, it populates bl2_mem_layout to tell BL2 how much memory
222  * it has access to and how much is available for use.
223  ******************************************************************************/
224 void init_bl2_mem_layout(meminfo *bl1_mem_layout,
225 			 meminfo *bl2_mem_layout,
226 			 unsigned int load_type,
227 			 unsigned long bl2_base)
228 {
229 	unsigned tmp;
230 
231 	if (load_type == BOT_LOAD) {
232 		bl2_mem_layout->total_base = bl2_base;
233 		tmp = bl1_mem_layout->free_base - bl2_base;
234 		bl2_mem_layout->total_size = bl1_mem_layout->free_size + tmp;
235 
236 	} else {
237 		bl2_mem_layout->total_base = bl1_mem_layout->free_base;
238 		tmp = bl1_mem_layout->total_base + bl1_mem_layout->total_size;
239 		bl2_mem_layout->total_size = tmp - bl1_mem_layout->free_base;
240 	}
241 
242 	bl2_mem_layout->free_base = bl1_mem_layout->free_base;
243 	bl2_mem_layout->free_size = bl1_mem_layout->free_size;
244 	bl2_mem_layout->attr = load_type;
245 
246 	flush_dcache_range((unsigned long) bl2_mem_layout, sizeof(meminfo));
247 	return;
248 }
249 
250 static void dump_load_info(unsigned long image_load_addr,
251 			   unsigned long image_size,
252 			   const meminfo *mem_layout)
253 {
254 #if DEBUG
255 	printf("Trying to load image at address 0x%lx, size = 0x%lx\r\n",
256 		image_load_addr, image_size);
257 	printf("Current memory layout:\r\n");
258 	printf("  total region = [0x%lx, 0x%lx]\r\n", mem_layout->total_base,
259 			mem_layout->total_base + mem_layout->total_size);
260 	printf("  free region = [0x%lx, 0x%lx]\r\n", mem_layout->free_base,
261 			mem_layout->free_base + mem_layout->free_size);
262 #endif
263 }
264 
265 /*******************************************************************************
266  * Generic function to load an image into the trusted RAM using semihosting
267  * given a name, extents of free memory & whether the image should be loaded at
268  * the bottom or top of the free memory. It updates the memory layout if the
269  * load is successful.
270  ******************************************************************************/
271 unsigned long load_image(meminfo *mem_layout,
272 			 const char *image_name,
273 			 unsigned int load_type,
274 			 unsigned long fixed_addr)
275 {
276 	unsigned long temp_image_base, image_base;
277 	long offset;
278 	int image_flen;
279 
280 	/* Find the size of the image */
281 	image_flen = semihosting_get_flen(image_name);
282 	if (image_flen < 0) {
283 		printf("ERROR: Cannot access '%s' file (%i).\r\n",
284 			image_name, image_flen);
285 		return 0;
286 	}
287 
288 	/* See if we have enough space */
289 	if (image_flen > mem_layout->free_size) {
290 		printf("ERROR: Cannot load '%s' file: Not enough space.\r\n",
291 			image_name);
292 		dump_load_info(0, image_flen, mem_layout);
293 		return 0;
294 	}
295 
296 	switch (load_type) {
297 
298 	case TOP_LOAD:
299 
300 	  /* Load the image in the top of free memory */
301 	  temp_image_base = mem_layout->free_base + mem_layout->free_size;
302 	  temp_image_base -= image_flen;
303 
304 	  /* Page align base address and check whether the image still fits */
305 	  image_base = page_align(temp_image_base, DOWN);
306 	  assert(image_base <= temp_image_base);
307 
308 	  if (image_base < mem_layout->free_base) {
309 		  printf("ERROR: Cannot load '%s' file: Not enough space.\r\n",
310 			  image_name);
311 		  dump_load_info(image_base, image_flen, mem_layout);
312 		  return 0;
313 	  }
314 
315 	  /* Calculate the amount of extra memory used due to alignment */
316 	  offset = temp_image_base - image_base;
317 
318 	  break;
319 
320 	case BOT_LOAD:
321 
322 	  /* Load the BL2 image in the bottom of free memory */
323 	  temp_image_base = mem_layout->free_base;
324 	  image_base = page_align(temp_image_base, UP);
325 	  assert(image_base >= temp_image_base);
326 
327 	  /* Page align base address and check whether the image still fits */
328 	  if (image_base + image_flen >
329 	      mem_layout->free_base + mem_layout->free_size) {
330 		  printf("ERROR: Cannot load '%s' file: Not enough space.\r\n",
331 			  image_name);
332 		  dump_load_info(image_base, image_flen, mem_layout);
333 		  return 0;
334 	  }
335 
336 	  /* Calculate the amount of extra memory used due to alignment */
337 	  offset = image_base - temp_image_base;
338 
339 	  break;
340 
341 	default:
342 	  assert(0);
343 
344 	}
345 
346 	/*
347 	 * Some images must be loaded at a fixed address, not a dynamic one.
348 	 *
349 	 * This has been implemented as a hack on top of the existing dynamic
350 	 * loading mechanism, for the time being.  If the 'fixed_addr' function
351 	 * argument is different from zero, then it will force the load address.
352 	 * So we still have this principle of top/bottom loading but the code
353 	 * determining the load address is bypassed and the load address is
354 	 * forced to the fixed one.
355 	 *
356 	 * This can result in quite a lot of wasted space because we still use
357 	 * 1 sole meminfo structure to represent the extents of free memory,
358 	 * where we should use some sort of linked list.
359 	 *
360 	 * E.g. we want to load BL2 at address 0x04020000, the resulting memory
361 	 *      layout should look as follows:
362 	 * ------------ 0x04040000
363 	 * |          |  <- Free space (1)
364 	 * |----------|
365 	 * |   BL2    |
366 	 * |----------| 0x04020000
367 	 * |          |  <- Free space (2)
368 	 * |----------|
369 	 * |   BL1    |
370 	 * ------------ 0x04000000
371 	 *
372 	 * But in the current hacky implementation, we'll need to specify
373 	 * whether BL2 is loaded at the top or bottom of the free memory.
374 	 * E.g. if BL2 is considered as top-loaded, the meminfo structure
375 	 * will give the following view of the memory, hiding the chunk of
376 	 * free memory above BL2:
377 	 * ------------ 0x04040000
378 	 * |          |
379 	 * |          |
380 	 * |   BL2    |
381 	 * |----------| 0x04020000
382 	 * |          |  <- Free space (2)
383 	 * |----------|
384 	 * |   BL1    |
385 	 * ------------ 0x04000000
386 	 */
387 	if (fixed_addr != 0) {
388 		/* Load the image at the given address. */
389 		image_base = fixed_addr;
390 
391 		/* Check whether the image fits. */
392 		if ((image_base < mem_layout->free_base) ||
393 		    (image_base + image_flen >
394 		       mem_layout->free_base + mem_layout->free_size)) {
395 			printf("ERROR: Cannot load '%s' file: Not enough space.\r\n",
396 				image_name);
397 			dump_load_info(image_base, image_flen, mem_layout);
398 			return 0;
399 		}
400 
401 		/* Check whether the fixed load address is page-aligned. */
402 		if (!is_page_aligned(image_base)) {
403 			printf("ERROR: Cannot load '%s' file at unaligned address 0x%lx.\r\n",
404 				image_name, fixed_addr);
405 			return 0;
406 		}
407 
408 		/*
409 		 * Calculate the amount of extra memory used due to fixed
410 		 * loading.
411 		 */
412 		if (load_type == TOP_LOAD) {
413 			unsigned long max_addr, space_used;
414 			/*
415 			 * ------------ max_addr
416 			 * | /wasted/ |                 | offset
417 			 * |..........|..............................
418 			 * |  image   |                 | image_flen
419 			 * |----------| fixed_addr
420 			 * |          |
421 			 * |          |
422 			 * ------------ total_base
423 			 */
424 			max_addr = mem_layout->total_base + mem_layout->total_size;
425 			/*
426 			 * Compute the amount of memory used by the image.
427 			 * Corresponds to all space above the image load
428 			 * address.
429 			 */
430 			space_used = max_addr - fixed_addr;
431 			/*
432 			 * Calculate the amount of wasted memory within the
433 			 * amount of memory used by the image.
434 			 */
435 			offset = space_used - image_flen;
436 		} else /* BOT_LOAD */
437 			/*
438 			 * ------------
439 			 * |          |
440 			 * |          |
441 			 * |----------|
442 			 * |  image   |
443 			 * |..........| fixed_addr
444 			 * | /wasted/ |                 | offset
445 			 * ------------ total_base
446 			 */
447 			offset = fixed_addr - mem_layout->total_base;
448 	}
449 
450 	/* We have enough space so load the image now */
451 	image_flen = semihosting_download_file(image_name,
452 					       image_flen,
453 					       (void *) image_base);
454 	if (image_flen <= 0) {
455 		printf("ERROR: Failed to load '%s' file from semihosting (%i).\r\n",
456 			image_name, image_flen);
457 		return 0;
458 	}
459 
460 	/*
461 	 * File has been successfully loaded. Update the free memory
462 	 * data structure & flush the contents of the TZRAM so that
463 	 * the next EL can see it.
464 	 */
465 	/* Update the memory contents */
466 	flush_dcache_range(image_base, image_flen);
467 
468 	mem_layout->free_size -= image_flen + offset;
469 
470 	/* Update the base of free memory since its moved up */
471 	if (load_type == BOT_LOAD)
472 		mem_layout->free_base += offset + image_flen;
473 
474 	return image_base;
475 }
476 
477 /*******************************************************************************
478  * Run a loaded image from the given entry point. This could result in either
479  * dropping into a lower exception level or jumping to a higher exception level.
480  * The only way of doing the latter is through an SMC. In either case, setup the
481  * parameters for the EL change request correctly.
482  ******************************************************************************/
483 int run_image(unsigned long entrypoint,
484 	      unsigned long spsr,
485 	      unsigned long target_security_state,
486 	      meminfo *mem_layout,
487 	      void *data)
488 {
489 	el_change_info run_image_info;
490 	unsigned long current_el = read_current_el();
491 
492 	/* Tell next EL what we want done */
493 	run_image_info.args.arg0 = RUN_IMAGE;
494 	run_image_info.entrypoint = entrypoint;
495 	run_image_info.spsr = spsr;
496 	run_image_info.security_state = target_security_state;
497 	run_image_info.next = 0;
498 
499 	/*
500 	 * If we are EL3 then only an eret can take us to the desired
501 	 * exception level. Else for the time being assume that we have
502 	 * to jump to a higher EL and issue an SMC. Contents of argY
503 	 * will go into the general purpose register xY e.g. arg0->x0
504 	 */
505 	if (GET_EL(current_el) == MODE_EL3) {
506 		run_image_info.args.arg1 = (unsigned long) mem_layout;
507 		run_image_info.args.arg2 = (unsigned long) data;
508 	} else {
509 		run_image_info.args.arg1 = entrypoint;
510 		run_image_info.args.arg2 = spsr;
511 		run_image_info.args.arg3 = (unsigned long) mem_layout;
512 		run_image_info.args.arg4 = (unsigned long) data;
513 	}
514 
515 	return change_el(&run_image_info);
516 }
517